
HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Hardware Modeling [VU] (191.011)
– WS24 –

Synchronous Design Style

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Guest Lecture by Prof. Steininger

Modified: 2025-03-12, 16:33 (21636bb)

Hardware Modeling [VU] (191.011)
– WS24 –

Synchronous Design Style

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Guest Lecture by Prof. Steininger

Synchronous Design Style

In this guest lecture you will be introduced to the synchronous design style. As we will see, this style revolves around
sequential circuit elements and a global clock signal to synchronize them. The lecture will motivate why we need such
synchronization.



HWMod
WS24

Sync. Design
Gates

Combinational

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Combinational Logic Gates

Logic gates are the elementary blocks of a digital circuit (e.g. AND, OR,
XOR)

Such gates without memory are called combinational
Their outputs only depend on their inputs (c.f. mathematical function like
sin(x))

We can express their functionality using a truth table
Enumerate all inputs and write down output

a b a ∧ b a ∨ b

F F F F
F T F T
T F F T
T T T T

a
b

a
b

1

Combinational Logic Gates

Logic gates are the elementary blocks of a digital circuit (e.g. AND, OR,
XOR)

Such gates without memory are called combinational
Their outputs only depend on their inputs (c.f. mathematical function like
sin(x))

We can express their functionality using a truth table
Enumerate all inputs and write down output

a b a ∧ b a ∨ b

F F F F
F T F T
T F F T
T T T T

a
b

a
b

Synchronous Design Style
Gates

Combinational Logic Gates

Each digital circuit, not mattering how complex it is, is composed of logic gates. In fact, these gates are internally built from
transistors, but as digital designers we abstract this detail away and consider gates as the atomic building blocks available to
us. Well known examples of such gates are the AND, OR and XOR gate.



HWMod
WS24

Sync. Design
Gates

Combinational

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Combinational Logic Gates

Logic gates are the elementary blocks of a digital circuit (e.g. AND, OR,
XOR)
Such gates without memory are called combinational

Their outputs only depend on their inputs (c.f. mathematical function like
sin(x))

We can express their functionality using a truth table
Enumerate all inputs and write down output

a b a ∧ b a ∨ b

F F F F
F T F T
T F F T
T T T T

a
b

a
b

1

Combinational Logic Gates

Logic gates are the elementary blocks of a digital circuit (e.g. AND, OR,
XOR)
Such gates without memory are called combinational

Their outputs only depend on their inputs (c.f. mathematical function like
sin(x))

We can express their functionality using a truth table
Enumerate all inputs and write down output

a b a ∧ b a ∨ b

F F F F
F T F T
T F F T
T T T T

a
b

a
b

Synchronous Design Style
Gates

Combinational Logic Gates

We call a gate combinational if its output is fully determined by its inputs alone, just as for mathematical functions like the
sine function or pure functions in VHDL. This is the case for gates that have no internal memory.



HWMod
WS24

Sync. Design
Gates

Combinational

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Combinational Logic Gates

Logic gates are the elementary blocks of a digital circuit (e.g. AND, OR,
XOR)
Such gates without memory are called combinational

Their outputs only depend on their inputs (c.f. mathematical function like
sin(x))

We can express their functionality using a truth table
Enumerate all inputs and write down output

a b a ∧ b a ∨ b

F F F F
F T F T
T F F T
T T T T

a
b

a
b

1

Combinational Logic Gates

Logic gates are the elementary blocks of a digital circuit (e.g. AND, OR,
XOR)
Such gates without memory are called combinational

Their outputs only depend on their inputs (c.f. mathematical function like
sin(x))

We can express their functionality using a truth table
Enumerate all inputs and write down output

a b a ∧ b a ∨ b

F F F F
F T F T
T F F T
T T T T

a
b

a
b

Synchronous Design Style
Gates

Combinational Logic Gates

As you certainly know, the function of a gate can be expressed through a truth table, where for each combination of input
values the corresponding output is given. The slides illustrate this for the two-input AND gate, as well as for the two-input OR
gate.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Sequential Logic Gates

Gates with a memory are called sequential
Output depends on inputs and previous state

⇒ Expressed via truth table containing previous state or state diagram

Prominent example: flip-flop
At each rising edge of the clock (CLK) the input data (D) is copied to the
output (Q)
Between rising clock edges the output is stable

Optional: (synchronous or asynchronous) reset input (RST)

D QD Q

RST

datain

clock

dataout

CLK D Qold Q
↑ 0 0 0
↑ 0 1 0
↑ 1 0 1
↑ 1 1 1
0 X 0 0 (Qold)
0 X 1 1 (Qold)
1 X 0 0 (Qold)
1 X 1 1 (Qold)

2

Sequential Logic Gates

Gates with a memory are called sequential
Output depends on inputs and previous state

⇒ Expressed via truth table containing previous state or state diagram

Prominent example: flip-flop
At each rising edge of the clock (CLK) the input data (D) is copied to the
output (Q)
Between rising clock edges the output is stable

Optional: (synchronous or asynchronous) reset input (RST)

D QD Q

RST

datain

clock

dataout

CLK D Qold Q
↑ 0 0 0
↑ 0 1 0
↑ 1 0 1
↑ 1 1 1
0 X 0 0 (Qold)
0 X 1 1 (Qold)
1 X 0 0 (Qold)
1 X 1 1 (Qold)

