
HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Hardware Modeling [VU] (191.011)
– WS24 –

Synchronizers and Debouncers

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-12, 16:34 (21636bb)

Hardware Modeling [VU] (191.011)
– WS24 –

Synchronizers and Debouncers

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Synchronizers and Debouncers

In the previous lecture you heard that external inputs can lead to the highly problematic phenomenon of metastability. In
this lecture we will show you how the effects of metastability can be mitigated by using synchronizers. Furthermore, we will
discuss debouncers which can be used to sanitize inputs from bouncing contacts.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Recall: MTBU Estimation

We can get a statistical estimate of the MTBU

MTBU =
1

λin · fclk · TW
· e

tres
τC

Exponential dependence of MTBU on time to resolve tres

Increasing tres is a mechanism to increase the MTBU
However: MTBU can never become infinite!

Harnessed by synchronizers
Trade-off performance for a higher MTBU

1

Recall: MTBU Estimation

We can get a statistical estimate of the MTBU

MTBU =
1

λin · fclk · TW
· e

tres
τC

Exponential dependence of MTBU on time to resolve tres

Increasing tres is a mechanism to increase the MTBU
However: MTBU can never become infinite!

Harnessed by synchronizers
Trade-off performance for a higher MTBU

Synchronizers and Debouncers
Recap

Recall: MTBU Estimation

Before we really dive into this lecture’s topics, let us recall some important things about the guest lecture on metastability.
First, recall that while we cannot avoid metastability or determine when exactly it will occur, we can at least get a statistical
estimate of its effects in form of the meant time between upsets, or MTBUusing the formula shown on the slide.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Recall: MTBU Estimation

We can get a statistical estimate of the MTBU

MTBU =
1

λin · fclk · TW
· e

tres
τC

Exponential dependence of MTBU on time to resolve tres

Increasing tres is a mechanism to increase the MTBU
However: MTBU can never become infinite!

Harnessed by synchronizers
Trade-off performance for a higher MTBU

1

Recall: MTBU Estimation

We can get a statistical estimate of the MTBU

MTBU =
1

λin · fclk · TW
· e

tres
τC

Exponential dependence of MTBU on time to resolve tres

Increasing tres is a mechanism to increase the MTBU
However: MTBU can never become infinite!

Harnessed by synchronizers
Trade-off performance for a higher MTBU

Synchronizers and Debouncers
Recap

Recall: MTBU Estimation

An important observation that we can make is that tres, which is the time a flip-flop has to resolve its metastability, has an
exponential influence on the MTBU.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Recall: MTBU Estimation

We can get a statistical estimate of the MTBU

MTBU =
1

λin · fclk · TW
· e

tres
τC

Exponential dependence of MTBU on time to resolve tres
Increasing tres is a mechanism to increase the MTBU
However: MTBU can never become infinite!

Harnessed by synchronizers
Trade-off performance for a higher MTBU

1

Recall: MTBU Estimation

We can get a statistical estimate of the MTBU

MTBU =
1

λin · fclk · TW
· e

tres
τC

Exponential dependence of MTBU on time to resolve tres
Increasing tres is a mechanism to increase the MTBU
However: MTBU can never become infinite!

Harnessed by synchronizers
Trade-off performance for a higher MTBU

Synchronizers and Debouncers
Recap

Recall: MTBU Estimation

Therefore, increasing this time is an efficient and powerful mechanism to increase the mean time between upsets. However,
while the formula shows us that we can make the MTBUarbitrarily large, it also suggests that it can never become infinite.
This aligns with the fact that metastability can in general not be avoided. We can merely make it improbable to affect us.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Recall: MTBU Estimation

We can get a statistical estimate of the MTBU

MTBU =
1

λin · fclk · TW
· e

tres
τC

Exponential dependence of MTBU on time to resolve tres
Increasing tres is a mechanism to increase the MTBU
However: MTBU can never become infinite!

Harnessed by synchronizers
Trade-off performance for a higher MTBU

1

Recall: MTBU Estimation

We can get a statistical estimate of the MTBU

MTBU =
1

λin · fclk · TW
· e

tres
τC

Exponential dependence of MTBU on time to resolve tres
Increasing tres is a mechanism to increase the MTBU
However: MTBU can never become infinite!

