
HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Hardware Modeling [VU] (191.011)
– WS24 –
VHDL Basics

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-30, 16:53 (e9b236f)

Hardware Modeling [VU] (191.011)
– WS24 –
VHDL Basics

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

VHDL Basics

Welcome to this first lecture on VHDL, a critical language in the world of hardware design. By the end of this lecture, you will
understand VHDL’s basic syntax and be able to write simple programs with text output.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Introduction

VHDL (Very High Speed Integrated Circuit Hardware Description
Language)

Widely used in industry and academia
Alternatives: Verilog, SystemC, System Verilog, . . .

Lots of online resources available
Tutorials, books, tools, . . .

Developed in the 80’s for U.S. Department of Defense
Based on Ada (strongly typed concept)
Revisions 1987, 93, 2000 and 2002

1

Introduction

VHDL (Very High Speed Integrated Circuit Hardware Description
Language)

Widely used in industry and academia
Alternatives: Verilog, SystemC, System Verilog, . . .

Lots of online resources available
Tutorials, books, tools, . . .

Developed in the 80’s for U.S. Department of Defense
Based on Ada (strongly typed concept)
Revisions 1987, 93, 2000 and 2002

VHDL Basics
Introduction

Introduction

VHDL stands for Very High Speed Integrated Circuit Hardware Description Language. It is used to model electronic systems.
VHDL is especially popular in industries where reliability and accuracy are crucial, such as aerospace, automotive, and
telecommunications. You can find a lot of additional learning and discussion material online. We will also provide helpful
resources and links on our TUWEL page. Let’s start with some background information. VHDL was developed in the 80s
by the U.S. Department of Defense and is based on Ada, which is known for its safety features and strong typing. The U.S.
Department of Defense needed a way to specify hardware behavior, which natural language could not effectively capture.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Introduction (cont’d)

Initially solely used to document hardware
Later extended by synthesis tools
Only subset of commands can be transferred
to hardware (= synthesizable VHDL)
All VHDL code is simulatable

VHDL Standard 2008 taught in this lecture
Attention: not all 2008 features are supported
by EDA tools
Has to be explicitly selected in tools (not the
default)

Synthesizeable
VHDL Code

VHDL Code

2

Introduction (cont’d)

Initially solely used to document hardware
Later extended by synthesis tools
Only subset of commands can be transferred
to hardware (= synthesizable VHDL)
All VHDL code is simulatable

VHDL Standard 2008 taught in this lecture
Attention: not all 2008 features are supported
by EDA tools
Has to be explicitly selected in tools (not the
default)

Synthesizeable
VHDL Code

VHDL Code

VHDL Basics
Introduction

Introduction (cont’d)

Initially, VHDL was used primarily for documenting hardware. The goal was to create a secure and robust way to describe
hardware and catch errors early in the design process. VHDL allowed for a precise description of hardware components
that manufacturers could use to build the desired equipment. Later, synthesis tools were developed to convert VHDL
descriptions into actual hardware. This caused some VHDL features, such as specifying delays, to be not directly translat-
able into hardware and considered non-synthesizable. VHDL includes both synthesizable and non-synthesizable features.
However, non-synthesizable VHDL code CAN be simulated. For instance a delay statement may not be synthesizable but
in a simulation it can mimic real world signal delays. Anyway, this will be covered in more detail in future lectures. In this
lecture, we’ll cover basic VHDL syntax, so you can start writing simple software programs with terminal outputs with the help
of a simulator. We’ll focus on VHDL-2008, as it is the most widely supported standard with broad tool compatibility. Keep in
mind that many tools default to older VHDL standards, so you might need to configure them to use VHDL-2008. Next, let’s
dive into the VHDL syntax.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Language Properties

Case insensitive
variable = VARIABLE = VaRiAbLe

Commands terminated by ’;’

Comments
’- -’ single line comment
Since 2008 multi-line comments possible (’/*’ and ’*/’)

Format used in lecture
keywords
datatype
comment
CONSTANT
everything else

3

Language Properties

Case insensitive
variable = VARIABLE = VaRiAbLe

Commands terminated by ’;’

Comments
’- -’ single line comment
Since 2008 multi-line comments possible (’/*’ and ’*/’)

Format used in lecture
keywords
datatype
comment
CONSTANT
everything else

VHDL Basics
Language Properties

Language Properties

Let’s start by looking at some fundamental properties of VHDL as a language. First, it’s important to know that VHDL is
a case-INsensitive language. This means that whether you type your identifiers and keywords in lowercase or uppercase,
VHDL will treat them as the same.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Language Properties

Case insensitive
variable = VARIABLE = VaRiAbLe

Commands terminated by ’;’

Comments
’- -’ single line comment
Since 2008 multi-line comments possible (’/*’ and ’*/’)

Format used in lecture
keywords
datatype
comment
CONSTANT
everything else

3

Language Properties

Case insensitive
variable = VARIABLE = VaRiAbLe

Commands terminated by ’;’