Synchronous Design Style
Seq. Logic

Sequential Logic Gates

As soon as a gate contains a memory, it has a state that is determined by the value stored in that memory. Now the gate’s
output for a certain combination of input values may also be dependent on its state. In the truth table this can be expressed
by treating the current state as an input for calculating the next output. We will see an example shortly. Furthermore, you
probably know that state diagrams, as used for automata, can alternatively be used to describe the function of sequential
gates.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Sequential Logic Gates

Gates with a memory are called sequential
Output depends on inputs and previous state

⇒ Expressed via truth table containing previous state or state diagram
Prominent example: flip-flop

At each rising edge of the clock (CLK) the input data (D) is copied to the
output (Q)
Between rising clock edges the output is stable

Optional: (synchronous or asynchronous) reset input (RST)

D QD Q

RST

datain

clock

dataout

CLK D Qold Q
↑ 0 0 0
↑ 0 1 0
↑ 1 0 1
↑ 1 1 1
0 X 0 0 (Qold)
0 X 1 1 (Qold)
1 X 0 0 (Qold)
1 X 1 1 (Qold)

2

Sequential Logic Gates

Gates with a memory are called sequential
Output depends on inputs and previous state

⇒ Expressed via truth table containing previous state or state diagram
Prominent example: flip-flop

At each rising edge of the clock (CLK) the input data (D) is copied to the
output (Q)
Between rising clock edges the output is stable

Optional: (synchronous or asynchronous) reset input (RST)

D QD Q

RST

datain

clock

dataout

CLK D Qold Q
↑ 0 0 0
↑ 0 1 0
↑ 1 0 1
↑ 1 1 1
0 X 0 0 (Qold)
0 X 1 1 (Qold)
1 X 0 0 (Qold)
1 X 1 1 (Qold)

Synchronous Design Style
Seq. Logic

Sequential Logic Gates

A very important sequential gate is the flip-flop. In its minimalistic form it has two inputs, namely clock and data, and one
output. Its function is to copy the value from its data input to its output whenever it sees a rising edge at its clock input. This
seemingly simple function has a conceptually fundamental detail, as the operation is controlled by a transition, an not just by
a static logic value. On the slide you can see the symbol for such a flip-flop, where the output is called ”Q”. The triangle at
the clock input highlights that the flip-flop is sensitive to rising edges of this input.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Sequential Logic Gates

Gates with a memory are called sequential
Output depends on inputs and previous state

⇒ Expressed via truth table containing previous state or state diagram
Prominent example: flip-flop

At each rising edge of the clock (CLK) the input data (D) is copied to the
output (Q)
Between rising clock edges the output is stable

Optional: (synchronous or asynchronous) reset input (RST)

D QD Q

RST

datain

clock

dataout

CLK D Qold Q
↑ 0 0 0
↑ 0 1 0
↑ 1 0 1
↑ 1 1 1
0 X 0 0 (Qold)
0 X 1 1 (Qold)
1 X 0 0 (Qold)
1 X 1 1 (Qold)

2

Sequential Logic Gates

Gates with a memory are called sequential
Output depends on inputs and previous state

⇒ Expressed via truth table containing previous state or state diagram
Prominent example: flip-flop

At each rising edge of the clock (CLK) the input data (D) is copied to the
output (Q)
Between rising clock edges the output is stable

Optional: (synchronous or asynchronous) reset input (RST)

D QD Q

RST

datain

clock

dataout

CLK D Qold Q
↑ 0 0 0
↑ 0 1 0
↑ 1 0 1
↑ 1 1 1
0 X 0 0 (Qold)
0 X 1 1 (Qold)
1 X 0 0 (Qold)
1 X 1 1 (Qold)

Synchronous Design Style
Seq. Logic

Sequential Logic Gates

Next to the flip-flop symbol you can now see its truth table. The arrow in the clock column stands for a rising edge and the X
in the input data column for an arbitrary value. Observe how a rising clock edge always results in the input data being copied
to Q and how the flip-flop will otherwise keep its output stable.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Sequential Logic Gates

Gates with a memory are called sequential
Output depends on inputs and previous state

⇒ Expressed via truth table containing previous state or state diagram
Prominent example: flip-flop

At each rising edge of the clock (CLK) the input data (D) is copied to the
output (Q)
Between rising clock edges the output is stable

Optional: (synchronous or asynchronous) reset input (RST)

D QD Q

RST

datain

clock

dataout

CLK D Qold Q
↑ 0 0 0
↑ 0 1 0
↑ 1 0 1
↑ 1 1 1
0 X 0 0 (Qold)
0 X 1 1 (Qold)
1 X 0 0 (Qold)
1 X 1 1 (Qold)

2

Sequential Logic Gates

Gates with a memory are called sequential
Output depends on inputs and previous state

⇒ Expressed via truth table containing previous state or state diagram
Prominent example: flip-flop

At each rising edge of the clock (CLK) the input data (D) is copied to the
output (Q)
Between rising clock edges the output is stable

Optional: (synchronous or asynchronous) reset input (RST)

D QD Q

RST

datain

clock

dataout

CLK D Qold Q
↑ 0 0 0
↑ 0 1 0
↑ 1 0 1
↑ 1 1 1
0 X 0 0 (Qold)
0 X 1 1 (Qold)
1 X 0 0 (Qold)
1 X 1 1 (Qold)

