HWMod
WS25

e Hardware Modeling [VU] (191.011)
- WS25 —

Synchronizers and Debouncers

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:05 (f8a58e9)

Recall;: MTBU Estimation

HWMod
WS25

m We can get a statistical estimate of the MTBU

1 tres

MTBU = —— e C
Ain * fek - Tw

Recall;: MTBU Estimation

HWMod
WS25

m We can get a statistical estimate of the MTBU

1 lres
- .eTC
Ain * feik - Tw

m Exponential dependence of MTBU on time to resolve ¢,

MTBU =

Recall;: MTBU Estimation

HWMod
WS25

m We can get a statistical estimate of the MTBU

1 lres
- .eTC
Ain * feik - Tw

m Exponential dependence of MTBU on time to resolve ¢,

m Increasing t,.s is a mechanism to increase the MTBU
m However: MTBU can never become infinite!

MTBU =

Recall;: MTBU Estimation

HWMod
WS25

m We can get a statistical estimate of the MTBU

1 lres
e TC
Ain * fek - Tw

m Exponential dependence of MTBU on time to resolve ¢,

m Increasing t,.s is a mechanism to increase the MTBU
m However: MTBU can never become infinite!

m Harnessed by synchronizers
m Trade-off performance for a higher MTBU

MTBU =

Waiting Synchronizers

Hilod m Chain of flip-flops

Synchronizers

async. D Q D Q D Q}— - —D Q—Q

ok [[[

Waiting Synchronizers

pa m Chain of flip-flops
m Pass metastable output to next flip-flop in chain

Synchronizers

async. D Q D Q b al— ... —1Ip Q_@

ok — [[[

Waiting Synchronizers

HWMod m Chain of flip-flops

WS25
m Pass metastable output to next flip-flop in chain
m No comb. logic between flip-flops = majority of clock period for resolution

Synchronizers

E I'tres"’ clkl'tres"“ Clkl' - .
async. D Q D Q p a— - —b Q—Q

ok [[[

Waiting Synchronizers

RHA m Chain of flip-flops

m Pass metastable output to next flip-flop in chain
m No comb. logic between flip-flops = majority of clock period for resolution
m Asynchronous input is “synchronized” to the clock

Synchronizers

tres ~ Teik tres ~ Teik £
4 I' l' l' sync.
async. D Q D Q D Q—-+-——D Q

ok [[[

Waiting Synchronizers

HWMod m Chain of flip-flops

WS25

m Pass metastable output to next flip-flop in chain
m No comb. logic between flip-flops = majority of clock period for resolution
m Asynchronous input is “synchronized” to the clock

m Overall resolution time is the sum of the individual ones

Synchronizers

I' tres ~ Tek tres ~ Teik £
E Y P’} —
Q I .

sync.
async. D Q D Q D -+ ——D Q—Q

ok [[[

Waiting Synchronizers

RHA m Chain of flip-flops
m Pass metastable output to next flip-flop in chain
m No comb. logic between flip-flops = majority of clock period for resolution
m Asynchronous input is “synchronized” to the clock
m Overall resolution time is the sum of the individual ones
= Exponential increase in MTBU per flip-flop

Synchronizers

I' tres ~ Tek tres ~ Teik £
E Y P’} —
Q I .

sync.
async. D Q D Q D -+ ——D Q—Q

ok [[[

Waiting Synchronizers

HWMod m Chain of flip-flops

WS25

m Pass metastable output to next flip-flop in chain
m No comb. logic between flip-flops = majority of clock period for resolution
m Asynchronous input is “synchronized” to the clock

m Overall resolution time is the sum of the individual ones
= Exponential increase in MTBU per flip-flop

m In practice often two flip-flops, three to be on the safe side
m Trade-off between latency and MTBU

Synchronizers

I' tres ~ Tek tres ~ Teik £
E Y P’} —
Q I .

sync.
async. D Q D Q D -+ ——D Q—Q

ok [[[

VHDL Implementation

HWMod
WS25

1 library ieee;
2 use ieee.std_logic_1164.all;
3
VHDL 4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8)i

9 port (

10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14)

15 end entity;

VHDL Implementation

HWMod
WS25

1 library ieee;
2 use ieee.std_logic_1164.all;

3

VHDL 4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8)i
9 port (
10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14)

15 end entity;

VHDL Implementation

HWMod
WS25

1 library ieee;
2 use ieee.std_logic_1164.all;

3

VHDL 4 entity synchronizer is
5 generic (
6 STAGES : natural;
7 RES_VAL : std_ulogic
8)i
9 port (
10 clk : in std_ulogic;
11 res_n : in std_ulogic;
12 async : in std_ulogic;
13 sync : out std_ulogic
14)

15 end entity;

VHDL Implementation

HWMod
WS25

1 library ieee; 16 architecture arch of synchronizer is
2 use ieee.std_logic_1164.all; 17 signal ffs: std_ulogic_vector (0 to STAGES);
3 18 begin

