
HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Hardware Modeling [VU] (191.011)
– WS24 –

Simulation and Testbenches

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-12, 16:24 (b25118c)

Hardware Modeling [VU] (191.011)
– WS24 –

Simulation and Testbenches

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Simulation and Testbenches

This lecture gives an introduction on how the functionality of VHDL modules is verified using appropriate testbenches and a
simulator.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Introduction

Synthesizeable
VHDL

Hardware Design

Testbench

Unit under Test (UUT)

VHDL

1

Introduction

Synthesizeable
VHDL

Hardware Design

Testbench

Unit under Test (UUT)

VHDL

Simulation and Testbenches
Introduction

Introduction

In previous lectures we talked about how VHDL can be used to design hardware. We also learned that in order to make
it possible for a synthesis tool to take our code and convert it into a gate-level circuit we have to stick to the synthesizable
subset of the language.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Introduction

Synthesizeable
VHDL

Hardware Design

Testbench

Unit under Test (UUT)

VHDL

1

Introduction

Synthesizeable
VHDL

Hardware Design

Testbench

Unit under Test (UUT)

VHDL

Simulation and Testbenches
Introduction

Introduction

In this lecture we will now learn how to implement testbenches for our designs. Testbenches provide a controlled simulation
environment for testing a hardware module without being part of the actual design itself. A testbench is used to apply stimulus
– that is, generate input signals – to the unit under test and observe the resulting outputs.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Introduction

Synthesizeable
VHDL

Hardware Design

Testbench

Unit under Test (UUT)

VHDL

1

Introduction

Synthesizeable
VHDL

Hardware Design

Testbench

Unit under Test (UUT)

VHDL

Simulation and Testbenches
Introduction

Introduction

Since testbenches are not synthesized into hardware, but only ran in a simulator to validate the functional correctness of a
VHDL design, we can use the complete VHDL language to implement them.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Introduction (cont’d)

Testbenches are regular entities/architectures

Testbench architectures
create the instance of the unit under test (UUT)
produce input signals for the UUT
check the outputs of the UUT for correctness

Testbench entities
have no ports
may have generics

Unit test for a hardware module

2

Introduction (cont’d)

Testbenches are regular entities/architectures

Testbench architectures
create the instance of the unit under test (UUT)
produce input signals for the UUT
check the outputs of the UUT for correctness

Testbench entities
have no ports
may have generics

Unit test for a hardware module

Simulation and Testbenches
Introduction

Introduction (cont’d)

Conceptionally, testbenches in VHDL don’t use any special language constructs. A testbench is a regular entity with an
architecture that contains the actual test code.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Introduction (cont’d)

Testbenches are regular entities/architectures
Testbench architectures

create the instance of the unit under test (UUT)
produce input signals for the UUT
check the outputs of the UUT for correctness

Testbench entities
have no ports
may have generics

Unit test for a hardware module

2

Introduction (cont’d)

Testbenches are regular entities/architectures
Testbench architectures

create the instance of the unit under test (UUT)
produce input signals for the UUT
check the outputs of the UUT for correctness

Testbench entities
have no ports
may have generics

Unit test for a hardware module

Simulation and Testbenches
Introduction

Introduction (cont’d)

The architecture of a testbench creates an instance of the module it tests and perform the necessary operations on it to
ensure the hardware design behaves as expected. Common names for this instance are UUT or D-U-T. The latter acronym
standing for device under test.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Introduction (cont’d)

Testbenches are regular entities/architectures
Testbench architectures

create the instance of the unit under test (UUT)
produce input signals for the UUT
check the outputs of the UUT for correctness

Testbench entities
have no ports
may have generics

Unit test for a hardware module

2

Introduction (cont’d)

Testbenches are regular entities/architectures
Testbench architectures

create the instance of the unit under test (UUT)
produce input signals for the UUT
check the outputs of the UUT for correctness

Testbench entities
have no ports
may have generics

Unit test for a hardware module

Simulation and Testbenches
Introduction

Introduction (cont’d)

One specialty of testbench entities is that they don’t have any port signals. This is not something the language itself forbids, it
is rather a consequence of the role testbenches play in simulation. A testbench is the top-level module in the simulator and is
responsible for generating stimulus and checking responses. It mimics a self-contained real-world environment for the circuit
and, hence, can not depend on external communication through ports. However, there is nothing wrong with generics on a
testbench entity. Those can, for example, be used to parametrize the simulation and select between different scenarios or
environmental conditions. They are also utilized heavily in some more advanced VHDL testing frameworks.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Introduction (cont’d)

Testbenches are regular entities/architectures
Testbench architectures

create the instance of the unit under test (UUT)
produce input signals for the UUT
check the outputs of the UUT for correctness

Testbench entities
have no ports
may have generics

Unit test for a hardware module

2

Introduction (cont’d)

Testbenches are regular entities/architectures
Testbench architectures

create the instance of the unit under test (UUT)
produce input signals for the UUT
check the outputs of the UUT for correctness

Testbench entities
have no ports
may have generics

Unit test for a hardware module

Simulation and Testbenches
Introduction

Introduction (cont’d)

Finally, to again draw a comparison to the software world: You can think of a testbench as a unit test for a hardware module.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Wait Statements

Wait statements used so far
Unconditional “wait;” (at the end of a process)
Sensitivity lists (equivalent to a “wait on [...];” at the end of a process)

Wait until a condition becomes true:
wait until condition;

Wait for a specific amount of time:
wait for expression;