Synchronous Design Style
Seq. Logic

Sequential Logic Gates

In addition, there may be a reset input to force the output to a specific value, independent of the data input. If this forcing is
bound to the occurrence of a rising clock edge, we call this a synchronous reset. If it happens instantly, without respecting
the clock, we call it an asynchronous reset. Both versions have their use in practice.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Timing Conditions for Proper Operation of Gates

Real gates react to their inputs after their propagation delay (tpd)

Before tpd the output is not valid
Output could be invalid voltage or make undesired transitions

During the calculation of the output the inputs must be stable
After tpd the output remains stable while the input does

For the flip-flop the data input needs to be stable at the rising clock edge

Setup time tsu before / hold time th after the clock edge
Output changed after clock-to-output time (tco)

tpd output valid

stable

input in1 in2 in3

output out1 out2

3

Timing Conditions for Proper Operation of Gates

Real gates react to their inputs after their propagation delay (tpd)

Before tpd the output is not valid
Output could be invalid voltage or make undesired transitions

During the calculation of the output the inputs must be stable
After tpd the output remains stable while the input does

For the flip-flop the data input needs to be stable at the rising clock edge

Setup time tsu before / hold time th after the clock edge
Output changed after clock-to-output time (tco)

tpd output valid

stable

input in1 in2 in3

output out1 out2

Synchronous Design Style
Timing

Timing Conditions for Proper Operation of Gates

In a truth table it looks like an input change leads to an immediate output reaction. However, there is no truly immediate
reaction in real life. A logic gate needs some time, the so-called propagation delay, to update its output after an input change.
The image on the slide illustrates this via the dark gray output value which stands for invalid. Only after the propagation time
the output corresponding to the second input is provided by the gate. This has important consequences.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Timing Conditions for Proper Operation of Gates

Real gates react to their inputs after their propagation delay (tpd)
Before tpd the output is not valid

Output could be invalid voltage or make undesired transitions

During the calculation of the output the inputs must be stable
After tpd the output remains stable while the input does

For the flip-flop the data input needs to be stable at the rising clock edge

Setup time tsu before / hold time th after the clock edge
Output changed after clock-to-output time (tco)

tpd output valid

stable

input in1 in2 in3

output out1 out2

3

Timing Conditions for Proper Operation of Gates

Real gates react to their inputs after their propagation delay (tpd)
Before tpd the output is not valid

Output could be invalid voltage or make undesired transitions

During the calculation of the output the inputs must be stable
After tpd the output remains stable while the input does

For the flip-flop the data input needs to be stable at the rising clock edge

Setup time tsu before / hold time th after the clock edge
Output changed after clock-to-output time (tco)

tpd output valid

stable

input in1 in2 in3

output out1 out2

Synchronous Design Style
Timing

Timing Conditions for Proper Operation of Gates

After we change an input, we need to give the output time to stabilize. If we use the result too early, we may see unwanted
transitions or incorrect values.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Timing Conditions for Proper Operation of Gates

Real gates react to their inputs after their propagation delay (tpd)
Before tpd the output is not valid

Output could be invalid voltage or make undesired transitions
During the calculation of the output the inputs must be stable

After tpd the output remains stable while the input does

For the flip-flop the data input needs to be stable at the rising clock edge

Setup time tsu before / hold time th after the clock edge
Output changed after clock-to-output time (tco)

tpd output valid

stable

input in1 in2 in3

output out1 out2

3

Timing Conditions for Proper Operation of Gates

Real gates react to their inputs after their propagation delay (tpd)
Before tpd the output is not valid

Output could be invalid voltage or make undesired transitions
During the calculation of the output the inputs must be stable

After tpd the output remains stable while the input does

For the flip-flop the data input needs to be stable at the rising clock edge

Setup time tsu before / hold time th after the clock edge
Output changed after clock-to-output time (tco)

tpd output valid

stable

input in1 in2 in3

output out1 out2

Synchronous Design Style
Timing

Timing Conditions for Proper Operation of Gates

Also, in order to keep the output stable, we need to keep all inputs stable until the result is complete. Otherwise, we get
an incomplete computation which is obviously not useful. After the propagation delay, the output stays valid until the input
changes again. In the figure the red arrow atop the input illustrates this. It is drawn solid during the time where the input must
be stable and drawn dashed afterwards as from now on the input is can change at an arbitrary time without corrupting the
computation of the output.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Timing Conditions for Proper Operation of Gates

Real gates react to their inputs after their propagation delay (tpd)
Before tpd the output is not valid

Output could be invalid voltage or make undesired transitions
During the calculation of the output the inputs must be stable

After tpd the output remains stable while the input does
For the flip-flop the data input needs to be stable at the rising clock edge

Setup time tsu before / hold time th after the clock edge

Output changed after clock-to-output time (tco)

stable
tsu th

stable
tsu th

tco tco

CLK

D data1 data2

Q data1 data2

3

Timing Conditions for Proper Operation of Gates

Real gates react to their inputs after their propagation delay (tpd)
Before tpd the output is not valid

Output could be invalid voltage or make undesired transitions
During the calculation of the output the inputs must be stable

After tpd the output remains stable while the input does
For the flip-flop the data input needs to be stable at the rising clock edge

