HWMod
WS25

it Hardware Modeling [VU] (191.011)

— WS25 —
VHDL Basics

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:09 (f8a58e9)

Introduction

HWMod
WS25

m VHDL (Very High Speed Integrated Circuit Hardware Description
Language)
m Widely used in industry and academia
m Alternatives: Verilog, SystemC, System Verilog, ...

Introduction

m Lots of online resources available
m Tutorials, books, tools, ...

m Developed in the 80’s for U.S. Department of Defense

m Based on Ada (strongly typed concept)
m Revisions 1987, 93, 2000 and 2002

Introduction (cont’d)

HWMod
WS25

m Initially solely used to document hardware
Invoducton m Later extended by synthesis tools
m Only subset of commands can be transferred
to hardware (= synthesizable VHDL)
m All VHDL code is simulatable

VHDL Code

' Synthesizeable
VHDL Code

m VHDL Standard 2008 taught in this lecture
m Attention: not all 2008 features are supported
by EDA tools
m Has to be explicitly selected in tools (not the
default)

Language Properties

HWMod . .
ws25 m Case insensitive

variable = VARIABLE = VaRiAbLe

m Commands terminated by ’;’

m Comments

m ’--’ single line comment
m Since 2008 multi-line comments possible ('/* and /)

m Format used in lecture

B keywords
B datatype

B comment

B CONSTANT

B everything else

Basic Identifiers

HWMod
WS25

basic_identifier ::= letter{[underline]letter_or_digit}

m First character must be a letter
m No underscore at the end
m No two consecutive underscores

left _left
left1 Oleft
left_0 left_

left2_0 left__0

Extended Identifiers

HWMod
WS25 . ,gs
m Extended identifier syntax:
extended_identifier ::=

\graphic_character{graphic_character}\

m Special identifier enclosed by backslashes
B graphic_character can contain:
m Upper-/lower-case letters (including language specific letters like &, &, a)
m Digits
m Special characters (7, #, &, %, etc.)
m Space characters
m Examples:
B \best’VAR’ev@r\
B \# of bits\
B \this const represents m in “inch\
B VHDL, \VHDL\, \vhdl\ - three different identifiers

Identifiers

HWMod
WS25

m Start by characterizing a hardware entity
m Defines a module’s interface
m Specifies name, inputs, and outputs
m Encapsulates internal details
m Blackbox definition: no knowledge of inner workings is needed

Entity

m Example entity with no I/O:

1 entity ENTITY_NAME is
2 -— I/0 definitions
3 end entity;

Architecture

HWMod
WS25

m Describes the internal structure via architecture
m Defines how the entity’s functionality is implemented
m Knowledge of inner workings is needed
e m How does the entity behave?
m It is possible to define multiple architectures for a single entity
m Typical names for architectures: beh/behavioral or struct/structural

m Example: empty architecture

1 architecture ARCH_NAME of ENTITY_NAME is

2 —— constants, etc.

3 begin

4 —— description of inner workings of ENTITY_NAME
5 end architecture;

Process

HWMod
WS25
m Defines sequential execution within an architecture
m wait at the end signals process termination
Process m Example process:

1 architecture ARCH_NAME of ENTITY_NAME is
2 —— constants, etc.

3 begin

4 process

5 -— constants, variables

6 begin

7 -— sequential statements

8 wait;

9 end process;

10 end architecture;

Variables & Constants

HWMod

WS25
m Used within processes for temporary storage
m Declared after process definition and before begin
m Local to the process

m Variables:

m Like variables in other programming languages
m Optional default value on declaration

Process

m Constants: Read-only and requires value on declaration
m Example declarations of one constant and two variables:

1 constant BYTE_WIDTH : integer := 8;
2 variable x,y : integer := 0;

Packages

HWMod
WS25

m Define reusable code modules via packages

m Contain common declarations: constants, types, functions, and
procedures

m Promotes modularity and code reuse
m Provides a central place to manage shared definitions

Packages

m Example package declaration:

1 package screenInfo is

2 —-— constant declarations
3 constant SCREEN_WIDTH : integer := 720;
4 constant SCREEN_HEIGHT : integer := 480;

5 end package;