Harnessed by synchronizers
Trade-off performance for a higher MTBU

Synchronizers and Debouncers
Recap

Recall: MTBU Estimation

In synchronous designs this is usually achieved using special circuits called synchronizers. These circuits essentially trade
performance against a higher MTBU.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

Waiting Synchronizers

Chain of flip-flops

Pass metastable output to next flip-flop in chain
No comb. logic between flip-flops ⇒ majority of clock period for resolution
Asynchronous input is “synchronized” to the clock

Overall resolution time is the sum of the individual ones

⇒ Exponential increase in MTBU per flip-flop

In practice often two flip-flops, three to be on the safe side
Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

2

Waiting Synchronizers

Chain of flip-flops

Pass metastable output to next flip-flop in chain
No comb. logic between flip-flops ⇒ majority of clock period for resolution
Asynchronous input is “synchronized” to the clock

Overall resolution time is the sum of the individual ones

⇒ Exponential increase in MTBU per flip-flop

In practice often two flip-flops, three to be on the safe side
Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

Synchronizers and Debouncers
Synchronizers

Waiting Synchronizers

The most popular synchronizer is the one shown in the figure. It is essentially just a chain of flip-flops with no combinational
logic in between the output of one flip-flop and input of the succeeding one. Each flip-flop is merely handing over its state to
the next one in the chain.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

Waiting Synchronizers

Chain of flip-flops
Pass metastable output to next flip-flop in chain

No comb. logic between flip-flops ⇒ majority of clock period for resolution
Asynchronous input is “synchronized” to the clock

Overall resolution time is the sum of the individual ones

⇒ Exponential increase in MTBU per flip-flop

In practice often two flip-flops, three to be on the safe side
Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

2

Waiting Synchronizers

Chain of flip-flops
Pass metastable output to next flip-flop in chain

No comb. logic between flip-flops ⇒ majority of clock period for resolution
Asynchronous input is “synchronized” to the clock

Overall resolution time is the sum of the individual ones

⇒ Exponential increase in MTBU per flip-flop

In practice often two flip-flops, three to be on the safe side
Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

Synchronizers and Debouncers
Synchronizers

Waiting Synchronizers

The basic idea is, that if the first flip-flop becomes metastable due to an asynchronous input transition falling within its
setup-hold window, it forwards its metastable output to the next flip-flop. This handling over decreases the probability of the
metastable output being forwarded for each flip-flop in the chain. But why should this actually work?



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

Waiting Synchronizers

Chain of flip-flops
Pass metastable output to next flip-flop in chain
No comb. logic between flip-flops ⇒ majority of clock period for resolution

Asynchronous input is “synchronized” to the clock
Overall resolution time is the sum of the individual ones

⇒ Exponential increase in MTBU per flip-flop

In practice often two flip-flops, three to be on the safe side
Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

2

Waiting Synchronizers

Chain of flip-flops
Pass metastable output to next flip-flop in chain
No comb. logic between flip-flops ⇒ majority of clock period for resolution

Asynchronous input is “synchronized” to the clock
Overall resolution time is the sum of the individual ones

⇒ Exponential increase in MTBU per flip-flop

In practice often two flip-flops, three to be on the safe side
Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

Synchronizers and Debouncers
Synchronizers

Waiting Synchronizers

Well, if we recall the basic functionality of flip-flops, we can note that handing over a value to a successor only happens once
per clock cycle. And since there is no combinational logic between the flip-flops, almost the whole clock period is available
as time to resolve. Thus, if the first flip-flop in the chain becomes metastable, it already has some time to resolve before
its output is captured by its neighbor. Therefore, this metastable value will at least partly be resolved. In a nutshell, for the
succeeding flip-flop the process of resolving the metastable value will be easier because of the prior work its predecessor
put into this exact task.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

Waiting Synchronizers

Chain of flip-flops
Pass metastable output to next flip-flop in chain
No comb. logic between flip-flops ⇒ majority of clock period for resolution
Asynchronous input is “synchronized” to the clock

Overall resolution time is the sum of the individual ones

⇒ Exponential increase in MTBU per flip-flop

In practice often two flip-flops, three to be on the safe side
Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

2

Waiting Synchronizers

Chain of flip-flops
Pass metastable output to next flip-flop in chain
No comb. logic between flip-flops ⇒ majority of clock period for resolution
Asynchronous input is “synchronized” to the clock

Overall resolution time is the sum of the individual ones

⇒ Exponential increase in MTBU per flip-flop

In practice often two flip-flops, three to be on the safe side
Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

Synchronizers and Debouncers
Synchronizers

Waiting Synchronizers

Finally, if an appropriate synchronizer is used, the input will have been synchronized to the circuit’s clock with an overwhelm-
ingly high probability. But what do we mean by “appropriate”?