Control the flow of time in the simulator

3

Wait Statements

Wait statements used so far
Unconditional “wait;” (at the end of a process)
Sensitivity lists (equivalent to a “wait on [...];” at the end of a process)

Wait until a condition becomes true:
wait until condition;

Wait for a specific amount of time:
wait for expression;

Control the flow of time in the simulator

Simulation and Testbenches
Wait Statements

Wait Statements

Before we look at some example testbenches, let us first discuss the non-synthesizable features of VHDL that are vital for
testbenches and simulation. The most important non-synthesizeable VHDL constructs for testbenches are arguably the dif-
ferent flavors of wait statements and they way how they can be used. We have already seen a few wait statements in
previous lectures and discussed their semantics. So far all processes containing non-synthesizable code ended in an un-
conditional wait statement, which basically stops the process. In the previous lecture, we have also learned about Sensitivity
lists and the equivalent wait-on statements at the end of a synthesizable process.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Wait Statements

Wait statements used so far
Unconditional “wait;” (at the end of a process)
Sensitivity lists (equivalent to a “wait on [...];” at the end of a process)

Wait until a condition becomes true:
wait until condition;

Wait for a specific amount of time:
wait for expression;

Control the flow of time in the simulator

3

Wait Statements

Wait statements used so far
Unconditional “wait;” (at the end of a process)
Sensitivity lists (equivalent to a “wait on [...];” at the end of a process)

Wait until a condition becomes true:
wait until condition;

Wait for a specific amount of time:
wait for expression;

Control the flow of time in the simulator

Simulation and Testbenches
Wait Statements

Wait Statements

Besides those variants there also exist the ”wait-until” and ”wait-for” statements. Wait-until statements waits until the
specified condition becomes true. The reason why we emphasize the word ”becomes” is that, if the condition is already true
when the simulator comes to this statement, it will not simply go past it and continue. It will first wait until the condition is false
and then wait until it becomes true. This is a common pitfall for beginners in VHDL. Wait-for statements are a little bit easier
to understand. They simply wait for the delay period specified by the expression after the ”for” keyword.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Wait Statements

Wait statements used so far
Unconditional “wait;” (at the end of a process)
Sensitivity lists (equivalent to a “wait on [...];” at the end of a process)

Wait until a condition becomes true:
wait until condition;

Wait for a specific amount of time:
wait for expression;

Control the flow of time in the simulator

3

Wait Statements

Wait statements used so far
Unconditional “wait;” (at the end of a process)
Sensitivity lists (equivalent to a “wait on [...];” at the end of a process)

Wait until a condition becomes true:
wait until condition;

Wait for a specific amount of time:
wait for expression;

Control the flow of time in the simulator

Simulation and Testbenches
Wait Statements

Wait Statements

Generally, ”wait-until” statements can only be synthesized in very special cases, which we won’t discuss any further in this
lecture. Wait-for statements can not be synthesized but allow us to control the flow of time within simulations.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Wait Statements - Example

1 entity wait_example is
2 end entity;
3

4 architecture arch of wait_example is
5 signal x : std_ulogic;
6 begin
7 proc_a : process
8 begin
9 x <= ’0’;

10 wait for 2.5 ns;
11 x <= ’1’;
12 wait;
13 end process;
14

15 proc_b : process
16 begin
17 wait until x = ’1’;
18 report "now=" & to_string(now);
19 wait;
20 end process;
21 end architecture;

Simulation output

Note: now=2500 ps

4

Wait Statements - Example

1 entity wait_example is
2 end entity;
3

4 architecture arch of wait_example is
5 signal x : std_ulogic;
6 begin
7 proc_a : process
8 begin
9 x <= ’0’;

10 wait for 2.5 ns;
11 x <= ’1’;
12 wait;
13 end process;
14

15 proc_b : process
16 begin
17 wait until x = ’1’;
18 report "now=" & to_string(now);
19 wait;
20 end process;
21 end architecture;

Simulation output

Note: now=2500 ps

Simulation and Testbenches
Wait Statements

Wait Statements - Example

This slide shows a simple example that demonstrates how the ”wait-for” and ”wait-until” statements work.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Wait Statements - Example

1 entity wait_example is
2 end entity;
3

4 architecture arch of wait_example is
5 signal x : std_ulogic;
6 begin

7 proc_a : process
8 begin
9 x <= ’0’;

10 wait for 2.5 ns;
11 x <= ’1’;
12 wait;
13 end process;
14

15 proc_b : process
16 begin
17 wait until x = ’1’;
18 report "now=" & to_string(now);
19 wait;
20 end process;
21 end architecture;

Simulation output

Note: now=2500 ps

4

Wait Statements - Example

1 entity wait_example is
2 end entity;
3

4 architecture arch of wait_example is
5 signal x : std_ulogic;
6 begin

7 proc_a : process
8 begin
9 x <= ’0’;

10 wait for 2.5 ns;
11 x <= ’1’;
12 wait;
13 end process;
14

15 proc_b : process
16 begin
17 wait until x = ’1’;
18 report "now=" & to_string(now);
19 wait;
20 end process;
21 end architecture;

Simulation output

Note: now=2500 ps

Simulation and Testbenches
Wait Statements

Wait Statements - Example

The architecture to the ”wait-example” entity only contains a single signal ”X”.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Wait Statements - Example

1 entity wait_example is
2 end entity;
3

4 architecture arch of wait_example is
5 signal x : std_ulogic;
6 begin
7 proc_a : process
8 begin
9 x <= ’0’;