VHDL 4 entity synchronizer is 19 process (clk, res_n) begin
5 generic (20 if res_n = "0’ then
6 STAGES : natural; 21 ffs <= (others => RES_VAL);
7 RES_VAL : std_ulogic 22 elsif rising_edge (clk) then
8) 23 ffs(0) <= async;
9 port (24 for 1 in 1 to STAGES loop
10 clk : in std_ulogic; 25 ffs(i) <= ffs(i-1);
11 res_n : in std_ulogic; 26 end loop;
12 async : in std_ulogic; 27 end 1if;
13 sync : out std_ulogic 28 end process;
14) ; 29 sync <= ffs (STAGES);
15 end entity; 30 end architecture;

VHDL Implementation

HWMod
WS25

1 library ieee; 16 architecture arch of synchronizer is
2 use ieee.std_logic_1164.all; 17 signal ffs: std_ulogic_vector (0 to STAGES);
3 18 begin

VHDL 4 entity synchronizer is 19 process (clk, res_n) begin
5 generic (20 if res_n = '0’ then
6 STAGES : natural; 21 ffs <= (others => RES_VAL);
7 RES_VAL : std_ulogic 22 elsif rising_edge (clk) then
8) 23 ffs(0) <= async;
9 port (24 for 1 in 1 to STAGES loop
10 clk : in std_ulogic; 25 ffs(i) <= ffs(i-1);
11 res_n : in std_ulogic; 26 end loop;
12 async : in std_ulogic; 27 end 1if;
13 sync : out std_ulogic 28 end process;
14) 29 sync <= ffs (STAGES);
15 end entity; 30 end architecture;

VHDL Implementation

HWMod
WS25

1 library ieee; 16 architecture arch of synchronizer is
2 use ieee.std_logic_1164.all; 17 signal ffs: std_ulogic_vector (0 to STAGES);
3 18 begin

VHDL 4 entity synchronizer is 19 process (clk, res_n) begin
5 generic (20 if res_n = "0’ then
6 STAGES : natural; 21 ffs <= (others => RES_VAL);
7 RES_VAL : std_ulogic 22 elsif rising_edge (clk) then
8) 23 ffs(0) <= async;
9 port (24 for 1 in 1 to STAGES loop
10 clk : in std_ulogic; 25 ffs(i) <= ffs(i-1);
11 res_n : in std_ulogic; 26 end loop;
12 async : in std_ulogic; 27 end 1if;
13 sync : out std_ulogic 28 end process;
14) ; 29 sync <= ffs (STAGES);
15 end entity; 30 end architecture;

VHDL Implementation

HWMod
WS25

1 library ieee; 16 architecture arch of synchronizer is
2 use ieee.std_logic_1164.all; 17 signal ffs: std_ulogic_vector (0 to STAGES);
3 18 begin

VHDL 4 entity synchronizer is 19 process (clk, res_n) begin
5 generic (20 if res_n = '0’ then
6 STAGES : natural; 21 ffs <= (others => RES_VAL);
7 RES_VAL : std_ulogic 22 elsif rising_edge (clk) then
8) 23 ffs(0) <= async;
9 port (24 for i in 1 to STAGES loop
10 clk : in std_ulogic; 25 ffs (i) <= ffs(i-1);
11 res_n : in std_ulogic; 26 end loop;
12 async : in std_ulogic; 27 end 1if;
13 sync : out std_ulogic 28 end process;
14) 29 sync <= ffs (STAGES);
15 end entity; 30 end architecture;

VHDL Implementation

HWMod
WS25

1 library ieee; 16 architecture arch of synchronizer is
2 use ieee.std_logic_1164.all; 17 signal ffs: std_ulogic_vector (0 to STAGES);
3 18 begin

VHDL 4 entity synchronizer is 19 process (clk, res_n) begin
5 generic (20 if res_n = "0’ then
6 STAGES : natural; 21 ffs <= (others => RES_VAL);
7 RES_VAL : std_ulogic 22 elsif rising_edge (clk) then
8) 23 ffs(0) <= async;
9 port (24 for 1 in 1 to STAGES loop
10 clk : in std_ulogic; 25 ffs(i) <= ffs(i-1);
11 res_n : in std_ulogic; 26 end loop;
12 async : in std_ulogic; 27 end 1if;
13 sync : out std_ulogic 28 end process;
14) ; 29 sync <= ffs (STAGES) ;
15 end entity; 30 end architecture;

Important Aspects

HWMod
WS25

m MTBU can be made arbitrarily large by appropriate synchronizer

Take Aways

Important Aspects

HWMod
WS25

m MTBU can be made arbitrarily large by appropriate synchronizer
m A synchronizer does not prevent metastability!

Take Aways

Important Aspects

HWMod
WS25

m MTBU can be made arbitrarily large by appropriate synchronizer
m A synchronizer does not prevent metastability!