Setup time tsu before / hold time th after the clock edge

Output changed after clock-to-output time (tco)

stable
tsu th

stable
tsu th

tco tco

CLK

D data1 data2

Q data1 data2

Synchronous Design Style
Timing

Timing Conditions for Proper Operation of Gates

For the flip flop it must be clear which logic value to copy to the output with a rising clock edge. To ensure this, data must not
change shortly before or after the rising clock edge. This critical interval depends on a time where data must be stable before
a clock edge, the so-called setup-time, and a time after the clock edge, called hold-time. The respective interval around the
clock edge is called the setup and hold window.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Timing Conditions for Proper Operation of Gates

Real gates react to their inputs after their propagation delay (tpd)
Before tpd the output is not valid

Output could be invalid voltage or make undesired transitions
During the calculation of the output the inputs must be stable

After tpd the output remains stable while the input does
For the flip-flop the data input needs to be stable at the rising clock edge

Setup time tsu before / hold time th after the clock edge
Output changed after clock-to-output time (tco)

stable
tsu th

stable
tsu th

tco tco

CLK

D data1 data2

Q data1 data2

3

Timing Conditions for Proper Operation of Gates

Real gates react to their inputs after their propagation delay (tpd)
Before tpd the output is not valid

Output could be invalid voltage or make undesired transitions
During the calculation of the output the inputs must be stable

After tpd the output remains stable while the input does
For the flip-flop the data input needs to be stable at the rising clock edge

Setup time tsu before / hold time th after the clock edge
Output changed after clock-to-output time (tco)

stable
tsu th

stable
tsu th

tco tco

CLK

D data1 data2

Q data1 data2

Synchronous Design Style
Timing

Timing Conditions for Proper Operation of Gates

Furthermore, it takes some time for a flip flop to copy the input value to the output. This time is the clock to output time.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Building Functions from Gates

Larger functions are composed of many simple gates

Gates operate concurrently
Each gate has an individual delay
Some gates will provide inputs for others

How to ensure proper operation?
⇒ Requires coordination!

A

B

CTRL

OUT

4

Building Functions from Gates

Larger functions are composed of many simple gates

Gates operate concurrently
Each gate has an individual delay
Some gates will provide inputs for others

How to ensure proper operation?
⇒ Requires coordination!

A

B

CTRL

OUT

Synchronous Design Style
Functions

Building Functions from Gates

By appropriate composition of gates larger and more complex functions can be realized. For example, the slide shows the
gate-level implementation of a multiplexer circuit. You should already familiar with this circuit where depending on the control
input either the input ”A” or ”B” is forward to the output.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Building Functions from Gates

Larger functions are composed of many simple gates
Gates operate concurrently
Each gate has an individual delay
Some gates will provide inputs for others

How to ensure proper operation?
⇒ Requires coordination!

A

B

CTRL

OUT

4

Building Functions from Gates

Larger functions are composed of many simple gates
Gates operate concurrently
Each gate has an individual delay
Some gates will provide inputs for others

How to ensure proper operation?
⇒ Requires coordination!

A

B

CTRL

OUT

Synchronous Design Style
Functions

Building Functions from Gates

In such a larger function all gates operate in parallel and independent of each other. The only coupling between gates
happens when one gate is providing the input for another. This enormous parallelism gives hardware its high performance
but also makes it hard to design it.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Building Functions from Gates

Larger functions are composed of many simple gates
Gates operate concurrently
Each gate has an individual delay
Some gates will provide inputs for others

How to ensure proper operation?

⇒ Requires coordination!

A

B

CTRL

OUT

4

Building Functions from Gates

Larger functions are composed of many simple gates
Gates operate concurrently
Each gate has an individual delay
Some gates will provide inputs for others

How to ensure proper operation?

⇒ Requires coordination!

A

B

CTRL

OUT

Synchronous Design Style
Functions

Building Functions from Gates

But how can we guarantee proper operating conditions for such a receiving gate under these circumstances? The gates
providing its individual inputs may have different propagation delays, and they may even have received their respective inputs
at different points in time. And how does the gate know when an individual input is stable at all?



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Building Functions from Gates

Larger functions are composed of many simple gates
Gates operate concurrently
Each gate has an individual delay
Some gates will provide inputs for others

How to ensure proper operation?
⇒ Requires coordination!

A

B

CTRL

OUT

4

Building Functions from Gates

Larger functions are composed of many simple gates
Gates operate concurrently
Each gate has an individual delay
Some gates will provide inputs for others

How to ensure proper operation?
⇒ Requires coordination!

A

B

CTRL

OUT

Synchronous Design Style
Functions

Building Functions from Gates

Obviously we need to somehow coordinate these activities.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Coordination in Real Life

5

Coordination in Real Life

Synchronous Design Style
Coordination

Coordination in Real Life

To better understand the problem and maybe get an idea for a solution principle, let us look at a real-world example: In an
orchestra we have individual musicians whose activities need to be coordinated. How is that achieved? Well, we all know
that there is a conductor who takes care of this. But what is the abstract principle? Can we use this principle when designing
circuits and coordinating gates?