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

Waiting Synchronizers

Chain of flip-flops
Pass metastable output to next flip-flop in chain
No comb. logic between flip-flops ⇒ majority of clock period for resolution
Asynchronous input is “synchronized” to the clock

Overall resolution time is the sum of the individual ones

⇒ Exponential increase in MTBU per flip-flop
In practice often two flip-flops, three to be on the safe side

Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

2

Waiting Synchronizers

Chain of flip-flops
Pass metastable output to next flip-flop in chain
No comb. logic between flip-flops ⇒ majority of clock period for resolution
Asynchronous input is “synchronized” to the clock

Overall resolution time is the sum of the individual ones

⇒ Exponential increase in MTBU per flip-flop
In practice often two flip-flops, three to be on the safe side

Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

Synchronizers and Debouncers
Synchronizers

Waiting Synchronizers

Basically, we want the MTBUto become astronomically high such that it is completely improbable that a flip-flop in our actual
circuit is ever upset. Following our previous observations about the MTBU, in order to achieve such high values we need a
long time to resolve. The nice thing about this circuit now is, that it turns out that we can sum up all individual resolution times
for the overall MTBU.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

Waiting Synchronizers

Chain of flip-flops
Pass metastable output to next flip-flop in chain
No comb. logic between flip-flops ⇒ majority of clock period for resolution
Asynchronous input is “synchronized” to the clock

Overall resolution time is the sum of the individual ones
⇒ Exponential increase in MTBU per flip-flop

In practice often two flip-flops, three to be on the safe side
Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

2

Waiting Synchronizers

Chain of flip-flops
Pass metastable output to next flip-flop in chain
No comb. logic between flip-flops ⇒ majority of clock period for resolution
Asynchronous input is “synchronized” to the clock

Overall resolution time is the sum of the individual ones
⇒ Exponential increase in MTBU per flip-flop

In practice often two flip-flops, three to be on the safe side
Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

Synchronizers and Debouncers
Synchronizers

Waiting Synchronizers

This essentially means that we can achieve an exponential increase in the MTBUper flip-flop in the chain.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

Waiting Synchronizers

Chain of flip-flops
Pass metastable output to next flip-flop in chain
No comb. logic between flip-flops ⇒ majority of clock period for resolution
Asynchronous input is “synchronized” to the clock

Overall resolution time is the sum of the individual ones
⇒ Exponential increase in MTBU per flip-flop

In practice often two flip-flops, three to be on the safe side
Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

2

Waiting Synchronizers

Chain of flip-flops
Pass metastable output to next flip-flop in chain
No comb. logic between flip-flops ⇒ majority of clock period for resolution
Asynchronous input is “synchronized” to the clock

Overall resolution time is the sum of the individual ones
⇒ Exponential increase in MTBU per flip-flop

In practice often two flip-flops, three to be on the safe side
Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

Synchronizers and Debouncers
Synchronizers

Waiting Synchronizers

Due to this relation, in practice often two flip-flops are sufficient to obtain MTBUvalues of more than a hundred years,
depending on the application and flip-flop parameters. Synchronizers comprising three flip-flops can be considered to be
very safe in most cases. However, the reason why do not simply always take three or even more flip-flops is that each
element of the chain also means that input values need longer to pass through the synchronizer, thus increasing latency.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

3

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

Synchronizers and Debouncers
Synchronizers

VHDL Implementation

Let us now discuss how we can implement such a synchronizer circuit in VHDL, which at this point of the lecture should be
a fairly trivial task. The slide already shows you a suitable entity declaration.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

3

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

Synchronizers and Debouncers
Synchronizers

VHDL Implementation

The first thing we recognize are two generics. One defines the stages, which is the amount of flip-flops minus 1. The other
one is for defining a reset value of the synchronizer chain’s flip-flops. This is necessary because signals can either be low or
high active.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

3

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

Synchronizers and Debouncers
Synchronizers

VHDL Implementation

Next, we of course have the required ports. For a chain of flip-flops this naturally includes a clock and a reset signal.
Furthermore, we require an input for the asynchronous signal and an output for the synchronized one.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

