
HWMod
WS24

Types
Scalar Types

Attributes

Subtypes

Hardware Modeling [VU] (191.011)
– WS24 –

VHDL Type System

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-12, 16:24 (b25118c)

Hardware Modeling [VU] (191.011)
– WS24 –

VHDL Type System

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

VHDL Type System

In this lecture we take a first look at the type system of VHDL. We go through commonly used basic built-in types and discuss
how to define custom ones. Upcoming lectures then go into further details on composite types and other more advanced
topics.

HWMod
WS24

Types
Scalar Types

Attributes

Subtypes

Introduction 50

Strongly-typed language
Static type checks at compile time
Explicit type conversions

Type declaration syntax
type TYPE_NAME is [...];

Possible type declaration locations
Packages
Declarative parts of entities, architectures, processes, blocks, functions,
procedures

1

Introduction 50

Strongly-typed language
Static type checks at compile time
Explicit type conversions

Type declaration syntax
type TYPE_NAME is [...];

Possible type declaration locations
Packages
Declarative parts of entities, architectures, processes, blocks, functions,
procedures

VHDL Type System

Introduction

VHDL has quite a rich and powerful type system. It is a strongly typed language, which means that strict type rules are
enforced at compile time, similar to what is done in languages like Java, Rust or Ada and unlike C or JavaScript. Type
conversions are always explicit. This means that it is, for example, not possible to assign a value of type boolean to a variable
of type integer without first converting the value. This allows for many errors to be caught early during compile time.

HWMod
WS24

Types
Scalar Types

Attributes

Subtypes

Introduction 50

Strongly-typed language
Static type checks at compile time
Explicit type conversions

Type declaration syntax
type TYPE_NAME is [...];

Possible type declaration locations
Packages
Declarative parts of entities, architectures, processes, blocks, functions,
procedures

1

Introduction 50

Strongly-typed language
Static type checks at compile time
Explicit type conversions

Type declaration syntax
type TYPE_NAME is [...];

Possible type declaration locations
Packages
Declarative parts of entities, architectures, processes, blocks, functions,
procedures

VHDL Type System

Introduction

New custom types are declared using the type keyword. In this course, we use the suffix underscore-t to name custom
types. We employ this naming convention to clearly mark identifiers as type names and distinguish them from built-in types.

HWMod
WS24

Types
Scalar Types

Attributes

Subtypes

Introduction 50

Strongly-typed language
Static type checks at compile time
Explicit type conversions

Type declaration syntax
type TYPE_NAME is [...];

Possible type declaration locations
Packages
Declarative parts of entities, architectures, processes, blocks, functions,
procedures

1

Introduction 50

Strongly-typed language
Static type checks at compile time
Explicit type conversions

Type declaration syntax
type TYPE_NAME is [...];

Possible type declaration locations
Packages
Declarative parts of entities, architectures, processes, blocks, functions,
procedures

VHDL Type System

Introduction

Often times, type declarations are put into packages, such that they can be used in multiple modules and on interfaces
between modules. However, depending on the scope you want your custom type to have, it can also make sense to declare
them in the declarative parts of entities, architectures, processes or sub-programs.

HWMod
WS24

Types
Scalar Types

Attributes

Subtypes

Introduction (cont’d) 50

Built-in types
Defined in standard package
Some Examples

boolean
integer
real
time

Five classes of types
scalar
composite
file
access
protected

Keep synthesizeability in mind!

2

Introduction (cont’d) 50

Built-in types
Defined in standard package
Some Examples

boolean
integer
real
time

Five classes of types
scalar
composite
file
access
protected

Keep synthesizeability in mind!

VHDL Type System

Introduction (cont’d)

VHDL contains several basic built-in or predefined types, that we have already encountered in the previous lecture. The
declarations of all predefined types can be found in the standard package, which we have also linked in the slides. Note,
however, that this package is not loaded or parsed as regular VHDL packages - if you follow the link you can see that a lot
of the code is actually commented out. You can rather think of it as a formal specification of all the built-in types and the
operations that can be performed on them.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

HWMod
WS24

Types
Scalar Types

Attributes

Subtypes

Introduction (cont’d) 50

Built-in types
Defined in standard package
Some Examples

boolean
integer
real
time

Five classes of types
scalar
composite
file
access
protected

Keep synthesizeability in mind!

2

Introduction (cont’d) 50

Built-in types
Defined in standard package
Some Examples

boolean
integer
real
time

Five classes of types
scalar
composite
file
access
protected

Keep synthesizeability in mind!

VHDL Type System

Introduction (cont’d)

VHDL distinguishes five classes of types, namely scalar, composite, file, access and protected types. Built-in types like inte-
ger, boolean or real fall into the scalar category. Composite types comprise arrays and records, representing homogeneous
and heterogeneous collections, respectively. Composite types as well as File, access and protected types will be discussed
in upcoming lectures.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

HWMod
WS24

Types
Scalar Types

Attributes

Subtypes

Introduction (cont’d) 50

Built-in types
Defined in standard package
Some Examples

boolean
integer
real
time

Five classes of types
scalar
composite
file
access
protected

Keep synthesizeability in mind!
2

Introduction (cont’d) 50

Built-in types
Defined in standard package
Some Examples

boolean
integer
real
time

Five classes of types
scalar
composite
file
access
protected

Keep synthesizeability in mind!