Take Aways

m A single flip-flop alone is not a synchronizer

Important Aspects

HWMod
WS25

m MTBU can be made arbitrarily large by appropriate synchronizer
m A synchronizer does not prevent metastability!

Take Aways

m A single flip-flop alone is not a synchronizer
m The MTBU is a statistical quantity
m No guarantee for upset-freedom at any time

Bouncing Inputs

s m Asynchronous inputs are not the only problem at interfaces

Debouncing

in(t)

Bouncing Inputs

s m Asynchronous inputs are not the only problem at interfaces

Debouncing

threshold

Bouncing Inputs

s m Asynchronous inputs are not the only problem at interfaces

Debouncing

in(t)

o Bl —\—- ————————————————— threshold
- - - - t

Bouncing Inputs

RHA m Asynchronous inputs are not the only problem at interfaces
m Some mechanical contacts may “bounce” due to their construction
m For example: Mechanical buttons, switches

threshold

HWMod
WS25

Debouncing

Bouncing Inputs

m Asynchronous inputs are not the only problem at interfaces

m Some mechanical contacts may “bounce” due to their construction
m For example: Mechanical buttons, switches
m Instead of clean transition dampened oscillation

threshold

HWMod
WS25

Bouncing Inputs

m Asynchronous inputs are not the only problem at interfaces

m Some mechanical contacts may “bounce” due to their construction
m For example: Mechanical buttons, switches
m Instead of clean transition dampened oscillation

in(t)

threshold

HWMod
WS25

Bouncing Inputs

m Asynchronous inputs are not the only problem at interfaces

m Some mechanical contacts may “bounce” due to their construction
m For example: Mechanical buttons, switches
m Instead of clean transition dampened oscillation
m Depending on clock frequency, takes multiple (hundred) clock cycles

in(t)

threshold

< > Lclk

HWMod
WS25

Bouncing Inputs

m Asynchronous inputs are not the only problem at interfaces
m Some mechanical contacts may “bounce” due to their construction
m For example: Mechanical buttons, switches
m Instead of clean transition dampened oscillation
m Depending on clock frequency, takes multiple (hundred) clock cycles
m May upset input FFs or leads to unwanted transitions

in(t)

threshold

< > Lclk

Counter Measures

HWMod
WS25

m Simply filter-out sequence of input transitions that is “too fast”

Counter Measures

HWMod
WS25

m Simply filter-out sequence of input transitions that is “too fast”
m Analog (low pass) filtering

Counter Measures

HWMod
WS25

m Simply filter-out sequence of input transitions that is “too fast”
m Analog (low pass) filtering
m Digital filtering to check if output stabilizes

B Use timer to wait (FSM)
B Alternatives exist

Counter Measures

HWMod
WS25

m Simply filter-out sequence of input transitions that is “too fast”

m Analog (low pass) filtering

m Digital filtering to check if output stabilizes
B Use timer to wait (FSM)
m Alternatives exist

m Software-based debouncing

Debouncer Implementation

HWMod
WS25

m Digital debouncing FSM

Debouncing

Debouncer Implementation

HWMod
WS25

m Digital debouncing FSM
m Debouncer either outputs zero or high

Debouncing

O OUTPUT LOW OUTPUT HIGH

Debouncer Implementation

HWMod
WS25
m Digital debouncing FSM
m Debouncer either outputs zero or high

O OUTPUT LOW OUTPUT HIGH

s.old.in := in s.old.in := in

s.clkecnt := s.clkcnt+l s.clkcnt := s.clk.cnt+l
out := "0’ out := '1

Debouncer Implementation

HWMod
WS25
m Digital debouncing FSM
m Debouncer either outputs zero or high
o m |f the input changes, reset counter to count time since transition

in != As.old.in in != As.old.in
c.clkcnt := 0 c.clkcnt := 0
O OUTPUT LOW OUTPUT HIGH
s.old.in := in s.old.in := in
s.clkecnt := s.clkcnt+l s.clkcnt := s.clk.cnt+l
out := "0’ out := '1

Debouncer Implementation

HWMod
WS25

m Digital debouncing FSM
m Debouncer either outputs zero or high

o m If the input changes, reset counter to count time since transition
m When input change is stable, change output

in != As.old.in

in != As.old.in
c.clkcnt := 0 c.clkcnt := 0
® OUTPUT LOW OUTPUT HIGH
- - s.clk.cnt = WAIT-TIMEA - -
s.old.in in in = "17As.old.in = 717 s.old.in := in
s.clkecnt := s.clkcnt+l s.clkcnt := s.clk.cnt+l
out := "0 s.clk-cnt = WAIT-TIMEA out := "1’
in = ’0’As.old.in = 70’

HWMod
WS25

Debouncing

Lecture Complete!

Modified: 2025-12-16, 16:05 (f8a58e9)

	Synchronizers and Debouncers
	Recap
	Synchronizers
	Debouncing