3

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

Synchronizers and Debouncers
Synchronizers

VHDL Implementation

Let us now get to the architecture.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

3

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

Synchronizers and Debouncers
Synchronizers

VHDL Implementation

We first declare a vector signal for the flip-flops. Each of the vectors elements will correspond to the state and thus output of
one flip-flop.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

3

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

Synchronizers and Debouncers
Synchronizers

VHDL Implementation

Next, inside a typical process for describing flip-flops, we first assign the asynchronous input to the first vector element. This
models the first flip-flop sampling this input at each active clock edge.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

3

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

Synchronizers and Debouncers
Synchronizers

VHDL Implementation

Each of the other flip-flops in the chain will sample the output of its preceding flip-flop, which we model via a loop.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

3

VHDL Implementation

1 library ieee;
2 use ieee.std_logic_1164.all;
3

4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 );
9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 );
15 end entity;

16 architecture arch of synchronizer is
17 signal ffs: std_ulogic_vector(0 to STAGES);
18 begin
19 process (clk, res_n) begin
20 if res_n = ’0’ then
21 ffs <= (others => RES_VAL);
22 elsif rising_edge(clk) then
23 ffs(0) <= async;
24 for i in 1 to STAGES-1 loop
25 ffs(i) <= ffs(i-1);
26 end loop;
27 end if;
28 end process;
29 sync <= ffs(STAGES);
30 end architecture;

Synchronizers and Debouncers
Synchronizers

VHDL Implementation

Finally, the output of the last flip-flop is provided as the output of the overall synchronizer.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

Important Aspects

MTBU can be made arbitrarily large by appropriate synchronizer

A synchronizer does not prevent metastability!

A single flip-flop alone is not a synchronizer
The MTBU is a statistical quantity

No guarantee for upset-freedom at any time

4

Important Aspects

MTBU can be made arbitrarily large by appropriate synchronizer

A synchronizer does not prevent metastability!

A single flip-flop alone is not a synchronizer
The MTBU is a statistical quantity

No guarantee for upset-freedom at any time

Synchronizers and Debouncers
Synchronizers

Important Aspects

Finally, before we continue with the next topic, we want to point out a few important aspects which you should take away from
this lecture. The first one is that the MTBUcan be made arbitrarily large by using an appropriate synchronizer.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

Important Aspects

MTBU can be made arbitrarily large by appropriate synchronizer
A synchronizer does not prevent metastability!

A single flip-flop alone is not a synchronizer
The MTBU is a statistical quantity

No guarantee for upset-freedom at any time

4

Important Aspects

MTBU can be made arbitrarily large by appropriate synchronizer
A synchronizer does not prevent metastability!

A single flip-flop alone is not a synchronizer
The MTBU is a statistical quantity

No guarantee for upset-freedom at any time

Synchronizers and Debouncers
Synchronizers

Important Aspects

However, we need to stress that a synchronizer does not prevent metastability. It merely makes it less probable to affect a
circuit.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

Important Aspects

MTBU can be made arbitrarily large by appropriate synchronizer
A synchronizer does not prevent metastability!

A single flip-flop alone is not a synchronizer

The MTBU is a statistical quantity
No guarantee for upset-freedom at any time

4

Important Aspects

MTBU can be made arbitrarily large by appropriate synchronizer
A synchronizer does not prevent metastability!

A single flip-flop alone is not a synchronizer

The MTBU is a statistical quantity
No guarantee for upset-freedom at any time

Synchronizers and Debouncers
Synchronizers

Important Aspects

Next, we want to point out that a single flip-flop alone is no kind of synchronizer. For synchronization, we really need at least
a second flip-flop as this is creating the additional time to resolve.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

Important Aspects

MTBU can be made arbitrarily large by appropriate synchronizer
A synchronizer does not prevent metastability!

A single flip-flop alone is not a synchronizer
The MTBU is a statistical quantity

No guarantee for upset-freedom at any time

4

Important Aspects

MTBU can be made arbitrarily large by appropriate synchronizer
A synchronizer does not prevent metastability!