VHDL Type System

Introduction (cont’d)

As you might have already suspected, not all types can be used when describing hardware. Naturally, it is not possible to
simply write to a file, when you are effectively describing a digital circuit. However, also some of the seemingly unsuspicious
built-in types like real are also not synthesizeable. In the following slides, we will now take a closer look at scalar types.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Integer Types 53

Declaration Syntax
type TYPE_NAME is range_constraint;
range_constraint ::= range expr to expr

| range expr downto expr
| range range_attribute_name

Left/right expressions must be integers
Ranges are either ascending or descending

Ascending (to): left ≤ right
Descending (downto) left ≥ right

3

Integer Types 53

Declaration Syntax
type TYPE_NAME is range_constraint;
range_constraint ::= range expr to expr

| range expr downto expr
| range range_attribute_name

Left/right expressions must be integers
Ranges are either ascending or descending

Ascending (to): left ≤ right
Descending (downto) left ≥ right

VHDL Type System
Scalar Types

Integer Types

Scalar types are further divided into integer, floating-point, enumeration and physical types. Let’s start with integer types.

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Integer Types 53

Declaration Syntax
type TYPE_NAME is range_constraint;
range_constraint ::= range expr to expr

| range expr downto expr
| range range_attribute_name

Left/right expressions must be integers
Ranges are either ascending or descending

Ascending (to): left ≤ right
Descending (downto) left ≥ right

3

Integer Types 53

Declaration Syntax
type TYPE_NAME is range_constraint;
range_constraint ::= range expr to expr

| range expr downto expr
| range range_attribute_name

Left/right expressions must be integers
Ranges are either ascending or descending

Ascending (to): left ≤ right
Descending (downto) left ≥ right

VHDL Type System
Scalar Types

Integer Types

Integer types are declared using a simple range constraint, that specifies the values the declared type can hold. A range
constraint is introduced using the range keyword, followed by two expressions separated by either the to or the downto

keyword, representing ascending and descending ranges, respectively. Furthermore, it is also possible to define a range
using a range attribute. However, this is a language construct, which is yet to be discussed in an upcoming lecture.

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Integer Types 53

Declaration Syntax
type TYPE_NAME is range_constraint;
range_constraint ::= range expr to expr

| range expr downto expr
| range range_attribute_name

Left/right expressions must be integers
Ranges are either ascending or descending

Ascending (to): left ≤ right
Descending (downto) left ≥ right

3

Integer Types 53

Declaration Syntax
type TYPE_NAME is range_constraint;
range_constraint ::= range expr to expr

| range expr downto expr
| range range_attribute_name

Left/right expressions must be integers
Ranges are either ascending or descending

Ascending (to): left ≤ right
Descending (downto) left ≥ right

VHDL Type System
Scalar Types

Integer Types

Note that for ascending ranges the numerical value of the left expression must be smaller or equal to the value of the right
expression. For descending ranges the situation is reversed.

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Integer Types (cont’d)

Examples
8 bit unsigned integer
type uint8_t is range 0 to 255;

16 bit signed integer
type int16_t is range -2**15 to 2**15-1;

Integer that can only hold values between 42 and 13
type descending_int_t is range 42 downto 13;

Only built-in integer type: integer
Ascending range
Range boundaries are implementation dependent

VHDL-2008: at least −231 − 1 to 231 − 1 (i.e., 32 bit)
VHDL-2019: at least −263 to 263 − 1 (i.e., 64 bit)

4

Integer Types (cont’d)

Examples
8 bit unsigned integer
type uint8_t is range 0 to 255;

16 bit signed integer
type int16_t is range -2**15 to 2**15-1;

Integer that can only hold values between 42 and 13
type descending_int_t is range 42 downto 13;

Only built-in integer type: integer
Ascending range
Range boundaries are implementation dependent

VHDL-2008: at least −231 − 1 to 231 − 1 (i.e., 32 bit)
VHDL-2019: at least −263 to 263 − 1 (i.e., 64 bit)

VHDL Type System
Scalar Types

Integer Types (cont’d)

This slide shows some examples for integer type declarations. The first two examples define types able to represent the
typical value ranges for unsigned 8-bit and a signed 16-bit integer values. They both use ascending ranges while the last
example uses a descending one.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Integer Types (cont’d)

Examples
8 bit unsigned integer
type uint8_t is range 0 to 255;

16 bit signed integer
type int16_t is range -2**15 to 2**15-1;

Integer that can only hold values between 42 and 13
type descending_int_t is range 42 downto 13;

Only built-in integer type: integer
Ascending range
Range boundaries are implementation dependent

VHDL-2008: at least −231 − 1 to 231 − 1 (i.e., 32 bit)
VHDL-2019: at least −263 to 263 − 1 (i.e., 64 bit)

4

Integer Types (cont’d)

Examples
8 bit unsigned integer
type uint8_t is range 0 to 255;

16 bit signed integer
type int16_t is range -2**15 to 2**15-1;

Integer that can only hold values between 42 and 13
type descending_int_t is range 42 downto 13;

Only built-in integer type: integer
Ascending range
Range boundaries are implementation dependent

VHDL-2008: at least −231 − 1 to 231 − 1 (i.e., 32 bit)
VHDL-2019: at least −263 to 263 − 1 (i.e., 64 bit)

