
HWMod
WS25

Types
Scalar Types

Attributes

Subtypes

Hardware Modeling [VU] (191.011)
– WS25 –

VHDL Type System

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:03 (f8a58e9)

HWMod
WS25

Types
Scalar Types

Attributes

Subtypes

Introduction 50

Strongly-typed language
Static type checks at compile time
Explicit type conversions

Type declaration syntax
type TYPE_NAME is [...];

Possible type declaration locations
Packages
Declarative parts of entities, architectures, processes, blocks, functions,
procedures

1

HWMod
WS25

Types
Scalar Types

Attributes

Subtypes

Introduction 50

Strongly-typed language
Static type checks at compile time
Explicit type conversions

Type declaration syntax
type TYPE_NAME is [...];

Possible type declaration locations
Packages
Declarative parts of entities, architectures, processes, blocks, functions,
procedures

1

HWMod
WS25

Types
Scalar Types

Attributes

Subtypes

Introduction 50

Strongly-typed language
Static type checks at compile time
Explicit type conversions

Type declaration syntax
type TYPE_NAME is [...];

Possible type declaration locations
Packages
Declarative parts of entities, architectures, processes, blocks, functions,
procedures

1

HWMod
WS25

Types
Scalar Types

Attributes

Subtypes

Introduction (cont’d) 50

Built-in types
Defined in standard package
Some Examples

boolean
integer
real
time

Five classes of types
scalar
composite
file
access
protected

Keep synthesizeability in mind!

2

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

HWMod
WS25

Types
Scalar Types

Attributes

Subtypes

Introduction (cont’d) 50

Built-in types
Defined in standard package
Some Examples

boolean
integer
real
time

Five classes of types
scalar
composite
file
access
protected

Keep synthesizeability in mind!

2

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

HWMod
WS25

Types
Scalar Types

Attributes

Subtypes

Introduction (cont’d) 50

Built-in types
Defined in standard package
Some Examples

boolean
integer
real
time

Five classes of types
scalar
composite
file
access
protected

Keep synthesizeability in mind!
2

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Integer Types 53

Declaration Syntax
type TYPE_NAME is range_constraint;
range_constraint ::= range expr to expr

| range expr downto expr
| range range_attribute_name

Left/right expressions must be integers
Ranges are either ascending or descending

Ascending (to): left ≤ right
Descending (downto) left ≥ right

3

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Integer Types 53

Declaration Syntax
type TYPE_NAME is range_constraint;
range_constraint ::= range expr to expr

| range expr downto expr
| range range_attribute_name

Left/right expressions must be integers
Ranges are either ascending or descending

Ascending (to): left ≤ right
Descending (downto) left ≥ right

3

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Integer Types 53

Declaration Syntax
type TYPE_NAME is range_constraint;
range_constraint ::= range expr to expr

| range expr downto expr
| range range_attribute_name

Left/right expressions must be integers
Ranges are either ascending or descending

Ascending (to): left ≤ right
Descending (downto) left ≥ right

3

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Integer Types (cont’d)

Examples
8 bit unsigned integer
type uint8_t is range 0 to 255;

16 bit signed integer
type int16_t is range -2**15 to 2**15-1;

Integer that can only hold values between 42 and 13
type descending_int_t is range 42 downto 13;

Only built-in integer type: integer
Ascending range
Range boundaries are implementation dependent

VHDL-2008: at least −231 − 1 to 231 − 1 (i.e., 32 bit)
VHDL-2019: at least −263 to 263 − 1 (i.e., 64 bit)

4

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Integer Types (cont’d)

Examples
8 bit unsigned integer
type uint8_t is range 0 to 255;

16 bit signed integer
type int16_t is range -2**15 to 2**15-1;

Integer that can only hold values between 42 and 13
type descending_int_t is range 42 downto 13;

Only built-in integer type: integer
Ascending range
Range boundaries are implementation dependent

VHDL-2008: at least −231 − 1 to 231 − 1 (i.e., 32 bit)
VHDL-2019: at least −263 to 263 − 1 (i.e., 64 bit)

4

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L241

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Range Contraints

Range constraints
are checked statically (i.e., at compile time)
are checked dynamically during simulation (i.e., runtime)
not checked in hardware

Example: static range errors
 constant A : uint8_t := -1; -- range error: -1 < 0
 variable b : uint8_t := 16*16; -- range error: 256 > 255

Example: dynamic range error
 process
 variable x : uint8_t := 254;
 begin
 x := x + 1;
 report "everything fine!";
 x := x + 1;
 report "not fine" -- never executed because of the range error
 end process;