A single flip-flop alone is not a synchronizer
The MTBU is a statistical quantity

No guarantee for upset-freedom at any time

Synchronizers and Debouncers
Synchronizers

Important Aspects

And finally, the MTBUis a statistical quantity. Thus, even if you design a synchronizer with an MTBUof more than the age of
the universe, we might experience two subsequent upsets within a second after starting our design. Of course, this becomes
astronomically unlikely, but it still remains possible.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces

Some mechanical contacts may “bounce” due to their construction
For example: Mechanical buttons, switches

Instead of clean transition dampened oscillation
Depending on clock frequency, takes multiple (hundred) clock cycles

May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk

5

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces

Some mechanical contacts may “bounce” due to their construction
For example: Mechanical buttons, switches

Instead of clean transition dampened oscillation
Depending on clock frequency, takes multiple (hundred) clock cycles

May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk

Synchronizers and Debouncers
Debouncing

Bouncing Inputs

As you might already have heard before, being uncorrelated to an internal clock is only an issue external inputs have. Another
issue has rather to do with the shape of a transition on the input rather than its time of arrival. To motivate what we mean,
consider the waveform on the slide. Basically, we plotted the voltage at the input against the time. Note how the transition
from high to low does not happen immediately but rather takes some time to the speed with which a signal propagates being
finite.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces

Some mechanical contacts may “bounce” due to their construction
For example: Mechanical buttons, switches

Instead of clean transition dampened oscillation
Depending on clock frequency, takes multiple (hundred) clock cycles

May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk

5

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces

Some mechanical contacts may “bounce” due to their construction
For example: Mechanical buttons, switches

Instead of clean transition dampened oscillation
Depending on clock frequency, takes multiple (hundred) clock cycles

May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk

Synchronizers and Debouncers
Debouncing

Bouncing Inputs

If we recall that digital circuits discretize analog voltages by comparing it against a threshold voltage, we do not really care
about this slope in the majority of cases in praxis.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces

Some mechanical contacts may “bounce” due to their construction
For example: Mechanical buttons, switches

Instead of clean transition dampened oscillation
Depending on clock frequency, takes multiple (hundred) clock cycles

May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk

5

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces

Some mechanical contacts may “bounce” due to their construction
For example: Mechanical buttons, switches

Instead of clean transition dampened oscillation
Depending on clock frequency, takes multiple (hundred) clock cycles

May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk

Synchronizers and Debouncers
Debouncing

Bouncing Inputs

As the blue waveform in the illustration on the slide shows you, the input transition is properly recognized by a receiving
circuit and in praxis often even made steeper.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces
Some mechanical contacts may “bounce” due to their construction

For example: Mechanical buttons, switches

Instead of clean transition dampened oscillation
Depending on clock frequency, takes multiple (hundred) clock cycles

May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk

5

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces
Some mechanical contacts may “bounce” due to their construction

For example: Mechanical buttons, switches

Instead of clean transition dampened oscillation
Depending on clock frequency, takes multiple (hundred) clock cycles

May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk

Synchronizers and Debouncers
Debouncing

Bouncing Inputs

However, input transitions like the red one are not always what we actually get at inputs, as many mechanical devices like
buttons and switches come with a further problem. Often these mechanical sensors often feature spring contacts to sustain
some pressure on contacts to make it conduct well and reliably. When switching though, these springs tend to vibrate,
meaning that, for example, a switch is opened and closed a couple of times before eventually reaching its final position. This
happens so fast that we as human observers cannot recognize it in our daily lives. However, for a computer operated at
megahertz frequencies these input changes are clearly visible. We refer to this phenomenon as bouncing.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces
Some mechanical contacts may “bounce” due to their construction

For example: Mechanical buttons, switches
Instead of clean transition dampened oscillation

Depending on clock frequency, takes multiple (hundred) clock cycles
May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk

5

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces
Some mechanical contacts may “bounce” due to their construction

For example: Mechanical buttons, switches
Instead of clean transition dampened oscillation

Depending on clock frequency, takes multiple (hundred) clock cycles
May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk

Synchronizers and Debouncers
Debouncing

Bouncing Inputs

As a result of the input contact bouncing, the input voltage will be a dampened oscillation rather than a simple slop as before.
You can find this illustrated on the slide.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces
Some mechanical contacts may “bounce” due to their construction

For example: Mechanical buttons, switches
Instead of clean transition dampened oscillation

Depending on clock frequency, takes multiple (hundred) clock cycles
May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk

5

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces
Some mechanical contacts may “bounce” due to their construction

For example: Mechanical buttons, switches
Instead of clean transition dampened oscillation