Comments
’- -’ single line comment
Since 2008 multi-line comments possible (’/*’ and ’*/’)

Format used in lecture
keywords
datatype
comment
CONSTANT
everything else

VHDL Basics
Language Properties

Language Properties

Another key aspect is that commands in VHDL are terminated by a semicolon, just like in Java or C.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Language Properties

Case insensitive
variable = VARIABLE = VaRiAbLe

Commands terminated by ’;’

Comments
’- -’ single line comment
Since 2008 multi-line comments possible (’/*’ and ’*/’)

Format used in lecture
keywords
datatype
comment
CONSTANT
everything else

3

Language Properties

Case insensitive
variable = VARIABLE = VaRiAbLe

Commands terminated by ’;’

Comments
’- -’ single line comment
Since 2008 multi-line comments possible (’/*’ and ’*/’)

Format used in lecture
keywords
datatype
comment
CONSTANT
everything else

VHDL Basics
Language Properties

Language Properties

Single-line comments are marked with two dashes. For multi-line comments, which were introduced in the 2008 revision, you
can use the Java or C style multi line comment delimiters.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Language Properties

Case insensitive
variable = VARIABLE = VaRiAbLe

Commands terminated by ’;’

Comments
’- -’ single line comment
Since 2008 multi-line comments possible (’/*’ and ’*/’)

Format used in lecture
keywords
datatype
comment
CONSTANT
everything else

3

Language Properties

Case insensitive
variable = VARIABLE = VaRiAbLe

Commands terminated by ’;’

Comments
’- -’ single line comment
Since 2008 multi-line comments possible (’/*’ and ’*/’)

Format used in lecture
keywords
datatype
comment
CONSTANT
everything else

VHDL Basics
Language Properties

Language Properties

Throughout this course, you’ll notice that we use specific formatting for keywords, data types, comments, and constants to
make the code more readable. This will help you quickly identify different elements when you’re reading VHDL code in our
slides.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Basic Identifiers 261

basic_identifier ::= letter{[underline]letter_or_digit}

First character must be a letter
No underscore at the end
No two consecutive underscores

valid

left
left1
left10
left2 0

invalid

left
0left
left
left 0

4

Basic Identifiers 261

basic_identifier ::= letter{[underline]letter_or_digit}

First character must be a letter
No underscore at the end
No two consecutive underscores

valid

left
left1
left10
left2 0

invalid

left
0left
left
left 0

VHDL Basics
Identifiers

Basic Identifiers

Next, let’s discuss identifiers in VHDL, which are names used for variables and various other elements in your code. This
slide shows a BNF, or Backus-Naur Form, which is a notation used to describe the syntax of context-free grammars. We will
frequently use this notation throughout the course to present the VHDL syntax. BNF is also used extensively in third-party
resources, like the VHDL standard, to explain syntax rules. If you are not already familiar with BNF, I encourage you to get
comfortable with it. In BNF, curly brackets indicate repetition, square brackets indicate optional elements, and vertical bars
indicate choices between alternatives. If a term appears without any brackets, it is mandatory to use that term to form a valid
syntax. As an example take the BNF for basic identifiers here. Identifiers must start with a letter, and there are certain
restrictions you need to be aware of. For example, you cannot have underscores at the end of an identifier or two consecutive
underscores within an identifier. Valid examples include left, left1, and left underscore 0. Invalid identifiers might include
names like underscore left, 0 left, or any identifier that ends with an underscore.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Extended Identifiers 261

Extended identifier syntax:
extended_identifier ::=

\graphic_character{graphic_character}\

Special identifier enclosed by backslashes

graphic_character can contain:
Upper-/lower-case letters (including language specific letters like ä, å, â)
Digits
Special characters (”, #, &, ¾, etc.)
Space characters

Examples:
\best’VAR’ev@r\
\# of bits\
\this const represents m in ˜inch\
VHDL, \VHDL\, \vhdl\ - three different identifiers

5

Extended Identifiers 261

Extended identifier syntax:
extended_identifier ::=

\graphic_character{graphic_character}\

Special identifier enclosed by backslashes

graphic_character can contain:
Upper-/lower-case letters (including language specific letters like ä, å, â)
Digits
Special characters (”, #, &, ¾, etc.)
Space characters

Examples:
\best’VAR’ev@r\
\# of bits\
\this const represents m in ˜inch\
VHDL, \VHDL\, \vhdl\ - three different identifiers

VHDL Basics
Identifiers

Extended Identifiers

In VHDL, we have a concept called extended identifiers. These are identifiers that are enclosed within backslashes. They al-
low us to use characters that aren’t typically allowed in standard identifiers, like special characters, spaces, or even language-
specific letters. You can check out the VHDL standard for a comprehensive naming method scheme.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Extended Identifiers 261

Extended identifier syntax:
extended_identifier ::=

\graphic_character{graphic_character}\

Special identifier enclosed by backslashes
graphic_character can contain:

Upper-/lower-case letters (including language specific letters like ä, å, â)
Digits
Special characters (”, #, &, ¾, etc.)
Space characters

Examples:
\best’VAR’ev@r\
\# of bits\
\this const represents m in ˜inch\
VHDL, \VHDL\, \vhdl\ - three different identifiers

5

Extended Identifiers 261

Extended identifier syntax:
extended_identifier ::=

\graphic_character{graphic_character}\

Special identifier enclosed by backslashes
graphic_character can contain:

Upper-/lower-case letters (including language specific letters like ä, å, â)
Digits
Special characters (”, #, &, ¾, etc.)
Space characters

Examples:
\best’VAR’ev@r\
\# of bits\
\this const represents m in ˜inch\
VHDL, \VHDL\, \vhdl\ - three different identifiers

VHDL Basics
Identifiers

Extended Identifiers

This flexibility can be particularly useful in cases where you want your identifiers to be more descriptive or include specific
characters, like special symbols, punctuation, or spaces. You can use extended identifiers to name something very precisely.
For example, you can use a sentence as variable name. Extended identifiers can make your code more readable by allowing
you to write names that are closer to natural language, or to conform to specific naming conventions that include special
characters or symbols. You can use typical characters meant for common abbreviations like hashtags for ’number’. As in
number of bits for instance. Just remember that these identifiers are enclosed in backslashes, and should be used carefully
to maintain code readability and clarity. Note that, you escape the usual case-insensitivity with this feature and thus easily
create three different identifiers with basically the same name as shown with the VHDL example at the bottom of the slide.
Overall, extended identifiers provide additional flexibility for naming conventions. However, this kind of identifiers is rarely
used in practice. Next, let’s go over some important core VHDL constructs.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Entity 20

Start by characterizing a hardware entity
Defines a module’s interface
Specifies name, inputs, and outputs
Encapsulates internal details
Blackbox definition: no knowledge of inner workings is needed

Example entity with no I/O:
1 entity ENTITY_NAME is
2 -- I/O definitions
3 end entity;

6

Entity 20

Start by characterizing a hardware entity
Defines a module’s interface
Specifies name, inputs, and outputs
Encapsulates internal details
Blackbox definition: no knowledge of inner workings is needed

Example entity with no I/O:
1 entity ENTITY_NAME is
2 -- I/O definitions
3 end entity;

VHDL Basics
Entity

Entity

We start by covering entities. In VHDL, the concept of an entity is central to understanding how you describe hardware.
An entity defines the external interface of a module. It tells us what the module is called and what its inputs and outputs
are. Think of the entity as a blackbox that hides all the internal workings, showing only the essential connection points to
the outside world. This abstraction is powerful because it allows you to focus on how components connect together without
worrying about their internal details at this stage. Think of entities like a Java interface or an abstract Java object for which
you define public input and output variables. In the example provided, you can see a simple entity that doesn’t have any
input or output. While this might seem trivial now, it forms the basis of all designs, no matter how complex they become.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Architecture 23

Describes the internal structure via architecture

Defines how the entity’s functionality is implemented
Knowledge of inner workings is needed
How does the entity behave?

It is possible to define multiple architectures for a single entity
Typical names for architectures: beh/behavioral or struct/structural

Example: empty architecture
1 architecture ARCH_NAME of ENTITY_NAME is
2 -- constants, etc.
3 begin
4 -- description of inner workings of ENTITY_NAME
5 end architecture;

7

Architecture 23

Describes the internal structure via architecture

Defines how the entity’s functionality is implemented
Knowledge of inner workings is needed
How does the entity behave?

It is possible to define multiple architectures for a single entity
Typical names for architectures: beh/behavioral or struct/structural

Example: empty architecture
1 architecture ARCH_NAME of ENTITY_NAME is
2 -- constants, etc.
3 begin
4 -- description of inner workings of ENTITY_NAME
5 end architecture;

VHDL Basics
Architecture

Architecture

Now that we’ve covered entities, let’s move on to architectures. This is where the real work happens. Architecture describes
the internal structure and behavior of an entity. In other words, it tells us how the entity’s inputs are processed to produce
the outputs. You can have multiple architectures for a single entity, each implementing different behaviors. Like multiple
distinct Java objects for one interface. This will become more relevant later, when we start to cover hardware generation.
For example, one architecture might be optimized for speed, while another is optimized for area or power consumption.
This flexibility allows you to experiment with different design strategies without changing the entity’s interface. In practice,
architecture types are often named behaviorally, like ’behavioral’ - or an abbreviation of that word - for a behavioral description,
which describes how the entity works in a functional sense. The example shown here demonstrates an empty architecture
with a generic name corresponding to a generic entity. Architectures start with the architecture keyword followed by the
architecture name. Then you follow up naturally and specify ”of” which entity this architecture is meant to be. Next is the
declaration scope for constants and more. Elements in this scope are comparable to private class variables. After the begin
keyword you would write the actual behavior of the specified entity. As already mentioned, in this introduction session we
will write VHDL software programs rather than actual describing hardware. The goal is to make you familiar with basic VHDL
constructs and syntax. We need a way to write sequential code in an architecture like we do in functions in Java or C. Thus,
let’s dive into a VHDL construct that supports exactly this.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Process 201