5

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Range Contraints

Range constraints
are checked statically (i.e., at compile time)
are checked dynamically during simulation (i.e., runtime)
not checked in hardware

Example: static range errors
 constant A : uint8_t := -1; -- range error: -1 < 0
 variable b : uint8_t := 16*16; -- range error: 256 > 255

Example: dynamic range error
 process
 variable x : uint8_t := 254;
 begin
 x := x + 1;
 report "everything fine!";
 x := x + 1;
 report "not fine" -- never executed because of the range error
 end process;

5

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Range Contraints

Range constraints
are checked statically (i.e., at compile time)
are checked dynamically during simulation (i.e., runtime)
not checked in hardware

Example: static range errors
 constant A : uint8_t := -1; -- range error: -1 < 0
 variable b : uint8_t := 16*16; -- range error: 256 > 255

Example: dynamic range error
 process
 variable x : uint8_t := 254;
 begin
 x := x + 1;
 report "everything fine!";
 x := x + 1;
 report "not fine" -- never executed because of the range error
 end process;

5

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Floating-Point Types 57

Declaration Syntax
type TYPE_NAME is range_constraint;

Example
type my_fp_t is range 0.0 to 1.0;

Only built-in floating-point type: real
range is implementation dependent
most likely a 64 bit (i.e., double precision) floating-point

Range checks as with integers
Cannot be used in synthesizeable code!

6

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Floating-Point Types 57

Declaration Syntax
type TYPE_NAME is range_constraint;

Example
type my_fp_t is range 0.0 to 1.0;

Only built-in floating-point type: real
range is implementation dependent
most likely a 64 bit (i.e., double precision) floating-point

Range checks as with integers
Cannot be used in synthesizeable code!

6

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Floating-Point Types 57

Declaration Syntax
type TYPE_NAME is range_constraint;

Example
type my_fp_t is range 0.0 to 1.0;

Only built-in floating-point type: real
range is implementation dependent
most likely a 64 bit (i.e., double precision) floating-point

Range checks as with integers

Cannot be used in synthesizeable code!

6

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Floating-Point Types 57

Declaration Syntax
type TYPE_NAME is range_constraint;

Example
type my_fp_t is range 0.0 to 1.0;

Only built-in floating-point type: real
range is implementation dependent
most likely a 64 bit (i.e., double precision) floating-point

Range checks as with integers
Cannot be used in synthesizeable code!

6

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L270

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Enumeration Types 52

Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literal});

Examples
type fsm_state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
type color_t is (RED, GREEN, BLUE);
type my_char_t is (’A’, ’1’, ’*’);

Predefined enumeration types (standard package)
type boolean is (false, true);
type direction is (ASCENDING, DESCENDING);
type bit is (’0’, ’1’);
type character is (NUL, SOH, [...], ’A’, ’B’, [...]);

7

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Enumeration Types 52

Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literal});

Examples
type fsm_state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
type color_t is (RED, GREEN, BLUE);
type my_char_t is (’A’, ’1’, ’*’);

Predefined enumeration types (standard package)
type boolean is (false, true);
type direction is (ASCENDING, DESCENDING);
type bit is (’0’, ’1’);
type character is (NUL, SOH, [...], ’A’, ’B’, [...]);

7

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Enumeration Types 52

Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literal});

Examples
type fsm_state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
type color_t is (RED, GREEN, BLUE);
type my_char_t is (’A’, ’1’, ’*’);

Predefined enumeration types (standard package)
type boolean is (false, true);
type direction is (ASCENDING, DESCENDING);
type bit is (’0’, ’1’);
type character is (NUL, SOH, [...], ’A’, ’B’, [...]);

7

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Enumeration Types 52

Declaration Syntax
type TYPE_NAME is (enum_literal {, enum_literal});

Examples
type fsm_state_t is (INIT, WAIT_FOR_DATA, TRANSMIT);
type color_t is (RED, GREEN, BLUE);
type my_char_t is (’A’, ’1’, ’*’);

Predefined enumeration types (standard package)
type boolean is (false, true);
type direction is (ASCENDING, DESCENDING);
type bit is (’0’, ’1’);
type character is (NUL, SOH, [...], ’A’, ’B’, [...]);

7

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L41
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L120

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Physical Types 54

Declaration Syntax
type TYPE_NAME is range_constraint units
primary_unit
{secondary_unit}

end units;

Example
type distance_t is range 0 to 1_000_000_000 units
nm; -- primary unit
um = 1000 nm; mm = 1000 um; -- secondary units
cm = 10 mm; m = 1000 mm; -- secondary units

end units;

