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Built-in types
Defined in standard package
Some Examples

boolean
integer
real
time

Five classes of types
scalar
composite
file
access
protected

Keep synthesizeability in mind!
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Integer Types 53

Declaration Syntax
type TYPE_NAME is range_constraint;
range_constraint ::= range expr to expr

| range expr downto expr
| range range_attribute_name

Left/right expressions must be integers
Ranges are either ascending or descending

Ascending (to): left ≤ right
Descending (downto) left ≥ right
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Examples
8 bit unsigned integer
type uint8_t is range 0 to 255;

16 bit signed integer
type int16_t is range -2**15 to 2**15-1;

Integer that can only hold values between 42 and 13
type descending_int_t is range 42 downto 13;

Only built-in integer type: integer
Ascending range
Range boundaries are implementation dependent

VHDL-2008: at least −231 − 1 to 231 − 1 (i.e., 32 bit)
VHDL-2019: at least −263 to 263 − 1 (i.e., 64 bit)
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Range Contraints

Range constraints
are checked statically (i.e., at compile time)
are checked dynamically during simulation (i.e., runtime)
not checked in hardware

Example: static range errors
 constant A : uint8_t := -1; -- range error: -1 < 0
 variable b : uint8_t := 16*16; -- range error: 256 > 255

Example: dynamic range error
 process
 variable x : uint8_t := 254;
 begin
 x := x + 1;
 report "everything fine!";
 x := x + 1;
 report "not fine" -- never executed because of the range error
 end process;
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Declaration Syntax
type TYPE_NAME is range_constraint;

Example
type my_fp_t is range 0.0 to 1.0;

Only built-in floating-point type: real
range is implementation dependent
most likely a 64 bit (i.e., double precision) floating-point

Range checks as with integers
Cannot be used in synthesizeable code!
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Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literal});

Examples
type fsm_state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
type color_t is (RED, GREEN, BLUE);
type my_char_t is (’A’, ’1’, ’*’);

Predefined enumeration types (standard package)
type boolean is (false, true);
type direction is (ASCENDING, DESCENDING);
type bit is (’0’, ’1’);
type character is (NUL, SOH, [...], ’A’, ’B’, [...]);
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Physical Types 54

Declaration Syntax
type TYPE_NAME is range_constraint units
primary_unit
{secondary_unit}

end units;

Example
type distance_t is range 0 to 1_000_000_000 units
nm; -- primary unit
um = 1000 nm; mm = 1000 um; -- secondary units
cm = 10 mm; m = 1000 mm; -- secondary units

end units;

Predefined physical type (standard Package): time
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Type Attributes 271

VHDL Attributes
represent a powerful language feature
are comparable to attributes in C# or C++
come in the form of user- and predefined attributes

Type attributes allow to
obtain meta-information about a type
perform operations with values of a type

Syntax
Accessing attribute a of type T: T’a
Example: integer’low
Invoking attribute function f of type T with argument x: T’f(x)
Example: integer’image(x)
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Example: low, high, left, right, ascending

Example code
 process
 type int_t is [...];
 begin
 report "low/high: " &
 to_string(int_t’low) & "/" &
 to_string(int_t’high);
 report "left/right: " &
 to_string(int_t’left) & "/" &
 to_string(int_t’right);

 report "asc: " & to_string(int_t’ascending);
 wait;
 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left
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Example: image, value

Example code
 process
 variable str : string(1 to 2) := "42";
 variable val : integer;
 begin
 report str;
 val := integer’value(str); -- convert string to integer
 report integer’image(val); -- convert integer to string and print it
 wait;
 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))
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Subtypes
can be used to further constrain an existing type (base type)
inherit operators defined on the base type
can associate a resolvement function with the type

Declaration syntax
subtype SUBTYPE_NAME is
[resolution_indication] TYPE_NAME range_constraint;

Predefined Subtypes (standard package)
subtype delay_length is time range 0 fs to time’high;
subtype natural is integer range 0 to integer’high;
subtype positive is integer range 1 to integer’high;
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