VHDL Type System
Scalar Types

Integer Types (cont’d)

In VHDL, there is only one predefined integer type, simply called integer. While it always has an ascending range, its
left and right range boundaries are implementation dependent, which means that they may vary between simulation and
synthesis tools of different vendors. However, the different version of the VHDL standard guarantee certain minimum ranges,
which are listed on this slide.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Range Contraints

Range constraints
are checked statically (i.e., at compile time)
are checked dynamically during simulation (i.e., runtime)
not checked in hardware

Example: static range errors
1 constant A : uint8_t := -1; -- range error: -1 < 0
2 variable b : uint8_t := 16*16; -- range error: 256 > 255

Example: dynamic range error
1 process
2 variable x : uint8_t := 254;
3 begin
4 x := x + 1;
5 report "everything fine!";
6 x := x + 1;
7 report "not fine" -- never executed because of the range error
8 end process;

5

Range Contraints

Range constraints
are checked statically (i.e., at compile time)
are checked dynamically during simulation (i.e., runtime)
not checked in hardware

Example: static range errors
1 constant A : uint8_t := -1; -- range error: -1 < 0
2 variable b : uint8_t := 16*16; -- range error: 256 > 255

Example: dynamic range error
1 process
2 variable x : uint8_t := 254;
3 begin
4 x := x + 1;
5 report "everything fine!";
6 x := x + 1;
7 report "not fine" -- never executed because of the range error
8 end process;

VHDL Type System
Scalar Types

Range Contraints

Range constraints are a strong safety feature of VHDL, as they are checked both at compiler and run time by the simulator.
This allows to catch possible errors early during development, before going to actual hardware. We will see that range
constraints also come up for other type classes later. However, keep in mind that run time checks are not performed in
hardware. In hardware the result of incrementing an integer that is already at its maximum value will lead to an overflow,
possibly even resulting in a value that is outside of the defined range for the respective type.

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Range Contraints

Range constraints
are checked statically (i.e., at compile time)
are checked dynamically during simulation (i.e., runtime)
not checked in hardware

Example: static range errors
1 constant A : uint8_t := -1; -- range error: -1 < 0
2 variable b : uint8_t := 16*16; -- range error: 256 > 255

Example: dynamic range error
1 process
2 variable x : uint8_t := 254;
3 begin
4 x := x + 1;
5 report "everything fine!";
6 x := x + 1;
7 report "not fine" -- never executed because of the range error
8 end process;

5

Range Contraints

Range constraints
are checked statically (i.e., at compile time)
are checked dynamically during simulation (i.e., runtime)
not checked in hardware

Example: static range errors
1 constant A : uint8_t := -1; -- range error: -1 < 0
2 variable b : uint8_t := 16*16; -- range error: 256 > 255

Example: dynamic range error
1 process
2 variable x : uint8_t := 254;
3 begin
4 x := x + 1;
5 report "everything fine!";
6 x := x + 1;
7 report "not fine" -- never executed because of the range error
8 end process;

VHDL Type System
Scalar Types

Range Contraints

This slide, shows some code examples that lead to range errors. The problems with the constant and variable declarations
can easily be caught by the compiler, as the initial value is clearly outside the range of the used type.

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Range Contraints

Range constraints
are checked statically (i.e., at compile time)
are checked dynamically during simulation (i.e., runtime)
not checked in hardware

Example: static range errors
1 constant A : uint8_t := -1; -- range error: -1 < 0
2 variable b : uint8_t := 16*16; -- range error: 256 > 255

Example: dynamic range error
1 process
2 variable x : uint8_t := 254;
3 begin
4 x := x + 1;
5 report "everything fine!";
6 x := x + 1;
7 report "not fine" -- never executed because of the range error
8 end process;

5

Range Contraints

Range constraints
are checked statically (i.e., at compile time)
are checked dynamically during simulation (i.e., runtime)
not checked in hardware

Example: static range errors
1 constant A : uint8_t := -1; -- range error: -1 < 0
2 variable b : uint8_t := 16*16; -- range error: 256 > 255

Example: dynamic range error
1 process
2 variable x : uint8_t := 254;
3 begin
4 x := x + 1;
5 report "everything fine!";
6 x := x + 1;
7 report "not fine" -- never executed because of the range error
8 end process;

VHDL Type System
Scalar Types

Range Contraints

The overflow error in the process in the second code snippet will only be detected during runtime, and will cause the simulation
to be stopped immediately. This means that the second report statement will not be executed.

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Floating-Point Types 57

Declaration Syntax
type TYPE_NAME is range_constraint;

Example
type my_fp_t is range 0.0 to 1.0;

Only built-in floating-point type: real
range is implementation dependent
most likely a 64 bit (i.e., double precision) floating-point

Range checks as with integers
Cannot be used in synthesizeable code!

6

Floating-Point Types 57

Declaration Syntax
type TYPE_NAME is range_constraint;

Example
type my_fp_t is range 0.0 to 1.0;

Only built-in floating-point type: real
range is implementation dependent
most likely a 64 bit (i.e., double precision) floating-point

Range checks as with integers
Cannot be used in synthesizeable code!