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

The Orchestra’s Coordination Principle

There is no global notion of time ⇒ the conductor introduces one

Each musician knows their specific schedule
A global plan ensures the desired result as a sum of all activities

6

The Orchestra’s Coordination Principle

There is no global notion of time ⇒ the conductor introduces one

Each musician knows their specific schedule
A global plan ensures the desired result as a sum of all activities

Synchronous Design Style
Coordination

The Orchestra’s Coordination Principle

The general problem is that there is no notion of time shared by the musicians. This prevents them from coordinating the
play themselves as they do not know when other musicians will start or stop playing and when the time has come where they
should play themselves. This is where the conductor comes in. In fact, with their batons that are visible for all, a conductor
provides a global notion of time, namely the beat.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

The Orchestra’s Coordination Principle

There is no global notion of time ⇒ the conductor introduces one
Each musician knows their specific schedule

A global plan ensures the desired result as a sum of all activities

6

The Orchestra’s Coordination Principle

There is no global notion of time ⇒ the conductor introduces one
Each musician knows their specific schedule

A global plan ensures the desired result as a sum of all activities

Synchronous Design Style
Coordination

The Orchestra’s Coordination Principle

Each musician knows, for their specific instrument, how to time their activities relative to this time base. They do not need to
communicate with others, not even know about their schedule. They can simply know when and what to play with based on
this global beat.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

The Orchestra’s Coordination Principle

There is no global notion of time ⇒ the conductor introduces one
Each musician knows their specific schedule
A global plan ensures the desired result as a sum of all activities

6

The Orchestra’s Coordination Principle

There is no global notion of time ⇒ the conductor introduces one
Each musician knows their specific schedule
A global plan ensures the desired result as a sum of all activities

Synchronous Design Style
Coordination

The Orchestra’s Coordination Principle

The brilliant thing now is that the composer has puzzled out a global plan that makes sure that the contributions of the
individual instruments sum up to a marvelous symphony if they all adhere to the conductor.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Coordination in Synchronous Logic

We require a global notion of time

Global clock distributed over the complete circuit ⇒ clock edges represent
ticks of global time
Combinational gates cannot be controlled by a clock

⇒ We put flip-flops between them to
capture the output at the right moment, and
keep the input stable sufficiently long enough

clock period

global time
t1 t2

clock

Which clock period to choose?

7

Coordination in Synchronous Logic

We require a global notion of time

Global clock distributed over the complete circuit ⇒ clock edges represent
ticks of global time
Combinational gates cannot be controlled by a clock

⇒ We put flip-flops between them to
capture the output at the right moment, and
keep the input stable sufficiently long enough

clock period

global time
t1 t2

clock

Which clock period to choose?

Synchronous Design Style
Coordination

Coordination in Synchronous Logic

Can we apply this principle to our circuit problem? In fact, the musicians correspond to the logic gates, and the circuit
designer takes the role of the ingenious composer. Thus, the only thing missing is a pendant to the conductor that introduces
a global notion of time.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Coordination in Synchronous Logic

We require a global notion of time
Global clock distributed over the complete circuit ⇒ clock edges represent
ticks of global time

Combinational gates cannot be controlled by a clock
⇒ We put flip-flops between them to

capture the output at the right moment, and
keep the input stable sufficiently long enough

clock period

global time
t1 t2

clock

Which clock period to choose?

7

Coordination in Synchronous Logic

We require a global notion of time
Global clock distributed over the complete circuit ⇒ clock edges represent
ticks of global time

Combinational gates cannot be controlled by a clock
⇒ We put flip-flops between them to

capture the output at the right moment, and
keep the input stable sufficiently long enough

clock period

global time
t1 t2

clock

Which clock period to choose?

Synchronous Design Style
Coordination

Coordination in Synchronous Logic

In a synchronous circuit the idea is to introduce a clock generator whose output is distributed over the whole circuit to
establish a global time base. This clock corresponds to the role of the conductor in an orchestra. However, instead making
the progress of time visible to all musicians via a moving baton, we use the edges of the clock signal when designing a
synchronous circuit.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Coordination in Synchronous Logic

We require a global notion of time
Global clock distributed over the complete circuit ⇒ clock edges represent
ticks of global time
Combinational gates cannot be controlled by a clock

⇒ We put flip-flops between them to
capture the output at the right moment, and
keep the input stable sufficiently long enough

clock period

global time
t1 t2

clock

Which clock period to choose?

7

Coordination in Synchronous Logic

We require a global notion of time
Global clock distributed over the complete circuit ⇒ clock edges represent
ticks of global time
Combinational gates cannot be controlled by a clock

⇒ We put flip-flops between them to
capture the output at the right moment, and
keep the input stable sufficiently long enough

clock period

global time
t1 t2

clock

Which clock period to choose?

Synchronous Design Style
Coordination

Coordination in Synchronous Logic

On the slide you can see an illustration of how the clock can be used to introduce a notion of time. Typically, the clock is
an oscillating signal with rectangular shape. The time between two rising clock edges is the period of the clock signal. By
knowing this period, we can relate the progression of time to the occurrence of clock edges. In this illustration we can see
that each rising edge is associated with a global time.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Coordination in Synchronous Logic

We require a global notion of time
Global clock distributed over the complete circuit ⇒ clock edges represent
ticks of global time
Combinational gates cannot be controlled by a clock

⇒ We put flip-flops between them to
capture the output at the right moment, and
keep the input stable sufficiently long enough

clock period

global time
t1 t2

clock

Which clock period to choose?

