HWMod
WS25

flees Hardware Modeling [VU] (191.011)
— WS25 —

VHDL Type System

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:03 (f8a58e9)



Introduction

HWMod
WS25

Types
m Strongly-typed language
m Static type checks at compile time
m Explicit type conversions



Introduction

HWMod
WS25

Types
m Strongly-typed language
m Static type checks at compile time
m Explicit type conversions
m Type declaration syntax
type TYPE_NAME is [...];



Introduction

HWMod
WS25

Types
m Strongly-typed language
m Static type checks at compile time
m Explicit type conversions

m Type declaration syntax

type TYPE_NAME is [...];
m Possible type declaration locations
m Packages

m Declarative parts of entities, architectures, processes, blocks, functions,
procedures



Introduction (cont’d)

HWMod
WS25

m Built-in types

Types m Defined in standard package &
m Some Examples

B boolean &R

integer &

OF:N

real

Ty
N

time &%


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

Introduction (cont’d)

HWMod
WS25

m Built-in types
Types m Defined in standard package &
m Some Examples

B boolean &R

B integer @&
B real @&
B time &%
m Five classes of types
m scalar
B composite
m file
B access
m protected


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

Introduction (cont’d)

HWMod
WS25

m Built-in types

s m Defined in standard package &=
m Some Examples

e sn

B boolean &
B integer @&
H real &8

Ty

B time &
m Five classes of types
m scalar
B composite
m file
B access
protected

m Keep synthesizeability in mind!


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

Integer Types

HWMod
WS25



HWMod
WS25

Integers

Integer Types

m Declaration Syntax
type TYPE_NAME is range_constraint;
range_constraint ::= range expr to expr
| range expr downto expr
| range range_attribute_name



Integer Types

HWMod
WS25

m Declaration Syntax
type TYPE_NAME is range_constraint;
range_constraint ::= range expr to expr

Integers

| range expr downto expr

| range range_attribute_name
m Left/right expressions must be integers
m Ranges are either ascending or descending

m Ascending (to): left < right
m Descending (downto) left > right



Integer Types (cont'd)

HWMod
WS25

m Examples
m 8 bit unsigned integer
type uint8_t is range 0 to 255;
m 16 bit signed integer
type intl6_t is range -2x%15 to 2xx15-1;
m Integer that can only hold values between 42 and 13
type descending_int_t is range 42 downto 13;

Integers


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241

Integer Types (cont'd)

HWMod
WS25

m Examples
m 8 bit unsigned integer
type uint8_t is range 0 to 255;
m 16 bit signed integer
type intl6_t is range -2x%15 to 2xx15-1;
m Integer that can only hold values between 42 and 13
type descending_int_t is range 42 downto 13;

Integers

m Only built-in integer type: integer &=
m Ascending range
m Range boundaries are implementation dependent

m VHDL-2008: at least —2°' — 1 t0 2*! — 1 (i.e., 32 bit)
m VHDL-2019: at least —2%* t0 2°* — 1 (i.e., 64 bit)


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241

Range Contraints

s m Range constraints
m are checked statically (i.e., at compile time)
m are checked dynamically during simulation (i.e., runtime)
m not checked in hardware



Range Contraints

Hiioc m Range constraints

WS25
m are checked statically (i.e., at compile time)
m are checked dynamically during simulation (i.e., runtime)
m not checked in hardware

m Example: static range errors

Integers

1 constant A : uint8_t := -1; —- range error: -1 < 0
2 variable b : uint8_t := 16x16; range error: 256 > 255



Range Contraints

Hiioc m Range constraints

WS25
m are checked statically (i.e., at compile time)
m are checked dynamically during simulation (i.e., runtime)
m not checked in hardware

m Example: static range errors

Integers

1 constant A : uint8_t := -1; —- range error: -1 < 0
2 variable b : uint8_t 16x16; range error: 256 > 255

m Example: dynamic range error

process

variable x : uint8_t := 254;
begin

x = x + 1;

report "everything fine!";

x = x + 1;

report "not fine" -- never executed because of the range error
end process;

N A WD =



Floating-Point Types

HWMod
WS25

m Declaration Syntax
Floats type TYPE_NAME is range_constraint;
m Example
type my_fp_t is range 0.0 to 1.0;


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270

Floating-Point Types

HWMod
WS25

m Declaration Syntax
Floats type TYPE_NAME is range_constraint;
m Example
type my_fp_t is range 0.0 to 1.0;
m Only built-in floating-point type: real &2
m range is implementation dependent
m most likely a 64 bit (i.e., double precision) floating-point


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270

Floating-Point Types

HWMod
WS25

m Declaration Syntax
Floats type TYPE_NAME is range_constraint;
m Example
type my_fp_t is range 0.0 to 1.0;
m Only built-in floating-point type: real &2
m range is implementation dependent
m most likely a 64 bit (i.e., double precision) floating-point

m Range checks as with integers


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270

Floating-Point Types

HWMod
WS25

m Declaration Syntax
Floats type TYPE_NAME is range_constraint;
m Example
type my_fp_t is range 0.0 to 1.0;
m Only built-in floating-point type: real &2
m range is implementation dependent
m most likely a 64 bit (i.e., double precision) floating-point

m Range checks as with integers
m Cannot be used in synthesizeable code!