Depending on clock frequency, takes multiple (hundred) clock cycles
May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk

Synchronizers and Debouncers
Debouncing

Bouncing Inputs

As before, a digital circuit element will essentially discretize this input voltage based on a threshold. However, whereas the
slop did result in a single clean transition of the right type, the oscillation might actually lead to multiple transitions, both of
the wanted and the unwanted type.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces
Some mechanical contacts may “bounce” due to their construction

For example: Mechanical buttons, switches
Instead of clean transition dampened oscillation
Depending on clock frequency, takes multiple (hundred) clock cycles

May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk
5

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces
Some mechanical contacts may “bounce” due to their construction

For example: Mechanical buttons, switches
Instead of clean transition dampened oscillation
Depending on clock frequency, takes multiple (hundred) clock cycles

May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk

Synchronizers and Debouncers
Debouncing

Bouncing Inputs

This problem is further aggravated by the oscillation often being of significantly lower period than the clock signal, thus
resulting in the input requiring up to hundreds of clock cycles to become stable.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces
Some mechanical contacts may “bounce” due to their construction

For example: Mechanical buttons, switches
Instead of clean transition dampened oscillation
Depending on clock frequency, takes multiple (hundred) clock cycles

May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk
5

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces
Some mechanical contacts may “bounce” due to their construction

For example: Mechanical buttons, switches
Instead of clean transition dampened oscillation
Depending on clock frequency, takes multiple (hundred) clock cycles

May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk

Synchronizers and Debouncers
Debouncing

Bouncing Inputs

Obviously, this issue is highly problematic as it can result in flip-flops being upset or to unwanted transitions that bring the
circuit in erroneous states.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Counter Measures

Simply filter-out sequence of input transitions that is “too fast”

Analog (low pass) filtering
Digital filtering to check if output stabilizes

Use timer to wait (FSM)
Alternatives exist

Software-based debouncing

6

Counter Measures

Simply filter-out sequence of input transitions that is “too fast”

Analog (low pass) filtering
Digital filtering to check if output stabilizes

Use timer to wait (FSM)
Alternatives exist

Software-based debouncing

Synchronizers and Debouncers
Debouncing

Counter Measures

Fortunately, such fast and undesired bursts of transition can easily be recognized as no one really push a button in a
millisecond-pace. Therefore, any type of low-pass filtering can be applied to mitigate bouncing.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Counter Measures

Simply filter-out sequence of input transitions that is “too fast”
Analog (low pass) filtering

Digital filtering to check if output stabilizes
Use timer to wait (FSM)
Alternatives exist

Software-based debouncing

6

Counter Measures

Simply filter-out sequence of input transitions that is “too fast”
Analog (low pass) filtering

Digital filtering to check if output stabilizes
Use timer to wait (FSM)
Alternatives exist

Software-based debouncing

Synchronizers and Debouncers
Debouncing

Counter Measures

Sometimes this is done using analog circuitry like an RC filter, which leads to a digital circuit not even observing the bouncing
in the first place. However, while this is always possible, it is often inconvenient to include analog circuit components in a
circuit.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Counter Measures

Simply filter-out sequence of input transitions that is “too fast”
Analog (low pass) filtering
Digital filtering to check if output stabilizes

Use timer to wait (FSM)
Alternatives exist

Software-based debouncing

6

Counter Measures

Simply filter-out sequence of input transitions that is “too fast”
Analog (low pass) filtering
Digital filtering to check if output stabilizes

Use timer to wait (FSM)
Alternatives exist

Software-based debouncing

Synchronizers and Debouncers
Debouncing

Counter Measures

Therefore, the standard solution to debouncing is usually filtering out undesired transitions in the digital domain. One partic-
ular method, which we will discuss on the next slide, is to simply use a timer to wait for the bouncing input to stabilize. This
can be implemented using a very simple finite state machine. However, be aware that alternatives to this approach exist,
although they are all based around the same general approach of simply waiting the input becomes sufficiently stable.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Counter Measures

Simply filter-out sequence of input transitions that is “too fast”
Analog (low pass) filtering
Digital filtering to check if output stabilizes

Use timer to wait (FSM)
Alternatives exist

Software-based debouncing

6

Counter Measures

Simply filter-out sequence of input transitions that is “too fast”
Analog (low pass) filtering
Digital filtering to check if output stabilizes