VHDL Type System
Scalar Types

Floating-Point Types

Floating-point types are quite similar to integers, as they are also declared using a range constraint.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Floating-Point Types 57

Declaration Syntax
type TYPE_NAME is range_constraint;

Example
type my_fp_t is range 0.0 to 1.0;

Only built-in floating-point type: real
range is implementation dependent
most likely a 64 bit (i.e., double precision) floating-point

Range checks as with integers
Cannot be used in synthesizeable code!

6

Floating-Point Types 57

Declaration Syntax
type TYPE_NAME is range_constraint;

Example
type my_fp_t is range 0.0 to 1.0;

Only built-in floating-point type: real
range is implementation dependent
most likely a 64 bit (i.e., double precision) floating-point

Range checks as with integers
Cannot be used in synthesizeable code!

VHDL Type System
Scalar Types

Floating-Point Types

Again, there is only one predefined floating-point type named real. The range of this type is defined by the tool implementation
and depends on the actual floating-point types available on a given system.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Floating-Point Types 57

Declaration Syntax
type TYPE_NAME is range_constraint;

Example
type my_fp_t is range 0.0 to 1.0;

Only built-in floating-point type: real
range is implementation dependent
most likely a 64 bit (i.e., double precision) floating-point

Range checks as with integers

Cannot be used in synthesizeable code!

6

Floating-Point Types 57

Declaration Syntax
type TYPE_NAME is range_constraint;

Example
type my_fp_t is range 0.0 to 1.0;

Only built-in floating-point type: real
range is implementation dependent
most likely a 64 bit (i.e., double precision) floating-point

Range checks as with integers

Cannot be used in synthesizeable code!

VHDL Type System
Scalar Types

Floating-Point Types

Exactly as with integers, floating-point values are also checked if they are within the range constraint of the underlying type
declaration.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Floating-Point Types 57

Declaration Syntax
type TYPE_NAME is range_constraint;

Example
type my_fp_t is range 0.0 to 1.0;

Only built-in floating-point type: real
range is implementation dependent
most likely a 64 bit (i.e., double precision) floating-point

Range checks as with integers
Cannot be used in synthesizeable code!

6

Floating-Point Types 57

Declaration Syntax
type TYPE_NAME is range_constraint;

Example
type my_fp_t is range 0.0 to 1.0;

Only built-in floating-point type: real
range is implementation dependent
most likely a 64 bit (i.e., double precision) floating-point

Range checks as with integers
Cannot be used in synthesizeable code!

VHDL Type System
Scalar Types

Floating-Point Types

Keep in mind, that floating-point types are not synthesizeable! They can only be used in static compile time expressions – for
example as a generic that controls some behavior of a module – or in simulation code!

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Enumeration Types 52

Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literal});

Examples
type fsm_state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
type color_t is (RED, GREEN, BLUE);
type my_char_t is (’A’, ’1’, ’*’);

Predefined enumeration types (standard package)
type boolean is (false, true);
type direction is (ASCENDING, DESCENDING);
type bit is (’0’, ’1’);
type character is (NUL, SOH, [...], ’A’, ’B’, [...]);

7

Enumeration Types 52

Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literal});

Examples
type fsm_state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
type color_t is (RED, GREEN, BLUE);
type my_char_t is (’A’, ’1’, ’*’);

Predefined enumeration types (standard package)
type boolean is (false, true);
type direction is (ASCENDING, DESCENDING);
type bit is (’0’, ’1’);
type character is (NUL, SOH, [...], ’A’, ’B’, [...]);

VHDL Type System
Scalar Types

Enumeration Types

Let’s now take a look at enumeration types. Enumeration types – often simply referred to as enums – are present in many
programming languages, such as C, Java or Rust. They represent finite sets or sequences of named constant values.
Generally, enums make code more readable and maintainable and reduce the potential for errors, as they allow to replace
arbitrary numeric or string constants with meaningful names.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Enumeration Types 52

Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literal});

Examples
type fsm_state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
type color_t is (RED, GREEN, BLUE);
type my_char_t is (’A’, ’1’, ’*’);

Predefined enumeration types (standard package)
type boolean is (false, true);
type direction is (ASCENDING, DESCENDING);
type bit is (’0’, ’1’);
type character is (NUL, SOH, [...], ’A’, ’B’, [...]);

7

Enumeration Types 52

Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literal});

Examples
type fsm_state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
type color_t is (RED, GREEN, BLUE);
type my_char_t is (’A’, ’1’, ’*’);

Predefined enumeration types (standard package)
type boolean is (false, true);
type direction is (ASCENDING, DESCENDING);
type bit is (’0’, ’1’);
type character is (NUL, SOH, [...], ’A’, ’B’, [...]);

VHDL Type System
Scalar Types

Enumeration Types

In VHDL Enumeration types are declared using a list of comma-separated enumeration literals in parentheses. An enumer-
ation literal can be an identifier or a character literal in simple quotes – it is also possible to combine both variants in a single
enumeration.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Enumeration Types 52

Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literal});

Examples
type fsm_state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
type color_t is (RED, GREEN, BLUE);
type my_char_t is (’A’, ’1’, ’*’);

Predefined enumeration types (standard package)
type boolean is (false, true);
type direction is (ASCENDING, DESCENDING);
type bit is (’0’, ’1’);
type character is (NUL, SOH, [...], ’A’, ’B’, [...]);

7

Enumeration Types 52

Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literal});