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270

Enumeration Types

HWMod
WS25


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120

Enumeration Types

HWMod
WS25

m Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literall);


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120

Enumeration Types

HWMod
WS25

m Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literall);
m Examples

B type fsm state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
B type color_t is (RED, GREEN, BLUE);
B type my_char_t is (A", "1, "x");


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120

Enumeration Types

HWMod
WS25

m Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literall);
m Examples
B type fsm state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
B type color_t is (RED, GREEN, BLUE);
B type my_char_t is ('A’, "1, '"x");
m Predefined enumeration types (standard package)

B type boolean is (false, true);

B type direction is (ASCENDING, DESCENDING); &%

B type bit is (707, ’'1'); &

B type character is (NUL, SOH, [...], ’'A’, 'B’, [...]); =x


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120

Physical Types

HWMod
WS25

Physical Types


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

Physical Types

HWMod
WS25

m Declaration Syntax
type TYPE_NAME is range_constraint units
primary_unit
R {secondary_unit}
end units;


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

Physical Types

HWMod
WS25

m Declaration Syntax
type TYPE_NAME is range_constraint units

primary_unit
{secondary_unit}
end units;

Physical Types

m Example
type distance_t is range 0 to 1_000_000_000 units
nm; —— primary unit
um = 1000 nm; mm = 1000 um; secondary units
cm = 10 mm; m = 1000 mm; —-—- secondary units

end units;


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

Physical Types

HWMod
WS25

m Declaration Syntax
type TYPE_NAME is range_constraint units

primary_unit
{secondary_unit}
end units;

Physical Types

m Example
type distance_t is range 0 to 1_000_000_000 units
nm; —— primary unit
um = 1000 nm; mm = 1000 um; secondary units
cm = 10 mm; m = 1000 mm; —-—- secondary units

1EEE SA

end units;
m Predefined physical type (standard Package): time &2


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

Type Attributes

HWMod
WS25

m VHDL Attributes
Arbuten m represent a powerful language feature
m are comparable to attributes in C# or C++
m come in the form of user- and predefined attributes



Type Attributes

HWMod
WS25

m VHDL Attributes
Ao m represent a powerful language feature
m are comparable to attributes in C# or C++
m come in the form of user- and predefined attributes
m Type attributes allow to

m obtain meta-information about a type
m perform operations with values of a type



Type Attributes

HWMod
WS25

m VHDL Attributes

Arbuten m represent a powerful language feature
m are comparable to attributes in C# or C++
m come in the form of user- and predefined attributes

m Type attributes allow to

m obtain meta-information about a type

m perform operations with values of a type
m Syntax

m Accessing attribute a of type T: T’ a
Example: integer’ low

m Invoking attribute function £ of type T with argument x: T’ £ (x)
Example: integer’ image (x)



Type Attributes

HWMod
WS25

m VHDL Attributes

Arbuten m represent a powerful language feature
m are comparable to attributes in C# or C++
m come in the form of user- and predefined attributes

m Type attributes allow to

m obtain meta-information about a type

m perform operations with values of a type
m Syntax

m Accessing attribute a of type T: T’ a
Example: integer’ low

m Invoking attribute function £ of type T with argument x: T’ £ (x)
Example: integer’ image (x)



Example: low, high, left, right, ascending

AL Example code

WS25

1 process
2 type int_t is [...];
3 begin

et 4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string (int_t’left) & "/" &
9 to_string(int_t’right);
10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;



Example: low, high, left, right, ascending

AL Example code

WS25

1 process
2 type int_t is [...];
3 begin

et 4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string (int_t’left) & "/" &
9 to_string(int_t’right);
10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;



Example: low, high, left, right, ascending

AL Example code

WS25

1 process
2 type int_t is [...];
3 begin

et 4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string (int_t’left) & "/" &
9 to_string(int_t’right);
10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;