Use timer to wait (FSM)
Alternatives exist

Software-based debouncing

Synchronizers and Debouncers
Debouncing

Counter Measures

We also want to point out that it is possible to debounce inputs in software in case a system is capable of executing code
with direct access to inputs. For example, on microcontrollers bouncing buttons or switches are often handled by maintaining
a counter in software and using it to wait after a transition for the input to stabilize.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Debouncer Implementation

Digital debouncing FSM

Debouncer either outputs zero or high
If the input changes, reset counter to count time since transition
When input change is stable, change output

OUTPUT LOW

out := ’0’

OUTPUT HIGH

out := ’1’

s.clk cnt = WAIT TIME∧
in = ’1’∧s.old in = ’1’

s.clk cnt = WAIT TIME∧
in = ’0’∧s.old in = ’0’

s.old in := in
s.clk cnt := s.clk cnt+1

s.old in := in
s.clk cnt := s.clk cnt+1

in != ∧s.old in
c.clk cnt := 0

in != ∧s.old in
c.clk cnt := 0

7

Debouncer Implementation

Digital debouncing FSM

Debouncer either outputs zero or high
If the input changes, reset counter to count time since transition
When input change is stable, change output

OUTPUT LOW

out := ’0’

OUTPUT HIGH

out := ’1’

s.clk cnt = WAIT TIME∧
in = ’1’∧s.old in = ’1’

s.clk cnt = WAIT TIME∧
in = ’0’∧s.old in = ’0’

s.old in := in
s.clk cnt := s.clk cnt+1

s.old in := in
s.clk cnt := s.clk cnt+1

in != ∧s.old in
c.clk cnt := 0

in != ∧s.old in
c.clk cnt := 0

Synchronizers and Debouncers
Debouncing

Debouncer Implementation

Finally, let us discuss one particular digital debouncer, which we will model using a state machine Let us now model such an
FSM that waits for input transitions to be stable. We assume that the input is active-high.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Debouncer Implementation

Digital debouncing FSM
Debouncer either outputs zero or high

If the input changes, reset counter to count time since transition
When input change is stable, change output

OUTPUT LOW

out := ’0’

OUTPUT HIGH

out := ’1’

s.clk cnt = WAIT TIME∧
in = ’1’∧s.old in = ’1’

s.clk cnt = WAIT TIME∧
in = ’0’∧s.old in = ’0’

s.old in := in
s.clk cnt := s.clk cnt+1

s.old in := in
s.clk cnt := s.clk cnt+1

in != ∧s.old in
c.clk cnt := 0

in != ∧s.old in
c.clk cnt := 0

7

Debouncer Implementation

Digital debouncing FSM
Debouncer either outputs zero or high

If the input changes, reset counter to count time since transition
When input change is stable, change output

OUTPUT LOW

out := ’0’

OUTPUT HIGH

out := ’1’

s.clk cnt = WAIT TIME∧
in = ’1’∧s.old in = ’1’

s.clk cnt = WAIT TIME∧
in = ’0’∧s.old in = ’0’

s.old in := in
s.clk cnt := s.clk cnt+1

s.old in := in
s.clk cnt := s.clk cnt+1

in != ∧s.old in
c.clk cnt := 0

in != ∧s.old in
c.clk cnt := 0

Synchronizers and Debouncers
Debouncing

Debouncer Implementation

We start by creating two states named OUTPUT LOW and OUTPUT HIGH. The idea is that the FSM will be in the OUTPUT LOW

state while the input is low or currently transitioning to high and bouncing and likewise for the OUTPUT HIGH. Since the input
is assumed to be active high the initial state is the low one.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Debouncer Implementation

Digital debouncing FSM
Debouncer either outputs zero or high

If the input changes, reset counter to count time since transition
When input change is stable, change output

OUTPUT LOW

out := ’0’

OUTPUT HIGH

out := ’1’

s.clk cnt = WAIT TIME∧
in = ’1’∧s.old in = ’1’

s.clk cnt = WAIT TIME∧
in = ’0’∧s.old in = ’0’

s.old in := in
s.clk cnt := s.clk cnt+1

s.old in := in
s.clk cnt := s.clk cnt+1

in != ∧s.old in
c.clk cnt := 0

in != ∧s.old in
c.clk cnt := 0

7

Debouncer Implementation

Digital debouncing FSM
Debouncer either outputs zero or high

If the input changes, reset counter to count time since transition
When input change is stable, change output