7

Coordination in Synchronous Logic

We require a global notion of time
Global clock distributed over the complete circuit ⇒ clock edges represent
ticks of global time
Combinational gates cannot be controlled by a clock

⇒ We put flip-flops between them to
capture the output at the right moment, and
keep the input stable sufficiently long enough

clock period

global time
t1 t2

clock

Which clock period to choose?

Synchronous Design Style
Coordination

Coordination in Synchronous Logic

However, the combinational logic gates that implement our circuit’s logic function operate continuously and do not respect
any triggering by a clock. At this point the flip-flop comes to the rescue: Recall that its function is to copy it data input to the
output upon a rising clock edge. This is exactly what we need.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Coordination in Synchronous Logic

We require a global notion of time
Global clock distributed over the complete circuit ⇒ clock edges represent
ticks of global time
Combinational gates cannot be controlled by a clock

⇒ We put flip-flops between them to
capture the output at the right moment, and
keep the input stable sufficiently long enough

clock period

global time
t1 t2

clock

Which clock period to choose?

7

Coordination in Synchronous Logic

We require a global notion of time
Global clock distributed over the complete circuit ⇒ clock edges represent
ticks of global time
Combinational gates cannot be controlled by a clock

⇒ We put flip-flops between them to
capture the output at the right moment, and
keep the input stable sufficiently long enough

clock period

global time
t1 t2

clock

Which clock period to choose?

Synchronous Design Style
Coordination

Coordination in Synchronous Logic

So at some well-chosen places within our circuit we introduce flip-flops into the data flow. They can provide the two essential
functions we need for proper gate operation: Capture the output after it stabilized and keep the input stable for most of the
time.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Coordination in Synchronous Logic

We require a global notion of time
Global clock distributed over the complete circuit ⇒ clock edges represent
ticks of global time
Combinational gates cannot be controlled by a clock

⇒ We put flip-flops between them to
capture the output at the right moment, and
keep the input stable sufficiently long enough

clock period

global time
t1 t2

clock

Which clock period to choose?

7

Coordination in Synchronous Logic

We require a global notion of time
Global clock distributed over the complete circuit ⇒ clock edges represent
ticks of global time
Combinational gates cannot be controlled by a clock

⇒ We put flip-flops between them to
capture the output at the right moment, and
keep the input stable sufficiently long enough

clock period

global time
t1 t2

clock

Which clock period to choose?

Synchronous Design Style
Coordination

Coordination in Synchronous Logic

Naturally this only works if we choose an appropriate clock. However – when is a clock appropriate? Can the clock period be
arbitrary?



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Assembly Line Optimization

8

Assembly Line Optimization

Synchronous Design Style
Timing Analysis

Assembly Line Optimization

To find an answer, let us again look into a real-world example. This time we use an assembly line for cars. It comprises
a number of stations, where a machine does some specific processing on the chassis of the car currently in front of it. All
machines do their processing in parallel, each on a different car. When that is finished, the belt moves the cars forward,
each to the respective next machine for the next processing step. For the time between two steps we need to consider
that all machines do their processing in parallel and we cannot move the belt forward before the longest processing step has
finished. Otherwise, we would propagate car chassis that are not yet ready for subsequent steps. This will introduce errors
in the final car, maybe amplified by other stages not being able to correctly perform their task due to the chassis being in the
wrong state.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Timing the Assembly Line

Once all machines have finished their current processing, the conveyor
belt can move on all vehicles to the next machine

The minimum time step between such movements is determined by the
machine that has the longest processing time

processing time

machines

machine 1

machine 2

machine x

machine n

...

...

min. step size

9

Timing the Assembly Line

Once all machines have finished their current processing, the conveyor
belt can move on all vehicles to the next machine

The minimum time step between such movements is determined by the
machine that has the longest processing time

processing time

machines

machine 1

machine 2

machine x

machine n

...

...

min. step size

Synchronous Design Style
Timing Analysis

Timing the Assembly Line

As a consequence, the conveyor belt must only move once all machines are done with their processing steps. With all
vehicles being moved at once by the conveyor belt, we must obviously always wait for the slowest processing step. The
image on the slide illustrates this. For all ”n” machines participating in the assembly line we have plotted the processing time
they require.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Timing the Assembly Line

Once all machines have finished their current processing, the conveyor
belt can move on all vehicles to the next machine
The minimum time step between such movements is determined by the
machine that has the longest processing time

processing time

machines

machine 1

machine 2

machine x

machine n

...

...

min. step size

9

Timing the Assembly Line

Once all machines have finished their current processing, the conveyor
belt can move on all vehicles to the next machine
The minimum time step between such movements is determined by the
machine that has the longest processing time

processing time

machines

machine 1

machine 2

machine x

machine n

...