Examples
type fsm_state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
type color_t is (RED, GREEN, BLUE);
type my_char_t is (’A’, ’1’, ’*’);

Predefined enumeration types (standard package)
type boolean is (false, true);
type direction is (ASCENDING, DESCENDING);
type bit is (’0’, ’1’);
type character is (NUL, SOH, [...], ’A’, ’B’, [...]);

VHDL Type System
Scalar Types

Enumeration Types

One important use-case for enums, that we will encounter in this course, is in the implementation of state machines. Here,
enums are used to give descriptive names to the various states of an FSM, which – as already mentioned – makes code
more readable and maintainable.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Enumeration Types 52

Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literal});

Examples
type fsm_state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
type color_t is (RED, GREEN, BLUE);
type my_char_t is (’A’, ’1’, ’*’);

Predefined enumeration types (standard package)
type boolean is (false, true);
type direction is (ASCENDING, DESCENDING);
type bit is (’0’, ’1’);
type character is (NUL, SOH, [...], ’A’, ’B’, [...]);

7

Enumeration Types 52

Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literal});

Examples
type fsm_state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
type color_t is (RED, GREEN, BLUE);
type my_char_t is (’A’, ’1’, ’*’);

Predefined enumeration types (standard package)
type boolean is (false, true);
type direction is (ASCENDING, DESCENDING);
type bit is (’0’, ’1’);
type character is (NUL, SOH, [...], ’A’, ’B’, [...]);

VHDL Type System
Scalar Types

Enumeration Types

However, also a lot of important predefined types in VHDL are actually enums. On this slide, we have listed some of them
from the standard package. As you can see, the boolean type is defined as an enum, which simply contains the literals
true and false. This means, that unlike in programming languages like C or Python, booleans and integers are fundamentally
different types. Because of the strict type system, it is, hence, not possible to assign a boolean value to an integer or vice
versa, without a proper type conversion.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Physical Types 54

Declaration Syntax
type TYPE_NAME is range_constraint units
primary_unit
{secondary_unit}

end units;

Example
type distance_t is range 0 to 1_000_000_000 units
nm; -- primary unit
um = 1000 nm; mm = 1000 um; -- secondary units
cm = 10 mm; m = 1000 mm; -- secondary units

end units;

Predefined physical type (standard Package): time

8

Physical Types 54

Declaration Syntax
type TYPE_NAME is range_constraint units
primary_unit
{secondary_unit}

end units;

Example
type distance_t is range 0 to 1_000_000_000 units
nm; -- primary unit
um = 1000 nm; mm = 1000 um; -- secondary units
cm = 10 mm; m = 1000 mm; -- secondary units

end units;

Predefined physical type (standard Package): time

VHDL Type System
Scalar Types

Physical Types

The last class of the scalar types are physical types. As the name already suggests, they are used in VHDL to represent
some form of physical unit. Hence, expressions with physical types always involve a numeric value as well as a unit.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Physical Types 54

Declaration Syntax
type TYPE_NAME is range_constraint units
primary_unit
{secondary_unit}

end units;

Example
type distance_t is range 0 to 1_000_000_000 units
nm; -- primary unit
um = 1000 nm; mm = 1000 um; -- secondary units
cm = 10 mm; m = 1000 mm; -- secondary units

end units;

Predefined physical type (standard Package): time

8

Physical Types 54

Declaration Syntax
type TYPE_NAME is range_constraint units
primary_unit
{secondary_unit}

end units;

Example
type distance_t is range 0 to 1_000_000_000 units
nm; -- primary unit
um = 1000 nm; mm = 1000 um; -- secondary units
cm = 10 mm; m = 1000 mm; -- secondary units

end units;

Predefined physical type (standard Package): time

VHDL Type System
Scalar Types

Physical Types

To declare a physical type we need an integer range, similar to what is done for an integer type declaration, followed by the
units keyword. First the primary unit is declared, followed by an arbitrary number secondary units, that define how the
different units relate to each other.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Physical Types 54

Declaration Syntax
type TYPE_NAME is range_constraint units
primary_unit
{secondary_unit}

end units;

Example
type distance_t is range 0 to 1_000_000_000 units
nm; -- primary unit
um = 1000 nm; mm = 1000 um; -- secondary units
cm = 10 mm; m = 1000 mm; -- secondary units

end units;

Predefined physical type (standard Package): time

8

Physical Types 54

Declaration Syntax
type TYPE_NAME is range_constraint units
primary_unit
{secondary_unit}

end units;

Example
type distance_t is range 0 to 1_000_000_000 units
nm; -- primary unit
um = 1000 nm; mm = 1000 um; -- secondary units
cm = 10 mm; m = 1000 mm; -- secondary units

end units;

Predefined physical type (standard Package): time

VHDL Type System
Scalar Types

Physical Types

The example on this slide shows how this can look like for a physical type storing distance values. Note that every value you
want to express using the physical type must be representable using the primary unit under the given range constraint. This
means that the highest value that can be expressed in the distance type is one meter, because one meter is equal to 1 billion
nanometers.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

HWMod
WS24

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Physical Types 54

Declaration Syntax
type TYPE_NAME is range_constraint units
primary_unit
{secondary_unit}

end units;