OUTPUT LOW

out := ’0’

OUTPUT HIGH

out := ’1’

s.clk cnt = WAIT TIME∧
in = ’1’∧s.old in = ’1’

s.clk cnt = WAIT TIME∧
in = ’0’∧s.old in = ’0’

s.old in := in
s.clk cnt := s.clk cnt+1

s.old in := in
s.clk cnt := s.clk cnt+1

in != ∧s.old in
c.clk cnt := 0

in != ∧s.old in
c.clk cnt := 0

Synchronizers and Debouncers
Debouncing

Debouncer Implementation

In these states we sample the current input value into a register such that we can detect transitions. Next, we add a counter to
the state register of the FSM which is used to detect if the input was stable for a sufficiently long time. We will use increment
this counter each clock cycle per default, using it to keep track of the time since the last detected transition.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Debouncer Implementation

Digital debouncing FSM
Debouncer either outputs zero or high
If the input changes, reset counter to count time since transition

When input change is stable, change output

OUTPUT LOW

out := ’0’

OUTPUT HIGH

out := ’1’

s.clk cnt = WAIT TIME∧
in = ’1’∧s.old in = ’1’

s.clk cnt = WAIT TIME∧
in = ’0’∧s.old in = ’0’

s.old in := in
s.clk cnt := s.clk cnt+1

s.old in := in
s.clk cnt := s.clk cnt+1

in != ∧s.old in
c.clk cnt := 0

in != ∧s.old in
c.clk cnt := 0

7

Debouncer Implementation

Digital debouncing FSM
Debouncer either outputs zero or high
If the input changes, reset counter to count time since transition

When input change is stable, change output

OUTPUT LOW

out := ’0’

OUTPUT HIGH

out := ’1’

s.clk cnt = WAIT TIME∧
in = ’1’∧s.old in = ’1’

s.clk cnt = WAIT TIME∧
in = ’0’∧s.old in = ’0’

s.old in := in
s.clk cnt := s.clk cnt+1

s.old in := in
s.clk cnt := s.clk cnt+1

in != ∧s.old in
c.clk cnt := 0

in != ∧s.old in
c.clk cnt := 0

Synchronizers and Debouncers
Debouncing

Debouncer Implementation

If an input transition is now detected, the FSM will reset its counter, thus starting to count the amount of clock cycles since
this transition.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Debouncer Implementation

Digital debouncing FSM
Debouncer either outputs zero or high
If the input changes, reset counter to count time since transition
When input change is stable, change output

OUTPUT LOW

out := ’0’

OUTPUT HIGH

out := ’1’

s.clk cnt = WAIT TIME∧
in = ’1’∧s.old in = ’1’

s.clk cnt = WAIT TIME∧
in = ’0’∧s.old in = ’0’

s.old in := in
s.clk cnt := s.clk cnt+1

s.old in := in
s.clk cnt := s.clk cnt+1

in != ∧s.old in
c.clk cnt := 0

in != ∧s.old in
c.clk cnt := 0

7

Debouncer Implementation

Digital debouncing FSM
Debouncer either outputs zero or high
If the input changes, reset counter to count time since transition
When input change is stable, change output

OUTPUT LOW

out := ’0’

OUTPUT HIGH

out := ’1’

s.clk cnt = WAIT TIME∧
in = ’1’∧s.old in = ’1’

s.clk cnt = WAIT TIME∧
in = ’0’∧s.old in = ’0’

s.old in := in
s.clk cnt := s.clk cnt+1

s.old in := in
s.clk cnt := s.clk cnt+1

in != ∧s.old in
c.clk cnt := 0

in != ∧s.old in
c.clk cnt := 0

Synchronizers and Debouncers
Debouncing

Debouncer Implementation

Based on this resetting of the counter, and if the constant WAIT TIME is sufficiently high, we know that the input will be
stable when the counter reaches this value and the input is not the one corresponding to the current state. Therefore, the
debouncing FSM can transition to the other state and change its output. We leave a VHDL implementation of this model as
an exercise and finally want to point out again that this is only one possible digital debouncer circuit.



HWMod
WS24

Sync. & Deb.
Recap

Synchronizers

Debouncing

Lecture Complete!

Modified: 2025-03-12, 16:34 (21636bb)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.


	Synchronizers and Debouncers
	Recap
	Synchronizers
	Debouncing


