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m Exponential dependence of MTBU on time to resolve ¢,

m Increasing t,.s is a mechanism to increase the MTBU
m However: MTBU can never become infinite!

m Harnessed by synchronizers
m Trade-off performance for a higher MTBU

MTBU =
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m Pass metastable output to next flip-flop in chain
m No comb. logic between flip-flops = majority of clock period for resolution
m Asynchronous input is “synchronized” to the clock

m Overall resolution time is the sum of the individual ones
= Exponential increase in MTBU per flip-flop

m In practice often two flip-flops, three to be on the safe side
m Trade-off between latency and MTBU
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1 library ieee;
2 use ieee.std_logic_1164.all;
3
VHDL 4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8 )i

9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14 )

15 end entity;
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3 18 begin
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m MTBU can be made arbitrarily large by appropriate synchronizer
m A synchronizer does not prevent metastability!

Take Aways

m A single flip-flop alone is not a synchronizer
m The MTBU is a statistical quantity
m No guarantee for upset-freedom at any time
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Bouncing Inputs

m Asynchronous inputs are not the only problem at interfaces
m Some mechanical contacts may “bounce” due to their construction
m For example: Mechanical buttons, switches
m Instead of clean transition dampened oscillation
m Depending on clock frequency, takes multiple (hundred) clock cycles
m May upset input FFs or leads to unwanted transitions

in(t)

threshold

< > Lclk
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m Simply filter-out sequence of input transitions that is “too fast”

m Analog (low pass) filtering

m Digital filtering to check if output stabilizes
B Use timer to wait (FSM)
m Alternatives exist

m Software-based debouncing
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m Digital debouncing FSM
m Debouncer either outputs zero or high

o m If the input changes, reset counter to count time since transition
m When input change is stable, change output

in != As.old.in

in != As.old.in
c.clkcnt := 0 c.clkcnt := 0
® OUTPUT LOW OUTPUT HIGH
- - s.clk.cnt = WAIT-TIMEA - -
s.old.in in in = "17As.old.in = 717 s.old.in := in
s.clkecnt := s.clkcnt+l s.clkcnt := s.clk.cnt+l
out := "0 s.clk-cnt = WAIT-TIMEA out := "1’
in = ’0’As.old.in = 70’
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Debouncing

Lecture Complete!
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