Example
type distance_t is range 0 to 1_000_000_000 units
nm; -- primary unit
um = 1000 nm; mm = 1000 um; -- secondary units
cm = 10 mm; m = 1000 mm; -- secondary units

end units;

Predefined physical type (standard Package): time
8

Physical Types 54

Declaration Syntax
type TYPE_NAME is range_constraint units
primary_unit
{secondary_unit}

end units;

Example
type distance_t is range 0 to 1_000_000_000 units
nm; -- primary unit
um = 1000 nm; mm = 1000 um; -- secondary units
cm = 10 mm; m = 1000 mm; -- secondary units

end units;

Predefined physical type (standard Package): time

VHDL Type System
Scalar Types

Physical Types

The only physical type that we are going to need during this course is the predefined type time.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Type Attributes 271

VHDL Attributes
represent a powerful language feature
are comparable to attributes in C# or C++
come in the form of user- and predefined attributes

Type attributes allow to
obtain meta-information about a type
perform operations with values of a type

Syntax
Accessing attribute a of type T: T’a
Example: integer’low
Invoking attribute function f of type T with argument x: T’f(x)
Example: integer’image(x)

9

Type Attributes 271

VHDL Attributes
represent a powerful language feature
are comparable to attributes in C# or C++
come in the form of user- and predefined attributes

Type attributes allow to
obtain meta-information about a type
perform operations with values of a type

Syntax
Accessing attribute a of type T: T’a
Example: integer’low
Invoking attribute function f of type T with argument x: T’f(x)
Example: integer’image(x)

VHDL Type System
Type Attributes

Type Attributes

Alright, now that we’ve covered all four scalar type categories, we can move on to an important type-related feature in VHDL
known as attributes. Attributes in VHDL can be roughly compared to annotations in Java or attributes in C# or C++, although
they work quite differently in VHDL. VHDL distinguishes user-defined and predefined attributes. User-defined attributes are
defined to be constants of arbitrary type that can be attached to almost every object in VHDL – for example entities, signals,
types, subprograms and many more. Future lectures will present some examples for that.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Type Attributes 271

VHDL Attributes
represent a powerful language feature
are comparable to attributes in C# or C++
come in the form of user- and predefined attributes

Type attributes allow to
obtain meta-information about a type
perform operations with values of a type

Syntax
Accessing attribute a of type T: T’a
Example: integer’low
Invoking attribute function f of type T with argument x: T’f(x)
Example: integer’image(x)

9

Type Attributes 271

VHDL Attributes
represent a powerful language feature
are comparable to attributes in C# or C++
come in the form of user- and predefined attributes

Type attributes allow to
obtain meta-information about a type
perform operations with values of a type

Syntax
Accessing attribute a of type T: T’a
Example: integer’low
Invoking attribute function f of type T with argument x: T’f(x)
Example: integer’image(x)

VHDL Type System
Type Attributes

Type Attributes

This lecture focuses on predefined attributes and more specifically predefined type attributes. Predefined type attributes can
either be simple constants that contain meta-information about a type, but can also be special functions that perform some
operation with values of a specific type.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Type Attributes 271

VHDL Attributes
represent a powerful language feature
are comparable to attributes in C# or C++
come in the form of user- and predefined attributes

Type attributes allow to
obtain meta-information about a type
perform operations with values of a type

Syntax
Accessing attribute a of type T: T’a
Example: integer’low
Invoking attribute function f of type T with argument x: T’f(x)
Example: integer’image(x)

9

Type Attributes 271

VHDL Attributes
represent a powerful language feature
are comparable to attributes in C# or C++
come in the form of user- and predefined attributes

Type attributes allow to
obtain meta-information about a type
perform operations with values of a type

Syntax
Accessing attribute a of type T: T’a
Example: integer’low
Invoking attribute function f of type T with argument x: T’f(x)
Example: integer’image(x)

VHDL Type System
Type Attributes

Type Attributes

A single quotation symbol is used to access or invoke an attribute. If an attribute is a function additional parameters are
passed in parentheses.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Type Attributes 271

VHDL Attributes
represent a powerful language feature
are comparable to attributes in C# or C++
come in the form of user- and predefined attributes

Type attributes allow to
obtain meta-information about a type
perform operations with values of a type

Syntax
Accessing attribute a of type T: T’a
Example: integer’low
Invoking attribute function f of type T with argument x: T’f(x)
Example: integer’image(x)

9

Type Attributes 271

VHDL Attributes
represent a powerful language feature
are comparable to attributes in C# or C++
come in the form of user- and predefined attributes

Type attributes allow to
obtain meta-information about a type
perform operations with values of a type

Syntax
Accessing attribute a of type T: T’a
Example: integer’low
Invoking attribute function f of type T with argument x: T’f(x)
Example: integer’image(x)

VHDL Type System
Type Attributes

Type Attributes

OK, so far this all sounds very abstract. Let’s now see what we can do with type attributes. We will do this by looking at some
code examples that showcase how attributes are used in practice.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: low, high, left, right, ascending

Example code
1 process
2 type int_t is [...];
3 begin
4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string(int_t’left) & "/" &
9 to_string(int_t’right);

10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

10

Example: low, high, left, right, ascending

Example code
1 process
2 type int_t is [...];
3 begin
4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string(int_t’left) & "/" &
9 to_string(int_t’right);