10 wait for 2.5 ns;
11 x <= ’1’;
12 wait;
13 end process;

14

15 proc_b : process
16 begin
17 wait until x = ’1’;
18 report "now=" & to_string(now);
19 wait;
20 end process;
21 end architecture;

Simulation output

Note: now=2500 ps

4

Wait Statements - Example

1 entity wait_example is
2 end entity;
3

4 architecture arch of wait_example is
5 signal x : std_ulogic;
6 begin
7 proc_a : process
8 begin
9 x <= ’0’;

10 wait for 2.5 ns;
11 x <= ’1’;
12 wait;
13 end process;

14

15 proc_b : process
16 begin
17 wait until x = ’1’;
18 report "now=" & to_string(now);
19 wait;
20 end process;
21 end architecture;

Simulation output

Note: now=2500 ps

Simulation and Testbenches
Wait Statements

Wait Statements - Example

In the statement part we define the process ”proc-A”, which initially sets ”X” to zero, then waits for 2.5 nanoseconds before
setting it to one. Finally, an unconditional wait statement is used to stop the process.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Wait Statements - Example

1 entity wait_example is
2 end entity;
3

4 architecture arch of wait_example is
5 signal x : std_ulogic;
6 begin
7 proc_a : process
8 begin
9 x <= ’0’;

10 wait for 2.5 ns;
11 x <= ’1’;
12 wait;
13 end process;
14

15 proc_b : process
16 begin
17 wait until x = ’1’;
18 report "now=" & to_string(now);
19 wait;
20 end process;
21 end architecture;

Simulation output

Note: now=2500 ps

4

Wait Statements - Example

1 entity wait_example is
2 end entity;
3

4 architecture arch of wait_example is
5 signal x : std_ulogic;
6 begin
7 proc_a : process
8 begin
9 x <= ’0’;

10 wait for 2.5 ns;
11 x <= ’1’;
12 wait;
13 end process;
14

15 proc_b : process
16 begin
17 wait until x = ’1’;
18 report "now=" & to_string(now);
19 wait;
20 end process;
21 end architecture;

Simulation output

Note: now=2500 ps

Simulation and Testbenches
Wait Statements

Wait Statements - Example

The process ”proc-B” uses a wait-until statement to wait until ”X” is set to one and then reports the current simulation time,
which can conveniently be accessed by the global ”now”.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Wait Statements - Example

1 entity wait_example is
2 end entity;
3

4 architecture arch of wait_example is
5 signal x : std_ulogic;
6 begin
7 proc_a : process
8 begin
9 x <= ’0’;

10 wait for 2.5 ns;
11 x <= ’1’;
12 wait;
13 end process;
14

15 proc_b : process
16 begin
17 wait until x = ’1’;
18 report "now=" & to_string(now);
19 wait;
20 end process;
21 end architecture;

Simulation output

Note: now=2500 ps

4

Wait Statements - Example

1 entity wait_example is
2 end entity;
3

4 architecture arch of wait_example is
5 signal x : std_ulogic;
6 begin
7 proc_a : process
8 begin
9 x <= ’0’;

10 wait for 2.5 ns;
11 x <= ’1’;
12 wait;
13 end process;
14

15 proc_b : process
16 begin
17 wait until x = ’1’;
18 report "now=" & to_string(now);
19 wait;
20 end process;
21 end architecture;

Simulation output

Note: now=2500 ps

Simulation and Testbenches
Wait Statements

Wait Statements - Example

Hence, the output of this example code is 2500 picoseconds. Finally, the simulation ends, since all processes stopped
because of the unconditional wait statements.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench

Entity
1 entity fa is
2 port (
3 a : in std_ulogic;
4 b : in std_ulogic;
5 cin : in std_ulogic;
6 sum : out std_ulogic;
7 cout : out std_ulogic
8);
9 end entity;

Testbench

1 entity fa_tb is
2 end entity;
3

4 architecture tb of fa_tb is
5 signal a, b, cin, sum, cout : std_ulogic;
6 begin
7 uut : entity work.fa
8 port map (
9 a => a,

10 b => b,
11 cin => cin,
12 sum => sum,
13 cout => cout
14);
15

16 stimulus : process [...]
17

18 end architecture;

5

Example: Full Adder Testbench

Entity
1 entity fa is
2 port (
3 a : in std_ulogic;
4 b : in std_ulogic;
5 cin : in std_ulogic;
6 sum : out std_ulogic;
7 cout : out std_ulogic
8);
9 end entity;

Testbench

1 entity fa_tb is
2 end entity;
3

4 architecture tb of fa_tb is
5 signal a, b, cin, sum, cout : std_ulogic;
6 begin
7 uut : entity work.fa
8 port map (
9 a => a,

10 b => b,
11 cin => cin,
12 sum => sum,
13 cout => cout
14);
15

16 stimulus : process [...]
17

18 end architecture;

Simulation and Testbenches
Full Adder Testbench

Example: Full Adder Testbench

Let’s now look at our first testbench. We start with a simple testbench for the full adder circuit that we have already en-
countered in previous lectures. During the course of this lecture we will then further refine this testbench. To refresh your
memory, here is the entity declaration of the full adder. Recall that it has three single-bit inputs, for which it calculates the
sum and carry.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench

Entity
1 entity fa is
2 port (
3 a : in std_ulogic;
4 b : in std_ulogic;
5 cin : in std_ulogic;
6 sum : out std_ulogic;
7 cout : out std_ulogic
8);
9 end entity;