Defines sequential execution within an architecture
wait at the end signals process termination

Example process:
1 architecture ARCH_NAME of ENTITY_NAME is
2 -- constants, etc.
3 begin
4 process
5 -- constants, variables
6 begin
7 -- sequential statements
8 wait;
9 end process;

10 end architecture;

8

Process 201

Defines sequential execution within an architecture
wait at the end signals process termination

Example process:
1 architecture ARCH_NAME of ENTITY_NAME is
2 -- constants, etc.
3 begin
4 process
5 -- constants, variables
6 begin
7 -- sequential statements
8 wait;
9 end process;

10 end architecture;

VHDL Basics
Process

Process

Processes are an essential part of VHDL. They allow you to describe sequential operations within an architecture. While
VHDL is primarily a parallel language, processes introduce the concept of time and ordering, allowing you to describe
operations that depend on previous events. For now, we will focus only on this sequential operation paradigm. Within an
architecture a process starts with the process keyword. After that follow declarations of constants and variables. We will
show an example of that later. The begin keyword initiates the process body. Here are all the sequential statements of a
process. Note that the last statement in the process is wait. This is important now such that you can write a program that
can be executed once per run. As is usual with VHDL scopes the process ends with the end keyword and the kind of scope
- in this case end process.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Variables & Constants 91

Used within processes for temporary storage
Declared after process definition and before begin

Local to the process
Variables:

Like variables in other programming languages
Optional default value on declaration

Constants: Read-only and requires value on declaration
Example declarations of one constant and two variables:

1 constant BYTE_WIDTH : integer := 8;
2 variable x,y : integer := 0;

9

Variables & Constants 91

Used within processes for temporary storage
Declared after process definition and before begin

Local to the process
Variables:

Like variables in other programming languages
Optional default value on declaration

Constants: Read-only and requires value on declaration
Example declarations of one constant and two variables:

1 constant BYTE_WIDTH : integer := 8;
2 variable x,y : integer := 0;

VHDL Basics
Process

Variables & Constants

Within processes, you often need to store intermediate values, and this is where variables and constants come into play.
Variables in VHDL are local to the process they’re defined in. Like variables in other programming languages they are up-
dated immediately when you assign them a new value. Constants, on the other hand, are read-only values that must be
assigned when they’re declared. They are useful for values that shouldn’t change, like mathematical constants or configu-
ration parameters. The example here shows declarations of a constant followed by two integer variables. Constant and
variable declarations are initiated with the constant and variable keywords, respectively. Follow up with the name, colon
character and type name after which you can assign default values after colon equal. Note that the assignment for constants
is mandatory. For variables, they are optional but recommended. For simplicity, we will only handle some built-in types in
this lecture.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Packages 45

Define reusable code modules via packages
Contain common declarations: constants, types, functions, and
procedures

Promotes modularity and code reuse
Provides a central place to manage shared definitions

Example package declaration:
1 package screenInfo is
2 -- constant declarations
3 constant SCREEN_WIDTH : integer := 720;
4 constant SCREEN_HEIGHT : integer := 480;
5 end package;

10

Packages 45

Define reusable code modules via packages
Contain common declarations: constants, types, functions, and
procedures

Promotes modularity and code reuse
Provides a central place to manage shared definitions

Example package declaration:
1 package screenInfo is
2 -- constant declarations
3 constant SCREEN_WIDTH : integer := 720;
4 constant SCREEN_HEIGHT : integer := 480;
5 end package;

VHDL Basics
Packages

Packages

Packages in VHDL are similar to libraries or modules in other programming languages. They allow you to define reusable
code components like constants and in later lectures you will also find types, functions, and procedures here. Packages
help to promote modularity by keeping common definitions and utilities in a single, manageable place. This is particularly
useful in larger projects where multiple entities or architectures need to share the same data types or functions. We will cover
types, functions and procedures in a later lecture. To declare a package, you start with the package keyword followed
by the package name and the is keyword. Within the package, you can define various reusable components. After that,
you end the package declaration with end package optionally followed by the package name. By organizing your code into
packages, you can build up a library of reusable components that makes future design work easier and more efficient.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Using Packages

Import packages into your VHDL code with the use clause
Provides access to types, constants, functions, and procedures defined in
the package
Use the following syntax:

use library name.package name.all;
use library name.package name.element name;
Default library work : current project working library

Example of using a package:
1 -- make SCREEN_WIDTH, SCREEN_HEIGHT available to this file
2 use work.screenInfo.all;
3