Example: low, high, left, right, ascending

AL Example code

WS25

1 process
2 type int_t is [...];
3 begin

et 4 report "low/high: " &
5 to_string(int_t’low) & "/" &
6 to_string(int_t’high);
7 report "left/right: " &
8 to_string (int_t’left) & "/" &
9 to_string(int_t’right);
10 report "asc: " & to_string(int_t’ascending);
11 wait;
12 end process;



Example: low, high, left, right, ascending

sl Example code Output

1 process B range 3 downto -4

2 type int_t is [...]; [...]: low/high: -4/3

3 begin [...]: left/right: 3/-4
et 4 report "low/high: " & [...]: asc: false

5 to_string(int_t’low) & "/" & B range -4 to 3

6 to_string(int_t’high);

7 report "left/right: " & [...1: 10W/h1?h‘ -4/3

8 to_string (int_t’left) & "/" & [...]: left/right: -4/3

9 to_string(int_t’right); [...]: asc: true

10 report "asc: " & to_string(int_t’ascending);

11 wait;

12 end process;



Example: low, high, left, right, ascending

sl Example code Output

1 process B range 3 downto -4

2 type int_t is [...]; [...]: low/high: -4/3

3 begin [...]: left/right: 3/-4
et 4 report "low/high: " & [...]: asc: false

5 to_string(int_t’low) & "/" & B range -4 to 3

6 to_string(int_t’high);

7 report "left/right: " & [...1: 10W/h19h‘ -4/3

8 to_string(int_t’left) & "/" & [...]: left/right: -4/3

9 to_string(int_t’right); [...]: asc: true

10 report "asc: " & to_string(int_t’ascending);

11 wait;

n

end process;

For ascending types: T’ low = T’ left and T high = T’ right
For descending types: T’ low = T’ right and T’ high = T’ left



Example: image, value

HWMod
WS25

Example code

1 process
2 variable str : string(l to 2) := "42";
3 wvariable val : integer;
Example Il 4 begin
5 report str;
6 wval := integer’value(str); convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

For all scalar types T and values of that type v: V= T’ value (T’ image (V))



Example: image, value

HWMod
WS25

Example code

1 process
2 wvariable str : string(l to 2) := "42";
3 wvariable val : integer;
Example Il 4 begin
5 report str;
6 wval := integer’value(str); convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

For all scalar types T and values of that type v: V= T’ value (T’ image (V))



Example: image, value

HWMod
WS25

Example code

1 process
2 variable str : string(l to 2) := "42";
3 wvariable val : integer;
Example Il 4 begin
5 report str;
6 wval := integer’value(str); convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

For all scalar types T and values of that type v: V= T’ value (T’ image (V))



Example: image, value

HWMod
WS25

Example code

1 process
2 variable str : string(l to 2) := "42";
3 wvariable val : integer;
Example Il 4 begin
5 report str;
6 wval := integer’value(str); convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

For all scalar types T and values of that type v: V= T’ value (T’ image (V))



Example: image, value

HWMod
WS25

Example code

1 process
2 variable str : string(l to 2) := "42";
3 wvariable val : integer;
Example Il 4 begin
5 report str;
6 wval := integer’value(str); convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

For all scalar types T and values of that type v: V= T’ value (T’ image (V))



Example: image, value

HWMod
WS25

Example code

1 process
2 variable str : string(l to 2) := "42";
3 wvariable val : integer;
Example Il 4 begin
5 report str;
6 wval := integer’value(str); convert string to integer
7 report integer’image(val); -- convert integer to string and print it
8 wait;
9 end process;

For all scalar types T and values of that type v: V= T’ value (T’ image (V))



Subtypes

HWMod
WS25

m Subtypes
m can be used to further constrain an existing type (base type)
P— m inherit operators defined on the base type
m can associate a resolvement function with the type


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L337
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L343
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L344

Subtypes

HWMod
WS25

m Subtypes
m can be used to further constrain an existing type (base type)
P— m inherit operators defined on the base type
m can associate a resolvement function with the type
m Declaration syntax
subtype SUBTYPE_NAME is
[resolution_indication] TYPE_NAME range_constraint;


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L337
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L343
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L344

Subtypes

HWMod
WS25

m Subtypes

Subtypes

m can be used to further constrain an existing type (base type)
m inherit operators defined on the base type

m can associate a resolvement function with the type
m Declaration syntax

subtype SUBTYPE_NAME is
[resolution_indication]

TYPE_NAME range_constraint;
m Predefined Subtypes (standard package)

B subtype natural is integer range 0 to integer’high;
B subtype positive is integer range 1 to integer’high;


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L337
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L343
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L344

HWMod
WS25

Subtypes

Lecture Complete!

Modified: 2025-12-16, 16:03 (f8a58e9)



	VHDL Type System
	Scalar Types
	Type Attributes
	Subtypes