10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

VHDL Type System
Type Attributes

Example: low, high, left, right, ascending

Consider the code snippet of a simple VHDL process on the left side of the slide.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: low, high, left, right, ascending

Example code
1 process
2 type int_t is [...];
3 begin
4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string(int_t’left) & "/" &
9 to_string(int_t’right);

10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

10

Example: low, high, left, right, ascending

Example code
1 process
2 type int_t is [...];
3 begin
4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string(int_t’left) & "/" &
9 to_string(int_t’right);

10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

VHDL Type System
Type Attributes

Example: low, high, left, right, ascending

In its declarative part an integer type called int_t is declared.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: low, high, left, right, ascending

Example code
1 process
2 type int_t is [...];
3 begin
4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string(int_t’left) & "/" &
9 to_string(int_t’right);

10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

10

Example: low, high, left, right, ascending

Example code
1 process
2 type int_t is [...];
3 begin
4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string(int_t’left) & "/" &
9 to_string(int_t’right);

10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

VHDL Type System
Type Attributes

Example: low, high, left, right, ascending

Note that for the purpose of this demonstration we’ve substituted the type’s range constraint with a placeholder, as we intend
to execute this process with two different range configurations.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: low, high, left, right, ascending

Example code
1 process
2 type int_t is [...];
3 begin
4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string(int_t’left) & "/" &
9 to_string(int_t’right);

10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

10

Example: low, high, left, right, ascending

Example code
1 process
2 type int_t is [...];
3 begin
4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string(int_t’left) & "/" &
9 to_string(int_t’right);

10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

VHDL Type System
Type Attributes

Example: low, high, left, right, ascending

The function of the process is to simply print the values of the predefined attributes low, high, left, right and ascending of the
defined integer type.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: low, high, left, right, ascending

Example code
1 process
2 type int_t is [...];
3 begin
4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string(int_t’left) & "/" &
9 to_string(int_t’right);

10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

10

Example: low, high, left, right, ascending

Example code
1 process
2 type int_t is [...];
3 begin
4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string(int_t’left) & "/" &
9 to_string(int_t’right);

10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

VHDL Type System
Type Attributes

Example: low, high, left, right, ascending

On the right side we can now see the output of the simulator for the two range scenarios. In the first case a descending
range constraint is used, while the second case uses an ascending one with the same limits. For both cases the attributes
low and high return the lowest and highest values in the range constraint. However, since left and right refer to the left and
right values of the range constraint as they are used in the type declaration, the respective attributes return opposite values
for the two cases.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: low, high, left, right, ascending

Example code
1 process
2 type int_t is [...];
3 begin
4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string(int_t’left) & "/" &
9 to_string(int_t’right);

10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

10

Example: low, high, left, right, ascending

Example code
1 process
2 type int_t is [...];
3 begin
4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string(int_t’left) & "/" &
9 to_string(int_t’right);

10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

VHDL Type System
Type Attributes

Example: low, high, left, right, ascending

In general we can deduce that for ascending ranges the low attribute is always equal to the left limit, while the high and the
right attribute are also equal. For descending ranges the situation is reversed. Note, that these attributes are not only
defined for integer types, but can also be used on floating-point, enumeration and physical types. The type of the attributes
low, high, left and right are always equal to the type that the attributes are invoked on.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: image, value

Example code
1 process
2 variable str : string(1 to 2) := "42";
3 variable val : integer;
4 begin
5 report str;
6 val := integer’value(str); -- convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

11

Example: image, value

Example code
1 process
2 variable str : string(1 to 2) := "42";
3 variable val : integer;
4 begin
5 report str;
6 val := integer’value(str); -- convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

VHDL Type System
Type Attributes

Example: image, value

On this slide we want to present the attribute functions image and value, which can be used to convert between scalar types
and strings.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: image, value

Example code
1 process
2 variable str : string(1 to 2) := "42";
3 variable val : integer;
4 begin
5 report str;
6 val := integer’value(str); -- convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

11

Example: image, value

Example code
1 process
2 variable str : string(1 to 2) := "42";
3 variable val : integer;
4 begin
5 report str;
6 val := integer’value(str); -- convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

VHDL Type System
Type Attributes

Example: image, value

The code snippet shows a process that declares two variables. The variable called str is a string and is initialized with the
decimal string representation of the number 42. Strings in VHDL are actually array types, which will be covered in a future
lecture. The second variable is a simple integer.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: image, value

Example code
1 process
2 variable str : string(1 to 2) := "42";
3 variable val : integer;
4 begin
5 report str;
6 val := integer’value(str); -- convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

11

Example: image, value

Example code
1 process
2 variable str : string(1 to 2) := "42";
3 variable val : integer;
4 begin
5 report str;
6 val := integer’value(str); -- convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

VHDL Type System
Type Attributes

Example: image, value

The process first prints the string 42 using a report statement.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: image, value

Example code
1 process
2 variable str : string(1 to 2) := "42";
3 variable val : integer;
4 begin
5 report str;
6 val := integer’value(str); -- convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

11

Example: image, value

Example code
1 process
2 variable str : string(1 to 2) := "42";
3 variable val : integer;
4 begin
5 report str;
6 val := integer’value(str); -- convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

VHDL Type System
Type Attributes

Example: image, value

It then uses the predefined value function-attribute to convert the string to an integer.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: image, value

Example code
1 process
2 variable str : string(1 to 2) := "42";
3 variable val : integer;
4 begin
5 report str;
6 val := integer’value(str); -- convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

11

Example: image, value

Example code
1 process
2 variable str : string(1 to 2) := "42";
3 variable val : integer;
4 begin
5 report str;
6 val := integer’value(str); -- convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

VHDL Type System
Type Attributes

Example: image, value

Using the image attribute, it then converts the integer back into a string and again prints it out – resulting in the string ”42”
being output once more.