Using Packages

e m Import packages into your VHDL code with the use clause

m Provides access to types, constants, functions, and procedures defined in
the package
m Use the following syntax:

m use library_name.package_name.all;
Packeges m use library_name.package_name.element_name;
m Default library work: current project working library

m Example of using a package:

—— make SCREEN_WIDTH, SCREEN_HEIGHT available to this file
use work.screenInfo.all;

1
2
3
4 —— entity declaration
5
6

—-— entity architecture

Basic Operators

HWMod
WS25

m Assignment Operator: : =
m Logical Operators (logop): and, or, nand, nor, xor, xnor
m Relational Operators (relop): =, /=, <, <=, >, >=
m Used for comparing values, returns a boolean result
m Arithmetic Operators (addop): +, —, & (concatenation)
EmbERE m Multiplication Operators (mulop): «, /, mod, rem
m Miscellaneous Operators (miscop): » (exponentiation), abs (absolute
value), not (logical negation)

m Important: VHDL is a strongly typed language
m Types of both operands must match
m Result type on the left side must match operands on the right side of
assignments

Basic Expression Elements

HWMod

WS25
B prim ::= 1lit | const
5, "1", true, clk_freq
B factor ::= (prim [x% prim]) | (abs prim) | (not prim)
i abs -3, not true, 5 xx 2
B term ::= factor [mulop factor]

5 2, 10 / 2, 7 mod 3

Combining Elements into Expressions

HWMod
WS25

B sexpr ::= [+/-] term [addop term]
3+ 2, -1 + 7, result - 5

B relation ::= sexpr [relop sexpr]
Bomenta 5> 3, a<=b, x =y
B expr ::= relation [logop relation]

(a = b) or (¢ > d)

Basic Sequential Statements

HWMod
WS25

m literal := sexpr;

m Assigns the value of an expression to a variable (literal)

m Strongly typed: the types on the left and right sides must match
B report String;

m Outputs the given string during simulation

Basic Expression

EE m In VHDL 2008: use to_string (var) to convert variables to strings
m Use & operator to concatenate strings
m Example:
report "Current screen width: " & to_string (SCREEN_WIDTH) ;
H null;

m No operation; useful as a placeholder

Control Flow: Branching

HWMod
WS25

m if/else: m select:
if expr then case exXpr is
{sequential statement} {when choice [{|choice}] =>
[{elsif expr then {sequential statement} }
{sequential statement}}] end case;
[else m choice ::= sexpr | others

{sequential statement}] m All possible choices must be
end 1if; covered

Control Flow: Basic Loops

HWMod
WS25

m Basic loop:
loop
{sequential statements}
end loop;

B next [when expr];
m Skips the rest of the current iteration (like continue in Java/C)

Control Flow

m exit [when expr];
m Exits the loop entirely (like break in Java/C)

Control Flow: Typed Loops

HWMod
WS25

®m while loop:
while expr loop
{sequential statements}
end loop;
m Continues as long as the condition is true

Contol Flow m for loop:
for literal in range 1oop
{sequential statements}
end loop;
B range ::= prim to prim
| prim downto prim
m lterates over a specific range

Miscellaneous: Block Identifiers & Labels

HWMod
WS25

m Every VHDL code scope can have an identifier
m Required in certain scopes (e.g., architecture, entity)
m Identifiers help to clearly define and manage the scope’s purpose
m Scopes are closed with the end keyword
m Identifier can be included in the end ling, e.g., ’end entity myEntity;’
m We advise against this practice
m Loops, if statements, and process blocks can have optional labels

m C-like syntax: e.g., ' LABELID: process’
m Labels can be used with next and exit to target specific loops, improving
control flow within nested structures

Example Process: Fibonacci

HWMod

WS25 1 main: process

2 constant UPPER_BOUND : integer := 20;
3 variable current, previous, temp : integer := 0;
4 begin
5 previous := 0;
6 current := 1;
7 for i in 0 to UPPER_BOUND loop
8 temp := current;
9 current := previous + current;

e 10 previous := temp;
1 report "Fibonacci (" & to_string(i) & ") ="
12 & to_string(current);
13 end loop;
14 wait;

15 end process;