Testbench
1 entity fa_tb is
2 end entity;

3

4 architecture tb of fa_tb is
5 signal a, b, cin, sum, cout : std_ulogic;
6 begin
7 uut : entity work.fa
8 port map (
9 a => a,

10 b => b,
11 cin => cin,
12 sum => sum,
13 cout => cout
14);
15

16 stimulus : process [...]
17

18 end architecture;

5

Example: Full Adder Testbench

Entity
1 entity fa is
2 port (
3 a : in std_ulogic;
4 b : in std_ulogic;
5 cin : in std_ulogic;
6 sum : out std_ulogic;
7 cout : out std_ulogic
8);
9 end entity;

Testbench
1 entity fa_tb is
2 end entity;

3

4 architecture tb of fa_tb is
5 signal a, b, cin, sum, cout : std_ulogic;
6 begin
7 uut : entity work.fa
8 port map (
9 a => a,

10 b => b,
11 cin => cin,
12 sum => sum,
13 cout => cout
14);
15

16 stimulus : process [...]
17

18 end architecture;

Simulation and Testbenches
Full Adder Testbench

Example: Full Adder Testbench

To implement the testbench, we begin with its entity declaration. As previously mentioned, testbench entities do not include
any port signals. Additionally, since we are working with a very basic example, no generic parameters are needed. As a
result, the entity we use here is entirely empty. Notice that the name of the testbench ends with the suffix ”underscore-t-b”.
We will use this naming convention throughout this course. A testbench is always named after the module it tests and ends
in underscore-t-b.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench

Entity
1 entity fa is
2 port (
3 a : in std_ulogic;
4 b : in std_ulogic;
5 cin : in std_ulogic;
6 sum : out std_ulogic;
7 cout : out std_ulogic
8);
9 end entity;

Testbench
1 entity fa_tb is
2 end entity;
3

4 architecture tb of fa_tb is
5 signal a, b, cin, sum, cout : std_ulogic;
6 begin

7 uut : entity work.fa
8 port map (
9 a => a,

10 b => b,
11 cin => cin,
12 sum => sum,
13 cout => cout
14);
15

16 stimulus : process [...]
17

18 end architecture;

5

Example: Full Adder Testbench

Entity
1 entity fa is
2 port (
3 a : in std_ulogic;
4 b : in std_ulogic;
5 cin : in std_ulogic;
6 sum : out std_ulogic;
7 cout : out std_ulogic
8);
9 end entity;

Testbench
1 entity fa_tb is
2 end entity;
3

4 architecture tb of fa_tb is
5 signal a, b, cin, sum, cout : std_ulogic;
6 begin

7 uut : entity work.fa
8 port map (
9 a => a,

10 b => b,
11 cin => cin,
12 sum => sum,
13 cout => cout
14);
15

16 stimulus : process [...]
17

18 end architecture;

Simulation and Testbenches
Full Adder Testbench

Example: Full Adder Testbench

After the entity declaration follows the declaration of the accompanying architecture. Its declarative part contains at least
the declarations for the signals that are then connected to the port signals of the unit under test. The names of these local
signals usually exactly match the names of the port signals of the UUT.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench

Entity
1 entity fa is
2 port (
3 a : in std_ulogic;
4 b : in std_ulogic;
5 cin : in std_ulogic;
6 sum : out std_ulogic;
7 cout : out std_ulogic
8);
9 end entity;

Testbench
1 entity fa_tb is
2 end entity;
3

4 architecture tb of fa_tb is
5 signal a, b, cin, sum, cout : std_ulogic;
6 begin
7 uut : entity work.fa
8 port map (
9 a => a,

10 b => b,
11 cin => cin,
12 sum => sum,
13 cout => cout
14);
15

16 stimulus : process [...]
17

18 end architecture;

5

Example: Full Adder Testbench

Entity
1 entity fa is
2 port (
3 a : in std_ulogic;
4 b : in std_ulogic;
5 cin : in std_ulogic;
6 sum : out std_ulogic;
7 cout : out std_ulogic
8);
9 end entity;

Testbench
1 entity fa_tb is
2 end entity;
3

4 architecture tb of fa_tb is
5 signal a, b, cin, sum, cout : std_ulogic;
6 begin
7 uut : entity work.fa
8 port map (
9 a => a,

10 b => b,
11 cin => cin,
12 sum => sum,
13 cout => cout
14);
15

16 stimulus : process [...]
17

18 end architecture;

Simulation and Testbenches
Full Adder Testbench

Example: Full Adder Testbench

In the statement part the actual instance of the UUT is created. The port map clause connects its port signals to the local
signals declared above.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench

Entity
1 entity fa is
2 port (
3 a : in std_ulogic;
4 b : in std_ulogic;
5 cin : in std_ulogic;
6 sum : out std_ulogic;
7 cout : out std_ulogic
8);
9 end entity;

Testbench
1 entity fa_tb is
2 end entity;
3

4 architecture tb of fa_tb is
5 signal a, b, cin, sum, cout : std_ulogic;
6 begin
7 uut : entity work.fa
8 port map (
9 a => a,

10 b => b,
11 cin => cin,
12 sum => sum,
13 cout => cout
14);
15

16 stimulus : process [...]
17

18 end architecture;