HWMod
WS24

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: image, value

Example code
1 process
2 variable str : string(1 to 2) := "42";
3 variable val : integer;
4 begin
5 report str;
6 val := integer’value(str); -- convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

11

Example: image, value

Example code
1 process
2 variable str : string(1 to 2) := "42";
3 variable val : integer;
4 begin
5 report str;
6 val := integer’value(str); -- convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

VHDL Type System
Type Attributes

Example: image, value

Please note that instead of using the image attribute, it is often easier and more readable to simply invoke the to-string
function, which is also used in the example on the previous slide. This function is implicitly declared for all scalar types.

HWMod
WS24

Types
Scalar Types

Attributes

Subtypes

Subtypes

Subtypes
can be used to further constrain an existing type (base type)
inherit operators defined on the base type
can associate a resolvement function with the type

Declaration syntax
subtype SUBTYPE_NAME is
[resolution_indication] TYPE_NAME range_constraint;

Predefined Subtypes (standard package)
subtype delay_length is time range 0 fs to time’high;
subtype natural is integer range 0 to integer’high;
subtype positive is integer range 1 to integer’high;

12

Subtypes

Subtypes
can be used to further constrain an existing type (base type)
inherit operators defined on the base type
can associate a resolvement function with the type

Declaration syntax
subtype SUBTYPE_NAME is
[resolution_indication] TYPE_NAME range_constraint;

Predefined Subtypes (standard package)
subtype delay_length is time range 0 fs to time’high;
subtype natural is integer range 0 to integer’high;
subtype positive is integer range 1 to integer’high;

VHDL Type System
Subtypes

Subtypes

Another VHDL concept we want to touch upon, before we end this lecture are subtypes. Subtypes can be used to further
constrain the value range of an already defined type – which is then referred to as the base type. Additionally, it is possible
to also attach a so-called resolvement function to the subtype. How this feature can be used, is subject to an upcoming
lecture.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L337
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L343
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L344
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L337
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L343
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L344

HWMod
WS24

Types
Scalar Types

Attributes

Subtypes

Subtypes

Subtypes
can be used to further constrain an existing type (base type)
inherit operators defined on the base type
can associate a resolvement function with the type

Declaration syntax
subtype SUBTYPE_NAME is
[resolution_indication] TYPE_NAME range_constraint;

Predefined Subtypes (standard package)
subtype delay_length is time range 0 fs to time’high;
subtype natural is integer range 0 to integer’high;
subtype positive is integer range 1 to integer’high;

12

Subtypes

Subtypes
can be used to further constrain an existing type (base type)
inherit operators defined on the base type
can associate a resolvement function with the type

Declaration syntax
subtype SUBTYPE_NAME is
[resolution_indication] TYPE_NAME range_constraint;

Predefined Subtypes (standard package)
subtype delay_length is time range 0 fs to time’high;
subtype natural is integer range 0 to integer’high;
subtype positive is integer range 1 to integer’high;

VHDL Type System
Subtypes

Subtypes

For the declaration of subtypes the subtype keyword is used. Besides the actual name of the subtype, the name of the
base type as well as a new – possibly more restrictive – range constraint must be specified.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L337
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L343
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L344
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L337
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L343
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L344

HWMod
WS24

Types
Scalar Types

Attributes

Subtypes

Subtypes

Subtypes
can be used to further constrain an existing type (base type)
inherit operators defined on the base type
can associate a resolvement function with the type

Declaration syntax
subtype SUBTYPE_NAME is
[resolution_indication] TYPE_NAME range_constraint;

Predefined Subtypes (standard package)
subtype delay_length is time range 0 fs to time’high;
subtype natural is integer range 0 to integer’high;
subtype positive is integer range 1 to integer’high;

12

Subtypes

Subtypes
can be used to further constrain an existing type (base type)
inherit operators defined on the base type
can associate a resolvement function with the type

Declaration syntax
subtype SUBTYPE_NAME is
[resolution_indication] TYPE_NAME range_constraint;

Predefined Subtypes (standard package)
subtype delay_length is time range 0 fs to time’high;
subtype natural is integer range 0 to integer’high;
subtype positive is integer range 1 to integer’high;

VHDL Type System
Subtypes

Subtypes

The standard package already contains some predefined subtype declarations. Let’s consider the natural type. It uses
integer as its base type and restricts the range to all values greater or equal to zero. In these examples we can also see the
VHDL high attribute in action, which is used to refer to the largest possible value of the respective base type.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L337
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L343
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L344
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L337
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L343
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L344

HWMod
WS24

Types
Scalar Types

Attributes

Subtypes

Lecture Complete!

Modified: 2025-03-12, 16:24 (b25118c)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

	VHDL Type System
	Scalar Types
	Type Attributes
	Subtypes