...

min. step size

Synchronous Design Style
Timing Analysis

Timing the Assembly Line

One processing time will be greater or equal to all other machines’ times. This is the minimal step size of the conveyor belt.
This longest processing time is the minimum interval between two conveyor belt movements. The pace for moving the belt
must consider that. Of course, it can move slower than that, but never faster without compromising the whole assembly line.
In our example the slowest one is machine ”X”.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Static Timing Analysis (STA)

In a synchronous design the circuit is partitioned into blocks through the
insertion of flip-flops

To identify the minimum clock period we use static timing analysis (STA)

Determine the signal delays through each block (take the slowest)
The longest of all such block delays is the critical path
After this delay even the slowest output is stable
We must also ensure stable flip-flop inputs around clock edges

This critical path delay determines the minimum clock period

The maximum clock frequency is the inverse of this period

For the best performance we choose our clock frequency close to the
maximum from the STA ⇒ more in a later lecture

10

Static Timing Analysis (STA)

In a synchronous design the circuit is partitioned into blocks through the
insertion of flip-flops

To identify the minimum clock period we use static timing analysis (STA)

Determine the signal delays through each block (take the slowest)
The longest of all such block delays is the critical path
After this delay even the slowest output is stable
We must also ensure stable flip-flop inputs around clock edges

This critical path delay determines the minimum clock period

The maximum clock frequency is the inverse of this period

For the best performance we choose our clock frequency close to the
maximum from the STA ⇒ more in a later lecture

Synchronous Design Style
Timing Analysis

Static Timing Analysis (STA)

How can we apply this insight to our problem? By inserting flip-flops as mentioned before, we have partitioned the logic
into smaller blocks. These flip-flops take the role of the conveyor belt: They capture an output and convey it to the next
stage. Between each two flip-flops we have a combinational logic block that performs a function on the output of one flip-flop
and provides its result to the input of the next flip-flop. This combinational logic thus takes the role of the machines along
the conveyor belt with the propagation delay of each combinational function corresponding to the processing time of the
machines.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Static Timing Analysis (STA)

In a synchronous design the circuit is partitioned into blocks through the
insertion of flip-flops
To identify the minimum clock period we use static timing analysis (STA)

Determine the signal delays through each block (take the slowest)
The longest of all such block delays is the critical path
After this delay even the slowest output is stable
We must also ensure stable flip-flop inputs around clock edges

This critical path delay determines the minimum clock period

The maximum clock frequency is the inverse of this period

For the best performance we choose our clock frequency close to the
maximum from the STA ⇒ more in a later lecture

10

Static Timing Analysis (STA)

In a synchronous design the circuit is partitioned into blocks through the
insertion of flip-flops
To identify the minimum clock period we use static timing analysis (STA)

Determine the signal delays through each block (take the slowest)
The longest of all such block delays is the critical path
After this delay even the slowest output is stable
We must also ensure stable flip-flop inputs around clock edges

This critical path delay determines the minimum clock period

The maximum clock frequency is the inverse of this period

For the best performance we choose our clock frequency close to the
maximum from the STA ⇒ more in a later lecture

Synchronous Design Style
Timing Analysis

Static Timing Analysis (STA)

To determine the pace for moving, which is the clock frequency in our case, we need to make sure all computations are
finished before moving on. This means that we have to determine the propagation of each combinational function and to
ensure that the clock period is sufficiently high. Otherwise, invalid outputs might be forwarded by the flip-flops, just as with
the unfinished chassis on the conveyor belt. This is the purpose of the so-called static timing analysis.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Static Timing Analysis (STA)

In a synchronous design the circuit is partitioned into blocks through the
insertion of flip-flops
To identify the minimum clock period we use static timing analysis (STA)

Determine the signal delays through each block (take the slowest)
The longest of all such block delays is the critical path

After this delay even the slowest output is stable
We must also ensure stable flip-flop inputs around clock edges

This critical path delay determines the minimum clock period

The maximum clock frequency is the inverse of this period

For the best performance we choose our clock frequency close to the
maximum from the STA ⇒ more in a later lecture

10

Static Timing Analysis (STA)

In a synchronous design the circuit is partitioned into blocks through the
insertion of flip-flops
To identify the minimum clock period we use static timing analysis (STA)

Determine the signal delays through each block (take the slowest)
The longest of all such block delays is the critical path

After this delay even the slowest output is stable
We must also ensure stable flip-flop inputs around clock edges

This critical path delay determines the minimum clock period

The maximum clock frequency is the inverse of this period

For the best performance we choose our clock frequency close to the
maximum from the STA ⇒ more in a later lecture

Synchronous Design Style
Timing Analysis

Static Timing Analysis (STA)

First we determine the longest propagation path from any of its inputs to its output for each combinational logic block. Here, a
propagation path is the sum of propagation delays of all the gates the respective signal is running through. Since we cannot
change the clock-period on the fly in general, we have to ensure that the clock supports the longest possible path through
the block, such that it will always finish with its computation within a clock period. This longest path is also called the critical
path of the block. Next we search for the longest critical path among all blocks. It corresponds to the longest possible
processing time of a machine along the conveyor belt.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Static Timing Analysis (STA)

In a synchronous design the circuit is partitioned into blocks through the
insertion of flip-flops
To identify the minimum clock period we use static timing analysis (STA)

Determine the signal delays through each block (take the slowest)
The longest of all such block delays is the critical path
After this delay even the slowest output is stable
We must also ensure stable flip-flop inputs around clock edges

This critical path delay determines the minimum clock period

The maximum clock frequency is the inverse of this period

For the best performance we choose our clock frequency close to the
maximum from the STA ⇒ more in a later lecture

10

Static Timing Analysis (STA)

In a synchronous design the circuit is partitioned into blocks through the
insertion of flip-flops
To identify the minimum clock period we use static timing analysis (STA)