5

Example: Full Adder Testbench

Entity
1 entity fa is
2 port (
3 a : in std_ulogic;
4 b : in std_ulogic;
5 cin : in std_ulogic;
6 sum : out std_ulogic;
7 cout : out std_ulogic
8);
9 end entity;

Testbench
1 entity fa_tb is
2 end entity;
3

4 architecture tb of fa_tb is
5 signal a, b, cin, sum, cout : std_ulogic;
6 begin
7 uut : entity work.fa
8 port map (
9 a => a,

10 b => b,
11 cin => cin,
12 sum => sum,
13 cout => cout
14);
15

16 stimulus : process [...]
17

18 end architecture;

Simulation and Testbenches
Full Adder Testbench

Example: Full Adder Testbench

Finally, and most importantly we have to implement the actual test code that interacts with the UUT. For simple testbenches
this can usually be done in a single process – here named stimulus. However, more complex modules might require several
processes that serve different, independent interfaces of the UUT. A simple example – that we will encounter later in this
course – would be a clock generation process for synchronous modules. However, as for now, we are only dealing with
purely combinational modules such as the full-adder, we don’t yet have to worry about that.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;

6 wait for 1 ns;
7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;
14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

6

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;

6 wait for 1 ns;
7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;
14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

Simulation and Testbenches
Full Adder Testbench

Example: Full Adder Testbench (cont’d)

OK, let’s see how such a stimulus process for our full adder circuit can look like. We start with a regular process that initially
sets all the inputs of the UUT to zero.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;
6 wait for 1 ns;

7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;
14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

6

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;
6 wait for 1 ns;

7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;
14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

Simulation and Testbenches
Full Adder Testbench

Example: Full Adder Testbench (cont’d)

Then we use some a ”wait-for” statement to advance the simulation time. Recall from the previous lecture, that according to
the semantics of processes, the signal assignments only take effect when the wait statement is executed. Since the full adder
circuit we are simulating does not contain any timing information the actual amount of time we wait here is unimportant. Every
change at the inputs of the full adder will immediately be reflected by its outputs – ”immediately” meaning that no simulation
time elapses. However, it is still common practice to include some delay in the testbench to allow for better visualization of
the input and output changes during simulation. This makes the waveforms generated by the simulator easier to read and
interpret. This instantaneous behavior is, of course, not very realistic. However, it allows us to verify if the circuit works
on a logical level. In an upcoming lecture, we will learn about different types of simulations and how a more realistic timing
behavior can be incorporated.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;
6 wait for 1 ns;
7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;

14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

6

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;
6 wait for 1 ns;
7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;

14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

Simulation and Testbenches
Full Adder Testbench

Example: Full Adder Testbench (cont’d)

After the first set of input values, we continue with the rest of the 8 possible input combinations, until we finally reach the state
where all inputs are one.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;
6 wait for 1 ns;
7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;
14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

6

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;
6 wait for 1 ns;
7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;
14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

Simulation and Testbenches
Full Adder Testbench

Example: Full Adder Testbench (cont’d)

Finally, we need an unconditional wait statement to stop the process at the end of the simulation. This will signal the simulator
that no more signal changes are possible, and the simulation can be stopped. If this wait statement would be omitted, the
execution of the stimulus process would restart at the beginning.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;
6 wait for 1 ns;
7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;
14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

6

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;
6 wait for 1 ns;
7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;
14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

Simulation and Testbenches
Full Adder Testbench

Example: Full Adder Testbench (cont’d)

The right side of the slide shows the waveform output of the simulation in ”Questa-Sim” – the simulation tool that we will use
in the exercise part of this course.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;
6 wait for 1 ns;
7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;
14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

6

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;
6 wait for 1 ns;
7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;
14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

Simulation and Testbenches
Full Adder Testbench

Example: Full Adder Testbench (cont’d)

If we look at the first nanosecond of execution time, we see that, indeed, the inputs are set to zero and that the outputs c-out
and sum are both zero, as well. We can hence conclude that the circuit works as intended for this set of input values.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;
6 wait for 1 ns;
7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;
14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

6

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;
6 wait for 1 ns;
7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;
14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

Simulation and Testbenches
Full Adder Testbench

Example: Full Adder Testbench (cont’d)

For the next set of input values, just the input A is set to one, which results in the output ”sum” to be set to one.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;
6 wait for 1 ns;
7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;
14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

6

Example: Full Adder Testbench (cont’d)

1 stimulus : process
2 begin
3 a <= ’0’;
4 b <= ’0’;
5 cin <= ’0’;
6 wait for 1 ns;
7

8 [...]
9

10 a <= ’1’;
11 b <= ’1’;
12 cin <= ’1’;
13 wait for 1 ns;
14

15 wait;
16 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

Simulation and Testbenches
Full Adder Testbench

Example: Full Adder Testbench (cont’d)

Finally, we reach the state where all inputs are one. According to the specification of the full adder, we know that in this case
both outputs must also be one – which is clearly the case in the simulation. Notice that this testbench is exhaustive, which
means that it tests every possible input combination. Hence, when checking the waveform we can be absolutely sure that
our full adder works as intended. However, unfortunately in practice such exhaustive tests are generally not possible. The
number of input combinations rises exponentially with the number of inputs. Making matters worse, usually modules also
have internal state that must be taken into account. Thus, when devising testbenches, we have to be careful with the actual
number of tests we can perform such that the simulation is feasible and still provides good test coverage. However, we will
hear more about that in an upcoming lecture.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Assertions

Note

Checking waveforms is hard and time-consuming! It is completely infeasible
to verify large designs this way.

