
HWMod
WS25

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Hardware Modeling [VU] (191.011)
– WS25 –

Simulation and Testbenches

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:07 (f8a58e9)

HWMod
WS25

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Introduction

Synthesizeable
VHDL

Hardware Design

Testbench

Unit under Test (UUT)

VHDL

1

HWMod
WS25

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Introduction (cont’d)

Testbenches are regular entities/architectures
Testbench architectures

create the instance of the unit under test (UUT)
produce input signals for the UUT
check the outputs of the UUT for correctness

Testbench entities
have no ports
may have generics

Unit test for a hardware module

2

HWMod
WS25

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Wait Statements

Wait statements used so far
Unconditional “wait;” (at the end of a process)
Sensitivity lists (equivalent to a “wait on [...];” at the end of a process)

Wait until a condition becomes true:
wait until condition;

Wait for a specific amount of time:
wait for expression;

Control the flow of time in the simulator

3

HWMod
WS25

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Wait Statements - Example

 entity wait_example is
 end entity;

 architecture arch of wait_example is
 signal x : std_ulogic;
 begin
 proc_a : process
 begin
 x <= ’0’;

 wait for 2.5 ns;
 x <= ’1’;
 wait;
 end process;

 proc_b : process
 begin
 wait until x = ’1’;
 report "now=" & to_string(now);
 wait;
 end process;
 end architecture;

Simulation output

Note: now=2500 ps

4

HWMod
WS25

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench

Entity
 entity fa is
 port (
 a : in std_ulogic;
 b : in std_ulogic;
 cin : in std_ulogic;
 sum : out std_ulogic;
 cout : out std_ulogic
);
 end entity;

Testbench
 entity fa_tb is
 end entity;

 architecture tb of fa_tb is
 signal a, b, cin, sum, cout : std_ulogic;
 begin
 uut : entity work.fa
 port map (
 a => a,

 b => b,
 cin => cin,
 sum => sum,
 cout => cout
);

 stimulus : process [...]

 end architecture;

5

HWMod
WS25

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Example: Full Adder Testbench (cont’d)

 stimulus : process
 begin
 a <= ’0’;
 b <= ’0’;
 cin <= ’0’;
 wait for 1 ns;

 [...]

 a <= ’1’;
 b <= ’1’;
 cin <= ’1’;
 wait for 1 ns;

 wait;
 end process;

0
0
0
0
0

1
0
0
1
0

1
1
1
1
1

6

HWMod
WS25

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Assertions

Note

Checking waveforms is hard and time-consuming! It is completely infeasible
to verify large designs this way.

Solution

The testbench validates the outputs programmatically, s.t. we don’t have to
look at the waveforms, using, e.g., assertions.

However, ...

Simulation waveforms are still vitally important during development, especially
when it comes to tracking down bugs.

7

HWMod
WS25

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Assertions (cont’d) 179

Can be viewed as “conditional report” statements
Assertion syntax
assert condition
[report expression] [severity expression];

Severity level
Predefined enum type (standard package)
type severity_level is
(note, warning, error, failure);

Effect depends on the actual simulator and its configuration

Can be used in statement parts of entities, architectures, processes,
subprograms, etc.

8

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L170

HWMod
WS25

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Assertions - Example

Stimulus process with assertions
 stimulus : process
 begin
 report "testing input 000";
 a <= ’0’;
 b <= ’0’;
 cin <= ’0’;
 wait for 1 ns;
 assert cout = ’0’
 report "wrong carry" severity error;

 assert sum = ’0’
 report "wrong sum" severity error;

 [...]

 wait;
 end process;

Simulator Output (QuestaSim)
** Note: testing input 000
Time: 0 ps Iteration: 0 Instance: /fa_tb
** Note: testing input 001
Time: 1 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 010
Time: 2 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 011
Time: 3 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 4 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 100
Time: 4 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 101
Time: 5 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 6 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 110
Time: 6 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 7 ns Iteration: 0 Instance: /fa_tb
** Note: testing input 111
Time: 7 ns Iteration: 0 Instance: /fa_tb
** Error: wrong carry
Time: 8 ns Iteration: 0 Instance: /fa_tb
quit
End time: xx:xx:xx on xx xx,xx, Elapsed time: xx
Errors: 4, Warnings: 0

9

HWMod
WS25

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Further Automation

 stimulus : process
 variable v : std_ulogic_vector(2 downto 0);
 variable h : natural;
 begin
 for i in 0 to 7 loop
 v := std_ulogic_vector(to_unsigned(i, v’length));
 a <= v(0); b <= v(1); cin <= v(2);
 report "testing input " & to_string(v);
 wait for 1 ns;

 h := 0;
 for j in v’range loop
 if v(j) = ’1’ then
 h := h + 1;
 end if;
 end loop;
 assert std_ulogic_vector(to_unsigned(h, 2)) = cout & sum
 report "wrong output!" severity error;
 end loop;
 wait;
 end process;

10

HWMod
WS25

Sim. & TBs
Introduction

Wait Statements

Full Adder Testbench

Assertions

Further Automation

Lecture Complete!

Modified: 2025-12-16, 16:07 (f8a58e9)

	Simulation and Testbenches
	Introduction
	Wait Statements
	Full Adder Testbench
	Assertions
	Further Automation