Predefined physical type (standard Package): time

8

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Physical Types 54

Declaration Syntax
type TYPE_NAME is range_constraint units
primary_unit
{secondary_unit}

end units;

Example
type distance_t is range 0 to 1_000_000_000 units
nm; -- primary unit
um = 1000 nm; mm = 1000 um; -- secondary units
cm = 10 mm; m = 1000 mm; -- secondary units

end units;

Predefined physical type (standard Package): time

8

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Physical Types 54

Declaration Syntax
type TYPE_NAME is range_constraint units
primary_unit
{secondary_unit}

end units;

Example
type distance_t is range 0 to 1_000_000_000 units
nm; -- primary unit
um = 1000 nm; mm = 1000 um; -- secondary units
cm = 10 mm; m = 1000 mm; -- secondary units

end units;

Predefined physical type (standard Package): time

8

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

HWMod
WS25

Types
Scalar Types

Integers

Floats

Enums

Physical Types

Attributes

Subtypes

Physical Types 54

Declaration Syntax
type TYPE_NAME is range_constraint units
primary_unit
{secondary_unit}

end units;

Example
type distance_t is range 0 to 1_000_000_000 units
nm; -- primary unit
um = 1000 nm; mm = 1000 um; -- secondary units
cm = 10 mm; m = 1000 mm; -- secondary units

end units;

Predefined physical type (standard Package): time
8

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L296

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Type Attributes 271

VHDL Attributes
represent a powerful language feature
are comparable to attributes in C# or C++
come in the form of user- and predefined attributes

Type attributes allow to
obtain meta-information about a type
perform operations with values of a type

Syntax
Accessing attribute a of type T: T’a
Example: integer’low
Invoking attribute function f of type T with argument x: T’f(x)
Example: integer’image(x)

9

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Type Attributes 271

VHDL Attributes
represent a powerful language feature
are comparable to attributes in C# or C++
come in the form of user- and predefined attributes

Type attributes allow to
obtain meta-information about a type
perform operations with values of a type

Syntax
Accessing attribute a of type T: T’a
Example: integer’low
Invoking attribute function f of type T with argument x: T’f(x)
Example: integer’image(x)

9

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Type Attributes 271

VHDL Attributes
represent a powerful language feature
are comparable to attributes in C# or C++
come in the form of user- and predefined attributes

Type attributes allow to
obtain meta-information about a type
perform operations with values of a type

Syntax
Accessing attribute a of type T: T’a
Example: integer’low
Invoking attribute function f of type T with argument x: T’f(x)
Example: integer’image(x)

9

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Type Attributes 271

VHDL Attributes
represent a powerful language feature
are comparable to attributes in C# or C++
come in the form of user- and predefined attributes

Type attributes allow to
obtain meta-information about a type
perform operations with values of a type

Syntax
Accessing attribute a of type T: T’a
Example: integer’low
Invoking attribute function f of type T with argument x: T’f(x)
Example: integer’image(x)

9

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: low, high, left, right, ascending

Example code
 process
 type int_t is [...];
 begin
 report "low/high: " &
 to_string(int_t’low) & "/" &
 to_string(int_t’high);
 report "left/right: " &
 to_string(int_t’left) & "/" &
 to_string(int_t’right);

 report "asc: " & to_string(int_t’ascending);
 wait;
 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

10

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: low, high, left, right, ascending

Example code
 process
 type int_t is [...];
 begin
 report "low/high: " &
 to_string(int_t’low) & "/" &
 to_string(int_t’high);
 report "left/right: " &
 to_string(int_t’left) & "/" &
 to_string(int_t’right);

 report "asc: " & to_string(int_t’ascending);
 wait;
 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

10

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: low, high, left, right, ascending

Example code
 process
 type int_t is [...];
 begin
 report "low/high: " &
 to_string(int_t’low) & "/" &
 to_string(int_t’high);
 report "left/right: " &
 to_string(int_t’left) & "/" &
 to_string(int_t’right);

 report "asc: " & to_string(int_t’ascending);
 wait;
 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

10

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: low, high, left, right, ascending

Example code
 process
 type int_t is [...];
 begin
 report "low/high: " &
 to_string(int_t’low) & "/" &
 to_string(int_t’high);
 report "left/right: " &
 to_string(int_t’left) & "/" &
 to_string(int_t’right);

 report "asc: " & to_string(int_t’ascending);
 wait;
 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

10

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: low, high, left, right, ascending

