
HWMod
WS25

Sync. & Deb.
Recap

Synchronizers

Debouncing

Hardware Modeling [VU] (191.011)
– WS25 –

Synchronizers and Debouncers

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:10 (f8a58e9)



HWMod
WS25

Sync. & Deb.
Recap

Synchronizers

Debouncing

Recall: MTBU Estimation

We can get a statistical estimate of the MTBU

MTBU =
1

λin · fclk · TW
· e

tres
τC

Exponential dependence of MTBU on time to resolve tres
Increasing tres is a mechanism to increase the MTBU
However: MTBU can never become infinite!

Harnessed by synchronizers
Trade-off performance for a higher MTBU

1



HWMod
WS25

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

Waiting Synchronizers

Chain of flip-flops
Pass metastable output to next flip-flop in chain
No comb. logic between flip-flops ⇒ majority of clock period for resolution
Asynchronous input is “synchronized” to the clock

Overall resolution time is the sum of the individual ones
⇒ Exponential increase in MTBU per flip-flop

In practice often two flip-flops, three to be on the safe side
Trade-off between latency and MTBU

D Q D Q D Q · · · D Q

clk

async.
� � �

tres ∼ Tclk tres ∼ Tclk

sync.

2



HWMod
WS25

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

VHDL Implementation

 library ieee;
 use ieee.std_logic_1164.all;


 entity synchronizer is
 generic (
 STAGES : natural;
 RES_VAL : std_ulogic
 );
 port (

 clk : in std_ulogic;
 res_n : in std_ulogic;
 async : in std_ulogic;
 sync : out std_ulogic
 );
 end entity;

 architecture arch of synchronizer is
 signal ffs: std_ulogic_vector(0 to STAGES);
 begin
 process (clk, res_n) begin
 if res_n = ’0’ then
 ffs <= (others => RES_VAL);
 elsif rising_edge(clk) then
 ffs(0) <= async;
 for i in 1 to STAGES loop
 ffs(i) <= ffs(i-1);
 end loop;
 end if;
 end process;
 sync <= ffs(STAGES);
 end architecture;

3



HWMod
WS25

Sync. & Deb.
Recap

Synchronizers

VHDL

Take Aways

Debouncing

Important Aspects

MTBU can be made arbitrarily large by appropriate synchronizer
A synchronizer does not prevent metastability!

A single flip-flop alone is not a synchronizer
The MTBU is a statistical quantity

No guarantee for upset-freedom at any time

4



HWMod
WS25

Sync. & Deb.
Recap

Synchronizers

Debouncing

Bouncing Inputs

Asynchronous inputs are not the only problem at interfaces
Some mechanical contacts may “bounce” due to their construction

For example: Mechanical buttons, switches
Instead of clean transition dampened oscillation
Depending on clock frequency, takes multiple (hundred) clock cycles

May upset input FFs or leads to unwanted transitions

t

in(t)

threshold

Tclk
5



HWMod
WS25

Sync. & Deb.
Recap

Synchronizers

Debouncing

Counter Measures

Simply filter-out sequence of input transitions that is “too fast”
Analog (low pass) filtering
Digital filtering to check if output stabilizes

Use timer to wait (FSM)
Alternatives exist

Software-based debouncing

6



HWMod
WS25

Sync. & Deb.
Recap

Synchronizers

Debouncing

Debouncer Implementation

Digital debouncing FSM
Debouncer either outputs zero or high
If the input changes, reset counter to count time since transition
When input change is stable, change output

OUTPUT LOW

out := ’0’

OUTPUT HIGH

out := ’1’

s.clk cnt = WAIT TIME∧
in = ’1’∧s.old in = ’1’

s.clk cnt = WAIT TIME∧
in = ’0’∧s.old in = ’0’

s.old in := in
s.clk cnt := s.clk cnt+1

s.old in := in
s.clk cnt := s.clk cnt+1

in != ∧s.old in
c.clk cnt := 0

in != ∧s.old in
c.clk cnt := 0

7



HWMod
WS25

Sync. & Deb.
Recap

Synchronizers

Debouncing

Lecture Complete!

Modified: 2025-12-16, 16:10 (f8a58e9)


	Synchronizers and Debouncers
	Recap
	Synchronizers
	Debouncing