20

Testing: EDA Playground Overview

HWMod
WS25

m Web-based platform for simulating and sharing HDL code
B https://www.edaplayground.com/
m Supports multiple languages:
m VHDL, Verilog, SystemVerilog, and more
m Features:
m Access to various simulators (e.g., GHDL, ModelSim (QuestaSim))
m Collaborative coding with sharing links
m No installation needed, runs in the browser
m |deal for:
m Learning and practicing HDL coding
m Testing and debugging small code snippets
m Demonstrating concepts in a classroom setting

21

https://www.edaplayground.com/

HWMod
WS25

Example

EDA Playground Settings

Brought o you by 28, DOULOS

« Languages & Libraries

Testbench + Design
VHDL v
Libraries @

ovL
OSVVM
UvvM

Top entity

myEntity

[Enable VUnit @

~ Tools & Simulators @

GHDL 3.0.0 w

m Set Testbench + Design language
to VHDL
m Set Libraries to osvvM
m Open Source VHDL Verification
Methodology
m Specify "Top entity”
® "main” entity: myEntity in this
example (see testbench.vhd on
next slide)
m Select GHDL 3.0.0 as Simulator
m Open Source VHDL Simulator

22

EDA Playground Code

WS25 £z B

entity myEntity is entity design is
2 end entity; z
end entity;
architecture beh of myEntity is
5 begin

main: process 7
constant UPPER BOUND : integer := 20;
variable current, previous, temp : integer := 0;

begin
previous := @;
current := 1;
for 1 in 0 to UPPER_BOUND loop
temp := current;
current := previous + current;

previous := temp;
report "Fibonacci(" & to_string(i) & ") = " 7
& to_string(current);

Example

end process;
2 end architecture;

m Put your code (entity + architecture) into the testbench file on the left

m GHDL requires a non-empty design file on the right
23

HWMod
WS25

Example

EDA Playground Output

og

< Share

analyze testbench.vhd

elaborate
testbench
testbench
testbench
testhench
testbench

testhench.
testbench.
testhench.
testbench.
testhench.
testbench.
testhench.
testbench.
testbench.
testbench.
testbench.
testbench.
testbench.
testbench.
testbench.
testhench.

myentity
.vhd:16:11:@ems
.vhd:16:11:@8ms
.vhd:16:11:@8ms
.vhd:16:11:@8ms
.vhd:16:11:@8ms
vhd:16:11:@ems
vhd:16:11:@dms
vhd:16:11:@ems
vhd:16:11:@ems
vhd:16:11:@ems
vhd:16:11:@ems
vhd:16:11:@0ms
vhd:16:11:@ems
vhd:16:11:@8ms
vhd:16:11:@ems
vhd:16:11:@8ms
vhd:16:11:@ems
vhd:16:11:@8ms
vhd:16:11:@ems
vhd:16:11:@8ms
vhd:16:11:@0ms

:(report
:(report
:(report
:(report
:(report
:(report
: (report
:(report
: (report
:(report
: (report
: (report
:(report
:(report
:(report
:(report
: (report
:(report
: (report
:(report
: (report

note):
note):
note) :
note) :
note) :
note) :
note):
note):
note):
note):
note):
note):
note):
note) :
note):
note):
note):
note):
note):
note):
note):

Fibonacci(@)
Fibonacci(1)
Fibonacci(2)
Fibonacci(3)
Fibonacci(4)
Fibonacci(5)
Fibonacci(6)
Fibonacci(7)
Fibonacci(8)
Fibonacci(9)
Fibonacci(18)
Fibonacei(11)
Fibonacci(12)
Fibonacci(13)
Fibonacci(14)
Fibonacci(15)
Fibonacci(16)
Fibonacci(17)
Fibonacci(18)
Fibonacci(19)
Fibonacci(20)

=89

144
233
377
610
987
1597
2584
4181
6765
10946
17711

m Outputs Fibonacci sequence

m Caution if you try higher
UPPER_BOUND: integer is
32-bit wide

24

Lecture Complete!

	VHDL Basics
	Introduction
	Language Properties
	Identifiers
	Entity
	Architecture
	Process
	Packages
	Basic Operators
	Basic Expression Elements
	Control Flow
	Labels
	Example