Example code
 process
 type int_t is [...];
 begin
 report "low/high: " &
 to_string(int_t’low) & "/" &
 to_string(int_t’high);
 report "left/right: " &
 to_string(int_t’left) & "/" &
 to_string(int_t’right);

 report "asc: " & to_string(int_t’ascending);
 wait;
 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

10

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: low, high, left, right, ascending

Example code
 process
 type int_t is [...];
 begin
 report "low/high: " &
 to_string(int_t’low) & "/" &
 to_string(int_t’high);
 report "left/right: " &
 to_string(int_t’left) & "/" &
 to_string(int_t’right);

 report "asc: " & to_string(int_t’ascending);
 wait;
 end process;

Output
range 3 downto -4

[...]: low/high: -4/3
[...]: left/right: 3/-4
[...]: asc: false

range -4 to 3

[...]: low/high: -4/3
[...]: left/right: -4/3
[...]: asc: true

Note

For ascending types: T’low = T’left and T’high = T’right
For descending types: T’low = T’right and T’high = T’left

10

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: image, value

Example code
 process
 variable str : string(1 to 2) := "42";
 variable val : integer;
 begin
 report str;
 val := integer’value(str); -- convert string to integer
 report integer’image(val); -- convert integer to string and print it
 wait;
 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

11

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: image, value

Example code
 process
 variable str : string(1 to 2) := "42";
 variable val : integer;
 begin
 report str;
 val := integer’value(str); -- convert string to integer
 report integer’image(val); -- convert integer to string and print it
 wait;
 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

11

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: image, value

Example code
 process
 variable str : string(1 to 2) := "42";
 variable val : integer;
 begin
 report str;
 val := integer’value(str); -- convert string to integer
 report integer’image(val); -- convert integer to string and print it
 wait;
 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

11

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: image, value

Example code
 process
 variable str : string(1 to 2) := "42";
 variable val : integer;
 begin
 report str;
 val := integer’value(str); -- convert string to integer
 report integer’image(val); -- convert integer to string and print it
 wait;
 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

11

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: image, value

Example code
 process
 variable str : string(1 to 2) := "42";
 variable val : integer;
 begin
 report str;
 val := integer’value(str); -- convert string to integer
 report integer’image(val); -- convert integer to string and print it
 wait;
 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

11

HWMod
WS25

Types
Scalar Types

Attributes

Example I

Example II

Subtypes

Example: image, value

Example code
 process
 variable str : string(1 to 2) := "42";
 variable val : integer;
 begin
 report str;
 val := integer’value(str); -- convert string to integer
 report integer’image(val); -- convert integer to string and print it
 wait;
 end process;

Note

For all scalar types T and values of that type V: V = T’value(T’image(V))

11

HWMod
WS25

Types
Scalar Types

Attributes

Subtypes

Subtypes

Subtypes
can be used to further constrain an existing type (base type)
inherit operators defined on the base type
can associate a resolvement function with the type

Declaration syntax
subtype SUBTYPE_NAME is
[resolution_indication] TYPE_NAME range_constraint;

Predefined Subtypes (standard package)
subtype delay_length is time range 0 fs to time’high;
subtype natural is integer range 0 to integer’high;
subtype positive is integer range 1 to integer’high;

12

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L337
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L343
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L344

HWMod
WS25

Types
Scalar Types

Attributes

Subtypes

Subtypes

Subtypes
can be used to further constrain an existing type (base type)
inherit operators defined on the base type
can associate a resolvement function with the type

Declaration syntax
subtype SUBTYPE_NAME is
[resolution_indication] TYPE_NAME range_constraint;

Predefined Subtypes (standard package)
subtype delay_length is time range 0 fs to time’high;
subtype natural is integer range 0 to integer’high;
subtype positive is integer range 1 to integer’high;

12

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L337
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L343
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L344

HWMod
WS25

Types
Scalar Types

Attributes

Subtypes

Subtypes

Subtypes
can be used to further constrain an existing type (base type)
inherit operators defined on the base type
can associate a resolvement function with the type

Declaration syntax
subtype SUBTYPE_NAME is
[resolution_indication] TYPE_NAME range_constraint;

Predefined Subtypes (standard package)
subtype delay_length is time range 0 fs to time’high;
subtype natural is integer range 0 to integer’high;
subtype positive is integer range 1 to integer’high;

12

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L337
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L343
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L344

HWMod
WS25

Types
Scalar Types

Attributes

Subtypes

Lecture Complete!

Modified: 2025-12-16, 16:03 (f8a58e9)

	VHDL Type System
	Scalar Types
	Type Attributes
	Subtypes