4 -- entity declaration
5

6 -- entity architecture

11

Using Packages

Import packages into your VHDL code with the use clause
Provides access to types, constants, functions, and procedures defined in
the package
Use the following syntax:

use library name.package name.all;
use library name.package name.element name;
Default library work : current project working library

Example of using a package:
1 -- make SCREEN_WIDTH, SCREEN_HEIGHT available to this file
2 use work.screenInfo.all;
3

4 -- entity declaration
5

6 -- entity architecture

VHDL Basics
Packages

Using Packages

Once a package is defined, you can use its contents in your design by importing it with the ’use’ clause. This provides access
to all the components that the package contains. To use a package, you start with the use keyword, followed by the library
name, package name, and the all keyword to include everything. Alternatively, you can specify individual elements if you
don’t need the entire package. In the example, the line ’use work.screenInfo.all;’ is used to import everything defined in
the package ’screenInfo’ from the previous slide located in the ’work’ library. The ’work’ library is the default library in VHDL
where all your design units, like entities, architectures, and packages, are compiled by default. By specifying ’work’, you are
referring to the current working library for your project. You will get to know other important libraries in later lectures. The all
keyword lets you import all types, constants, functions, and procedures that the package ’screenInfo’ defines.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Basic Operators 150

Assignment Operator: :=
Logical Operators (logop): and, or, nand, nor, xor, xnor
Relational Operators (relop): =, /=, <, <=, >, >=

Used for comparing values, returns a boolean result
Arithmetic Operators (addop): +, -, & (concatenation)
Multiplication Operators (mulop): *, /, mod, rem

Miscellaneous Operators (miscop): ** (exponentiation), abs (absolute
value), not (logical negation)

Important: VHDL is a strongly typed language
Types of both operands must match
Result type on the left side must match operands on the right side of
assignments

12

Basic Operators 150

Assignment Operator: :=
Logical Operators (logop): and, or, nand, nor, xor, xnor
Relational Operators (relop): =, /=, <, <=, >, >=

Used for comparing values, returns a boolean result
Arithmetic Operators (addop): +, -, & (concatenation)
Multiplication Operators (mulop): *, /, mod, rem

Miscellaneous Operators (miscop): ** (exponentiation), abs (absolute
value), not (logical negation)

Important: VHDL is a strongly typed language
Types of both operands must match
Result type on the left side must match operands on the right side of
assignments

VHDL Basics
Basic Operators

Basic Operators

Let’s look at some basic operators in VHDL that you’ll often use in your designs. We have the assignment operator, repre-
sented by the colon equals sign, used for assigning values to variables. There are logical operators like ’and’ and ’or’, which
handle boolean values. Relational operators let you compare values and return a boolean result. Note that the equality oper-
ators differ from Java and C. For equality, VHDL uses a single equals sign, while inequality is represented by a slash followed
by an equals sign. Arithmetic operators like plus and minus handle numeric operations The ampersand operator is also
called concatenation operator. For now, it is only relevant for building strings. There are also operations for multiplication
and divisions as well as modulo and remainder. The difference between mod and rem is that rem ensures the remainder has
the same sign as the dividend. Lastly, there are helpful operators for exponentiation as well as unary operators to retrieve
absolute values from integers and logical negotiations. Remember, VHDL is strongly typed, meaning operand types must
match exactly, or you’ll get an error. We’ll see examples of these operators later. Next, we look at expressions.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Basic Expression Elements 149

prim ::= lit | const
5, ’1’, true, clk_freq

factor ::= (prim [** prim]) | (abs prim) | (not prim)
abs -3, not true, 5 ** 2

term ::= factor [mulop factor]
5 * 2, 10 / 2, 7 mod 3

13

Basic Expression Elements 149

prim ::= lit | const
5, ’1’, true, clk_freq

factor ::= (prim [** prim]) | (abs prim) | (not prim)
abs -3, not true, 5 ** 2

term ::= factor [mulop factor]
5 * 2, 10 / 2, 7 mod 3

VHDL Basics
Basic Expression Elements

Basic Expression Elements

Let’s start by breaking down the fundamental elements of VHDL expressions. The most basic building blocks are primitives,
like literals or constants. For example, the number five, the character ’1’, or a predefined constant like true or a variable name.
Factors are slightly more complex; they can include exponentiation, absolute values, or logical negation. A term combines
factors using multiplication or division operators. Understanding these basic elements is crucial, as they form the foundation
for more complex expressions.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Combining Elements into Expressions 149

sexpr ::= [+/-] term [addop term]
3 + 2, -1 + 7, result - 5

relation ::= sexpr [relop sexpr]
5 > 3, a <= b, x = y

expr ::= relation [logop relation]
(a = b) or (c > d)

14

Combining Elements into Expressions 149

sexpr ::= [+/-] term [addop term]
3 + 2, -1 + 7, result - 5

relation ::= sexpr [relop sexpr]
5 > 3, a <= b, x = y

expr ::= relation [logop relation]
(a = b) or (c > d)