Solution

The testbench validates the outputs programmatically, s.t. we don’t have to
look at the waveforms, using, e.g., assertions.

However, ...

Simulation waveforms are still vitally important during development, especially
when it comes to tracking down bugs.

7

Assertions

Note

Checking waveforms is hard and time-consuming! It is completely infeasible
to verify large designs this way.

Solution

The testbench validates the outputs programmatically, s.t. we don’t have to
look at the waveforms, using, e.g., assertions.

However, ...

Simulation waveforms are still vitally important during development, especially
when it comes to tracking down bugs.

Simulation and Testbenches
Assertions

Assertions

The full adder testbench on the previous slide only applied input stimulus. In order to assess the correctness of the imple-
mentation, we had to check the output waveform of the simulator. Even for this simple example it takes quite some time to
go through all the output values and see if they match the expected values. To make matters worse, if we change something
about the implementation of the full adder we would have to redo all this work. This is a painstaking process, and – as
you might suspect – it does not scale with larger and more complex designs. Hence, we need a better way of verifying the
outputs of the UUT.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Assertions

Note

Checking waveforms is hard and time-consuming! It is completely infeasible
to verify large designs this way.

Solution

The testbench validates the outputs programmatically, s.t. we don’t have to
look at the waveforms, using, e.g., assertions.

However, ...

Simulation waveforms are still vitally important during development, especially
when it comes to tracking down bugs.

7

Assertions

Note

Checking waveforms is hard and time-consuming! It is completely infeasible
to verify large designs this way.

Solution

The testbench validates the outputs programmatically, s.t. we don’t have to
look at the waveforms, using, e.g., assertions.

However, ...

Simulation waveforms are still vitally important during development, especially
when it comes to tracking down bugs.

Simulation and Testbenches
Assertions

Assertions

This is where assertions come into play. You might already be familiar with this concept, as almost all programming languages
come with a comparable feature. Using assertions, the testbench can directly check the signals produced by the UUT against
some specification. A testbench that is constructed in this way, can easily be run whenever something is changed in a design
without the need to look at any waveforms.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Assertions

Note

Checking waveforms is hard and time-consuming! It is completely infeasible
to verify large designs this way.

Solution

The testbench validates the outputs programmatically, s.t. we don’t have to
look at the waveforms, using, e.g., assertions.

However, ...

Simulation waveforms are still vitally important during development, especially
when it comes to tracking down bugs.

7

Assertions

Note

Checking waveforms is hard and time-consuming! It is completely infeasible
to verify large designs this way.

Solution

The testbench validates the outputs programmatically, s.t. we don’t have to
look at the waveforms, using, e.g., assertions.

However, ...

Simulation waveforms are still vitally important during development, especially
when it comes to tracking down bugs.

Simulation and Testbenches
Assertions

Assertions

Nevertheless, the graphical output of the simulation is still vitally important during the hardware development process. Espe-
cially when you have to dig down into the inner workings of a module when you are looking for bugs.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Assertions (cont’d) 179

Can be viewed as “conditional report” statements
Assertion syntax
assert condition
[report expression] [severity expression];

Severity level
Predefined enum type (standard package)
type severity_level is
(note, warning, error, failure);

Effect depends on the actual simulator and its configuration

Can be used in statement parts of entities, architectures, processes,
subprograms, etc.

8

Assertions (cont’d) 179

Can be viewed as “conditional report” statements
Assertion syntax
assert condition
[report expression] [severity expression];

Severity level
Predefined enum type (standard package)
type severity_level is
(note, warning, error, failure);

Effect depends on the actual simulator and its configuration

Can be used in statement parts of entities, architectures, processes,
subprograms, etc.

Simulation and Testbenches
Assertions

Assertions (cont’d)

Assertion statements in VHDL can be viewed as conditional report statements. They use the ”assert” keyword, followed by
an expression that must evaluate to a value of the built-in type boolean. If this value is false, the assertion is violated and the
simulator executes the optional report statement. As with regular report statements the expression after the report keyword
must evaluate to a string. Finally, the severity level of the assertion is selected by the last expression.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L170
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L170

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Assertions (cont’d) 179

Can be viewed as “conditional report” statements
Assertion syntax
assert condition
[report expression] [severity expression];

Severity level
Predefined enum type (standard package)
type severity_level is
(note, warning, error, failure);

Effect depends on the actual simulator and its configuration

Can be used in statement parts of entities, architectures, processes,
subprograms, etc.

8

Assertions (cont’d) 179

Can be viewed as “conditional report” statements
Assertion syntax
assert condition
[report expression] [severity expression];

Severity level
Predefined enum type (standard package)
type severity_level is
(note, warning, error, failure);

Effect depends on the actual simulator and its configuration

Can be used in statement parts of entities, architectures, processes,
subprograms, etc.

Simulation and Testbenches
Assertions

Assertions (cont’d)

This expression must evaluate to a value of the built-in enum type ”severity-level”, defined in the standard package. The
severity level defines how the simulator reacts to assertion violations. However, the actual effect of the severity level on
the simulation is dependent on the simulator and how it is configured. We will now briefly discuss how they are handled by
”Questa-Sim”. The default level is ”error” in which case an error message is printed, but the simulation is continued. If you
want a behavior similar to a conditional report statements, you use the severity level ”note”. In fact, report statements can
also be optionally equipped with a severity level. The levels ”warning” and ”error” increase the warning and error counter in
the simulator. You can use these levels for minor and major issues detected during simulation. The failure level immediately
leads to the termination of the simulation. It should be used when an error encountered that is so severe that continuing the
simulation is futile – for example when the internal state of some module is corrupted.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L170
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L170

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Assertions (cont’d) 179

Can be viewed as “conditional report” statements
Assertion syntax
assert condition
[report expression] [severity expression];

Severity level
Predefined enum type (standard package)
type severity_level is
(note, warning, error, failure);

Effect depends on the actual simulator and its configuration

Can be used in statement parts of entities, architectures, processes,
subprograms, etc.