VHDL Basics
Basic Expression Elements

Combining Elements into Expressions

Now let’s look at how we build more advanced expressions using the basic elements from the previous slide. A simple
expression, can be formed by combining terms with addition or subtraction. Relations allow us to compare two expressions,
using relational operators like greater than or equal to. At the highest level, an expression can be a relation or a combination
of multiple relations. By mastering these building blocks, you can construct most logical expressions you need in VHDL.
Note that the operations and expression definitions are also available on the VHDL cheat sheet which you can find on this
course’s TUWEL page.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Basic Sequential Statements 149

literal := sexpr ;
Assigns the value of an expression to a variable (literal)
Strongly typed: the types on the left and right sides must match

report string;
Outputs the given string during simulation
In VHDL 2008: use to string(var) to convert variables to strings
Use & operator to concatenate strings
Example:
report "Current screen width: " & to_string(SCREEN_WIDTH);

null;
No operation; useful as a placeholder

15

Basic Sequential Statements 149

literal := sexpr ;
Assigns the value of an expression to a variable (literal)
Strongly typed: the types on the left and right sides must match

report string;
Outputs the given string during simulation
In VHDL 2008: use to string(var) to convert variables to strings
Use & operator to concatenate strings
Example:
report "Current screen width: " & to_string(SCREEN_WIDTH);

null;
No operation; useful as a placeholder

VHDL Basics
Basic Expression Elements

Basic Sequential Statements

Let’s review some basic sequential statements used in VHDL. Again, the assignment operator allows us to assign a value to
a variable. Assignments require a simple expression on the right side. Remember, VHDL is strongly typed, so both sides of
the assignment must have compatible types. The report statement is used to output messages during simulation, which
can be helpful for debugging. You can convert variables to strings using the ”to-string” function introduced in VHDL 2008 and
concatenate multiple strings using the ampersand operator. Finally, the null statement represents a no-operation, useful
when a statement is required syntactically, but no action is needed. Before writing our first program let’s also talk about
control flow operations.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Control Flow: Branching 193

if/else:
if expr then

{sequential statement}
[{elsif expr then

{sequential statement}}]
[else

{sequential statement}]
end if;

select:
case expr is
{when choice [{|choice}] =>

{sequential statement}}
end case;
choice ::= sexpr | others
All possible choices must be
covered

16

Control Flow: Branching 193

if/else:
if expr then

{sequential statement}
[{elsif expr then

{sequential statement}}]
[else

{sequential statement}]
end if;

select:
case expr is
{when choice [{|choice}] =>

{sequential statement}}
end case;
choice ::= sexpr | others
All possible choices must be
covered

VHDL Basics
Control Flow

Control Flow: Branching

Control flow is crucial in programming as it allows your code to make decisions based on certain conditions. Let’s start with
the if-else statement. The if-else statement in VHDL works similarly to other programming languages. It checks a condition
represented by an expression, and executes a block of sequential statements if this condition is true. If the condition is false,
the program can optionally check additional conditions using ’else-if’ branches, or execute a default block of statements using
the else branch. Note that ”else-if” branches are introduced with somewhat uncommon elsif keyword, a quirk inherited
form Ada. Next, we have the case statement, which is used when you want to select one of many possible actions
based on the value of an expression. The case statement compares the expression against a series of choices. When a
match is found, the corresponding block of sequential statements is executed. A default action can be specified, in case
not all possible values the expression can evaluate to are covered. A choice statement consists of a simple expression or
the others keyword. ’Others’ is essentially like the ’else’ keyword in if statements or ’default’ in Java’s and C’s switch-case.
The case statement is particularly useful when dealing with enumerated types or situations where multiple distinct conditions
need to be handled differently. There is no fall through like in Java or C in VHDL so no ’break’-like keyword is required. A
choice only executes the sequential statements below the choices. A valid case statement has to cover all possible choices
from the expression. This is where the ’others’ keyword as default branch comes in handy. The case statement will become
very useful in later lectures. Especially when enumerated types are handled.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Control Flow: Basic Loops 196

Basic loop:
loop

{sequential statements}
end loop;

next [when expr];
Skips the rest of the current iteration (like continue in Java/C)

exit [when expr];
Exits the loop entirely (like break in Java/C)

17

Control Flow: Basic Loops 196

Basic loop:
loop

{sequential statements}
end loop;

next [when expr];
Skips the rest of the current iteration (like continue in Java/C)

exit [when expr];
Exits the loop entirely (like break in Java/C)

VHDL Basics
Control Flow

Control Flow: Basic Loops

Let’s begin by looking at basic loops in VHDL. A basic loop is created using the loop keyword, and it will continue indefinitely
unless you use a control statement to break out of it. This is similar to an infinite loop in other programming languages. To
control the flow within the loop, you can use the next statement, which skips the rest of the current iteration and moves to
the next one, similar to the continue statement in Java or C. The exit statement, is used to exit the loop entirely, much like
the ”break” statement in other languages. Both next and exit can be used with an optional when clause to conditionally
control the loop’s behavior.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Control Flow: Typed Loops 196

while loop:
while expr loop

{sequential statements}
end loop;
Continues as long as the condition is true

for loop:
for literal in range loop

{sequential statements}
end loop;
range ::= prim to prim

| prim downto prim
Iterates over a specific range

18

Control Flow: Typed Loops 196

while loop:
while expr loop

{sequential statements}
end loop;
Continues as long as the condition is true

for loop:
for literal in range loop

{sequential statements}
end loop;
range ::= prim to prim

| prim downto prim
Iterates over a specific range

VHDL Basics
Control Flow

Control Flow: Typed Loops

Now, let’s look at typed loops in VHDL. The while loop continues execution as long as the condition specified in the while
expression is true. This is similar to while loops in other programming languages, where the loop checks the condition before
each iteration. On the other hand, the for loop is used to iterate over a specific range of values, defined by either the
to or downto keywords. With the for loop, you specify a loop parameter, which takes on each value in the range, one at a
time. Note that the VHDL standard defines this loop parameter to be a constant inside the loop. Thus, when executing
the sequential statements of the loop’s body, the loop parameter cannot be modified. Both loops allow you to control
repetitive actions in your VHDL code, but they are suited for different situations depending on whether you know the number
of iterations in advance or need to rely on a condition.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Miscellaneous: Block Identifiers & Labels 139

Every VHDL code scope can have an identifier
Required in certain scopes (e.g., architecture, entity)
Identifiers help to clearly define and manage the scope’s purpose

Scopes are closed with the end keyword
Identifier can be included in the end line, e.g., ’end entity myEntity;’
We advise against this practice

Loops, if statements, and process blocks can have optional labels
C-like syntax: e.g., ’LABELID: process’
Labels can be used with next and exit to target specific loops, improving
control flow within nested structures

19

Miscellaneous: Block Identifiers & Labels 139

Every VHDL code scope can have an identifier
Required in certain scopes (e.g., architecture, entity)
Identifiers help to clearly define and manage the scope’s purpose

Scopes are closed with the end keyword
Identifier can be included in the end line, e.g., ’end entity myEntity;’
We advise against this practice

Loops, if statements, and process blocks can have optional labels
C-like syntax: e.g., ’LABELID: process’
Labels can be used with next and exit to target specific loops, improving
control flow within nested structures

VHDL Basics
Labels

Miscellaneous: Block Identifiers & Labels

Lastly, before showing a complete VHDL code example let’s quickly talk about labels. In VHDL, every scope of code, such
as an architecture or entity, can have an identifier. While not always required, identifiers help manage and clearly define the
scope, making the code more readable and maintainable. Loops, if-statements, and process blocks can also have optional
labels. Scopes are closed with the end keyword, and it’s possible to include the identifier in the end statement as well.
However, we discourage you from do this, as it introduces unnecessary work when something needs to be renamed and
modern IDEs or code editors visualize this scopes anyway. Using labels can greatly improve the readability of your VHDL
code, especially in complex or nested structures. It is possible to target specific nested loop hierarchies with the control
flow statements ’next’ and ’exit’. Overall, thoughtful use of identifiers and labels enhances code clarity and maintainability.
Additionally, keep in mind that labeling structures can help you find and debug problems in simulations later.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Example Process: Fibonacci

1 main: process
2 constant UPPER_BOUND : integer := 20;
3 variable current, previous, temp : integer := 0;
4 begin
5 previous := 0;
6 current := 1;
7 for i in 0 to UPPER_BOUND loop
8 temp := current;
9 current := previous + current;

10 previous := temp;
11 report "Fibonacci(" & to_string(i) & ") = "
12 & to_string(current);
13 end loop;
14 wait;
15 end process;

20

Example Process: Fibonacci

1 main: process
2 constant UPPER_BOUND : integer := 20;
3 variable current, previous, temp : integer := 0;
4 begin
5 previous := 0;
6 current := 1;
7 for i in 0 to UPPER_BOUND loop
8 temp := current;
9 current := previous + current;

10 previous := temp;
11 report "Fibonacci(" & to_string(i) & ") = "
12 & to_string(current);
13 end loop;
14 wait;
15 end process;

VHDL Basics
Example

Example Process: Fibonacci

Now lets finally put everything together and look at a bigger more comprehensive example. You are probably familiar with the
Fibonacci sequence. The Fibonacci sequence is a series of numbers where each number is the sum of the two preceding
ones, starting from 0 and 1. In this slide you can see the implementation of this sequence in a process. Let’s start from
the top. We call the process ’main’ by labeling it. Then we define the constant UPPER BOUND which limits the number of
calculated Fibonacci numbers. Three variables are required in this implementation to calculate the sequence. We start
the process by assigning 0 to ’previous’ and 1 to ’current’. Then we start a loop declare a loop variable i and let the loop
repeat from the range 0 to UPPER BOUND. The loop body contains statements such that we calculate the next Fibonacci
number by summing up the two previous ones. After which we print the current Fibonacci number via the ’report’ command
by concatenating a few constant string with two variables with the help of the to string function. We end the loop, and
finally, before we terminate the process we add the -for now- required ’wait’ statement. We will now show you how you can
easily test and play around with this code.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Testing: EDA Playground Overview