8

Assertions (cont’d) 179

Can be viewed as “conditional report” statements
Assertion syntax
assert condition
[report expression] [severity expression];

Severity level
Predefined enum type (standard package)
type severity_level is
(note, warning, error, failure);

Effect depends on the actual simulator and its configuration

Can be used in statement parts of entities, architectures, processes,
subprograms, etc.

Simulation and Testbenches
Assertions

Assertions (cont’d)

Assertions can be used in the statement parts of various VHDL constructs, such as entities, architectures, processes and
subprograms. An assertion in an entity declaration can, for example, be used to perform a sanity check on generic values.
Such an assertion can also make sense in synthesizable code, as it can be used to raise an error during synthesis for illegal
configuration parameters.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L170
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L170

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Assertions - Example

Stimulus process with assertions
1 stimulus : process
2 begin
3 report "testing input 000";
4 a <= ’0’;
5 b <= ’0’;
6 cin <= ’0’;
7 wait for 1 ns;
8 assert cout = ’0’
9 report "wrong carry" severity error;

10 assert sum = ’0’
11 report "wrong sum" severity error;
12

13 [...]
14

15 wait;
16 end process;

Simulator Output (QuestaSim)
** Note: testing input 000
Time: 0 ps Iteration: 0 Instance: /fa_tb
** Note: testing input 001
Time: 1 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 010
Time: 2 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 011
Time: 3 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 4 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 100
Time: 4 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 101
Time: 5 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 6 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 110
Time: 6 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 7 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 111
Time: 7 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 8 ns Iteration: 0 Instance: /fa_tb
quit
End time: xx:xx:xx on xx xx,xx, Elapsed time: xx
Errors: 4, Warnings: 0

9

Assertions - Example

Stimulus process with assertions
1 stimulus : process
2 begin
3 report "testing input 000";
4 a <= ’0’;
5 b <= ’0’;
6 cin <= ’0’;
7 wait for 1 ns;
8 assert cout = ’0’
9 report "wrong carry" severity error;

10 assert sum = ’0’
11 report "wrong sum" severity error;
12

13 [...]
14

15 wait;
16 end process;

Simulator Output (QuestaSim)
** Note: testing input 000
Time: 0 ps Iteration: 0 Instance: /fa_tb
** Note: testing input 001
Time: 1 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 010
Time: 2 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 011
Time: 3 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 4 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 100
Time: 4 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 101
Time: 5 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 6 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 110
Time: 6 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 7 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 111
Time: 7 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 8 ns Iteration: 0 Instance: /fa_tb
quit
End time: xx:xx:xx on xx xx,xx, Elapsed time: xx
Errors: 4, Warnings: 0

Simulation and Testbenches
Assertions

Assertions - Example

Ok, let us now apply this knowledge to the full adder testbench example. Here, we see a modified version of the stimulus
process. First we print a message that indicates which input combination is currently being tested. Next, we apply the input
signals and wait for some time, exactly as in the previous version. After the wait statement, we have added two assertions
that check the sum and carry-out signals. This sequence of operations is then repeated for all remaining input combinations.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Assertions - Example

Stimulus process with assertions
1 stimulus : process
2 begin
3 report "testing input 000";
4 a <= ’0’;
5 b <= ’0’;
6 cin <= ’0’;
7 wait for 1 ns;
8 assert cout = ’0’
9 report "wrong carry" severity error;

10 assert sum = ’0’
11 report "wrong sum" severity error;
12

13 [...]
14

15 wait;
16 end process;

Simulator Output (QuestaSim)
** Note: testing input 000
Time: 0 ps Iteration: 0 Instance: /fa_tb
** Note: testing input 001
Time: 1 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 010
Time: 2 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 011
Time: 3 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 4 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 100
Time: 4 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 101
Time: 5 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 6 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 110
Time: 6 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 7 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 111
Time: 7 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 8 ns Iteration: 0 Instance: /fa_tb
quit
End time: xx:xx:xx on xx xx,xx, Elapsed time: xx
Errors: 4, Warnings: 0

9

Assertions - Example

Stimulus process with assertions
1 stimulus : process
2 begin
3 report "testing input 000";
4 a <= ’0’;
5 b <= ’0’;
6 cin <= ’0’;
7 wait for 1 ns;
8 assert cout = ’0’
9 report "wrong carry" severity error;

10 assert sum = ’0’
11 report "wrong sum" severity error;
12

13 [...]
14

15 wait;
16 end process;

Simulator Output (QuestaSim)
** Note: testing input 000
Time: 0 ps Iteration: 0 Instance: /fa_tb
** Note: testing input 001
Time: 1 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 010
Time: 2 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 011
Time: 3 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 4 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 100
Time: 4 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 101
Time: 5 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 6 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 110
Time: 6 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 7 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 111
Time: 7 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 8 ns Iteration: 0 Instance: /fa_tb
quit
End time: xx:xx:xx on xx xx,xx, Elapsed time: xx
Errors: 4, Warnings: 0