Web-based platform for simulating and sharing HDL code
https://www.edaplayground.com/

Supports multiple languages:
VHDL, Verilog, SystemVerilog, and more

Features:
Access to various simulators (e.g., GHDL, ModelSim (QuestaSim))
Collaborative coding with sharing links
No installation needed, runs in the browser

Ideal for:
Learning and practicing HDL coding
Testing and debugging small code snippets
Demonstrating concepts in a classroom setting

21

Testing: EDA Playground Overview

Web-based platform for simulating and sharing HDL code
https://www.edaplayground.com/

Supports multiple languages:
VHDL, Verilog, SystemVerilog, and more

Features:
Access to various simulators (e.g., GHDL, ModelSim (QuestaSim))
Collaborative coding with sharing links
No installation needed, runs in the browser

Ideal for:
Learning and practicing HDL coding
Testing and debugging small code snippets
Demonstrating concepts in a classroom setting

VHDL Basics
Example

Testing: EDA Playground Overview

For this purpose we will use the EDA Playground. This is a Web-based platform for testing HDL code in general. It has a lot
of features but for now just see it as a tool to execute VHDL code.

https://www.edaplayground.com/
https://www.edaplayground.com/

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

EDA Playground Settings

Set Testbench + Design language
to VHDL
Set Libraries to OSVVM

Open Source VHDL Verification
Methodology

Specify ”Top entity”
”main” entity: myEntity in this
example (see testbench.vhd on
next slide)

Select GHDL 3.0.0 as Simulator
Open Source VHDL Simulator

22

EDA Playground Settings

Set Testbench + Design language
to VHDL
Set Libraries to OSVVM

Open Source VHDL Verification
Methodology

Specify ”Top entity”
”main” entity: myEntity in this
example (see testbench.vhd on
next slide)

Select GHDL 3.0.0 as Simulator
Open Source VHDL Simulator

VHDL Basics
Example

EDA Playground Settings

First, focus on the left side of the website and check out the settings. Start from the top. To run the Fibonacci example
start by setting the ’Testbench + Design’ language to VHDL. Then select OSVVM under ’Libraries’. Specify the so called
’Top entity’. This is generally the highest order entity in your design. We will only use one entity called ’myEntity’. So specify
’myEntity’ as top entity. Lastly, select GHDL 3-O-O under Tools and Simulators.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

EDA Playground Code

Put your code (entity + architecture) into the testbench file on the left
GHDL requires a non-empty design file on the right

23

EDA Playground Code

Put your code (entity + architecture) into the testbench file on the left
GHDL requires a non-empty design file on the right

VHDL Basics
Example

EDA Playground Code

Now it’s time to code! Move your attention to the right and check out the two input fields or editors. Put your code into the
default testbench.vhd file in the left editor. This includes your top entity declarations and architecture for your entity. Put your
process inside the architecture. GHDL requires a non-empty design file. So just put in some random empty design on the
right-most editor.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

EDA Playground Output

Outputs Fibonacci sequence
Caution if you try higher
UPPER BOUND: integer is
32-bit wide

24

EDA Playground Output

Outputs Fibonacci sequence
Caution if you try higher
UPPER BOUND: integer is
32-bit wide

VHDL Basics
Example

EDA Playground Output

Now you can click ’run’ to execute your VHDL code. If done correctly it should compile and print output on the bottom part of
the webpage. In our case it printed our string as specified via the report command. Note that VHDL simulators usually print
out a lot of additional information if printing via ’report’. In GHDL’s case it’s the filename and position of the report command
in addition to the simulation timestamp. You can check the code and see that the report statement is indeed in line 16 and
starts at character 11. The timestamp will become more important later when we dive into advanced simulations. And
that’s it for this session! You can play around with the provided example and get a better feeling of the basic VHDL syntax
set as shown in this lecture. For this particular example keep in mind that the integer type is only 32-bit wide. So do not set
the UPPER BOUND constant arbitrarily big.

HWMod
WS24

VHDL Basics
Introduction

Language Properties

Identifiers

Entity

Architecture

Process

Packages

Basic Operators

Basic Expression
Elements

Control Flow

Labels

Example

Lecture Complete!

Modified: 2025-03-30, 16:53 (e9b236f)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

	VHDL Basics
	Introduction
	Language Properties
	Identifiers
	Entity
	Architecture
	Process
	Packages
	Basic Operators
	Basic Expression Elements
	Control Flow
	Labels
	Example