Simulation and Testbenches
Assertions

Assertions - Example

On the right side of the slide, we now see the output when this testbench is run in Questa-Sim To make things a little bit more
interesting we introduced a bug in the full adder implementation. As you can see, this modification leads to four assertion
violations for the carry signal. Also notice that, for each executed report statement the simulation also outputs the current
simulation time. At the end of the simulation, the total number of errors and warnings is reported. You might want to pause
the video at this point to really study the simulation output. As a little exercise you can also try to figure out what we changed
in the full adder circuit to produce the shown results.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Further Automation

1 stimulus : process

2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin
5 for i in 0 to 7 loop
6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);
8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;
17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;
20 wait;
21 end process;

10

Further Automation

1 stimulus : process

2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin
5 for i in 0 to 7 loop
6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);
8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;
17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;
20 wait;
21 end process;

Simulation and Testbenches
Further Automation

Further Automation

You have probably noticed that the stimulus process of the testbenches shown so far are quite long and contain a lot of
repetitive code. This makes them hard to maintain and error-prone during development. Hence, the question arises: Can we
do better by applying some of the language constructs we have already learned? This is what we are going to do on this
slide, by implementing an improved stimulus process.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Further Automation

1 stimulus : process
2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin

5 for i in 0 to 7 loop
6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);
8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;
17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;
20 wait;
21 end process;

10

Further Automation

1 stimulus : process
2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin

5 for i in 0 to 7 loop
6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);
8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;
17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;
20 wait;
21 end process;

Simulation and Testbenches
Further Automation

Further Automation

We first declare two variables that we are going to use for temporary values in the process.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Further Automation

1 stimulus : process
2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin
5 for i in 0 to 7 loop

6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);
8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;
17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;
20 wait;
21 end process;

10

Further Automation

1 stimulus : process
2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin
5 for i in 0 to 7 loop

6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);
8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;
17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;
20 wait;
21 end process;

Simulation and Testbenches
Further Automation

Further Automation

Then, instead of going through all input combination manually, we use a for-loop that goes through the values 0 to 7.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Further Automation

1 stimulus : process
2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin
5 for i in 0 to 7 loop
6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);

8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;
17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;
20 wait;
21 end process;

10

Further Automation

1 stimulus : process
2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin
5 for i in 0 to 7 loop
6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);

8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;
17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;
20 wait;
21 end process;

Simulation and Testbenches
Further Automation

Further Automation

In this for-loop, we first perform a type conversion to convert the loop counter integer variable ”i” to a three-bit
std_ulogic_vector and assign it to the variable ”v”. The individual elements of this vector are then assigned to the
input signals ”A”, ”B” and ”c-in” of the UUT.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Further Automation

1 stimulus : process
2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin
5 for i in 0 to 7 loop
6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);
8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;
17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;
20 wait;
21 end process;

10

Further Automation

1 stimulus : process
2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin
5 for i in 0 to 7 loop
6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);
8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;
17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;
20 wait;
21 end process;

Simulation and Testbenches
Further Automation

Further Automation

The report statement prints the current input combination in the same way the previous version of the stimulus process did.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Further Automation

1 stimulus : process
2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin
5 for i in 0 to 7 loop
6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);
8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;

17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;
20 wait;
21 end process;

10

Further Automation

1 stimulus : process
2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin
5 for i in 0 to 7 loop
6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);
8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;

17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;
20 wait;
21 end process;

Simulation and Testbenches
Further Automation

Further Automation

The part after the wait statement is a little tricky. Here, we use another for-loop to determine the number of bits in the variable
”V” that are set to one. Since we are actually calculating the Hamming weight of ”V” we named the variable ”H”. Because we
have three inputs this number must be within the range 0 to 3.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Further Automation

1 stimulus : process
2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin
5 for i in 0 to 7 loop
6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);
8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;
17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;

20 wait;
21 end process;

10

Further Automation

1 stimulus : process
2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin
5 for i in 0 to 7 loop
6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);
8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;
17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;

20 wait;
21 end process;

Simulation and Testbenches
Further Automation

Further Automation

After the for-loop we finally come to the assertion. The assertion converts the variable ”H” into a std_ulogic_vector and
compares it to the vector formed by the concatenation of sum and c-out. You can pause to video to really understand why
this assertion works.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Further Automation

1 stimulus : process
2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin
5 for i in 0 to 7 loop
6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);
8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;
17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;
20 wait;
21 end process;

10

Further Automation

1 stimulus : process
2 variable v : std_ulogic_vector(2 downto 0);
3 variable h : natural;
4 begin
5 for i in 0 to 7 loop
6 v := std_ulogic_vector(to_unsigned(i, v’length));
7 a <= v(0); b <= v(1); cin <= v(2);
8 report "testing input " & to_string(v);
9 wait for 1 ns;

10

11 h := 0;
12 for j in v’range loop
13 if v(j) = ’1’ then
14 h := h + 1;
15 end if;
16 end loop;
17 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
18 report "wrong output!" severity error;
19 end loop;
20 wait;
21 end process;

Simulation and Testbenches
Further Automation

Further Automation

Finally, we need the unconditional wait to terminate the simulation.

HWMod
WS24

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Lecture Complete!

Modified: 2025-03-12, 16:24 (b25118c)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

	Simulation and Testbenches
	Introduction
	Wait Statements
	Full Adder Testbench
	Assertions
	Further Automation