Determine the signal delays through each block (take the slowest)
The longest of all such block delays is the critical path
After this delay even the slowest output is stable
We must also ensure stable flip-flop inputs around clock edges

This critical path delay determines the minimum clock period

The maximum clock frequency is the inverse of this period

For the best performance we choose our clock frequency close to the
maximum from the STA ⇒ more in a later lecture

Synchronous Design Style
Timing Analysis

Static Timing Analysis (STA)

After the delay of this critical path, even the slowest output in our circuit has stabilized. Recall that we previously also
mentioned that the input data of a flip flop must be stable at the clock edge where it captures the data and that it takes some
time after each clock edge until the new output data is provided. We therefore also have to consider the output delay of the
flip-flop that feeds the critical path input, as well as the setup time of the flip-flop that captures the block output for the clock
period limit.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Static Timing Analysis (STA)

In a synchronous design the circuit is partitioned into blocks through the
insertion of flip-flops
To identify the minimum clock period we use static timing analysis (STA)

Determine the signal delays through each block (take the slowest)
The longest of all such block delays is the critical path
After this delay even the slowest output is stable
We must also ensure stable flip-flop inputs around clock edges

This critical path delay determines the minimum clock period

The maximum clock frequency is the inverse of this period

For the best performance we choose our clock frequency close to the
maximum from the STA ⇒ more in a later lecture

10

Static Timing Analysis (STA)

In a synchronous design the circuit is partitioned into blocks through the
insertion of flip-flops
To identify the minimum clock period we use static timing analysis (STA)

Determine the signal delays through each block (take the slowest)
The longest of all such block delays is the critical path
After this delay even the slowest output is stable
We must also ensure stable flip-flop inputs around clock edges

This critical path delay determines the minimum clock period

The maximum clock frequency is the inverse of this period

For the best performance we choose our clock frequency close to the
maximum from the STA ⇒ more in a later lecture

Synchronous Design Style
Timing Analysis

Static Timing Analysis (STA)

In conclusion, this critical path delay of our design constitutes the lower limit for our clock period. The clock period must not
be lower than this delay to ensure safe operation of the circuit.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Static Timing Analysis (STA)

In a synchronous design the circuit is partitioned into blocks through the
insertion of flip-flops
To identify the minimum clock period we use static timing analysis (STA)

Determine the signal delays through each block (take the slowest)
The longest of all such block delays is the critical path
After this delay even the slowest output is stable
We must also ensure stable flip-flop inputs around clock edges

This critical path delay determines the minimum clock period
The maximum clock frequency is the inverse of this period

For the best performance we choose our clock frequency close to the
maximum from the STA ⇒ more in a later lecture

10

Static Timing Analysis (STA)

In a synchronous design the circuit is partitioned into blocks through the
insertion of flip-flops
To identify the minimum clock period we use static timing analysis (STA)

Determine the signal delays through each block (take the slowest)
The longest of all such block delays is the critical path
After this delay even the slowest output is stable
We must also ensure stable flip-flop inputs around clock edges

This critical path delay determines the minimum clock period
The maximum clock frequency is the inverse of this period

For the best performance we choose our clock frequency close to the
maximum from the STA ⇒ more in a later lecture

Synchronous Design Style
Timing Analysis

Static Timing Analysis (STA)

Often when referring to clocks the clock frequency rather than period is given. Converting between these two quantities
happens via inversion. Note that the lower limit for the clock period can be converted into an upper limit for the clock
frequency by inversion.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Static Timing Analysis (STA)

In a synchronous design the circuit is partitioned into blocks through the
insertion of flip-flops
To identify the minimum clock period we use static timing analysis (STA)

Determine the signal delays through each block (take the slowest)
The longest of all such block delays is the critical path
After this delay even the slowest output is stable
We must also ensure stable flip-flop inputs around clock edges

This critical path delay determines the minimum clock period
The maximum clock frequency is the inverse of this period

For the best performance we choose our clock frequency close to the
maximum from the STA ⇒ more in a later lecture

10

Static Timing Analysis (STA)

In a synchronous design the circuit is partitioned into blocks through the
insertion of flip-flops
To identify the minimum clock period we use static timing analysis (STA)

Determine the signal delays through each block (take the slowest)
The longest of all such block delays is the critical path
After this delay even the slowest output is stable
We must also ensure stable flip-flop inputs around clock edges

This critical path delay determines the minimum clock period
The maximum clock frequency is the inverse of this period

For the best performance we choose our clock frequency close to the
maximum from the STA ⇒ more in a later lecture

Synchronous Design Style
Timing Analysis

Static Timing Analysis (STA)

Naturally we want to approach the highest possible clock frequency, in order to obtain the best performance and thus want
to achieve a small clock period. We will discuss methods to reduce the clock period in future lectures.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Static Timing Analysis Illustration

D Q

FF1

D Q

FF2

D Q

FFk

...

DATA1

DATA2

DATAk comb. logic D Q

FFm

OUT

CLK
tdly,1m

tdly,2m

tdly,km

11

Static Timing Analysis Illustration

D Q

FF1

D Q

FF2

D Q

FFk

...

DATA1

DATA2

DATAk comb. logic D Q

FFm

OUT

CLK
tdly,1m

tdly,2m

tdly,km

Synchronous Design Style
Timing Analysis

Static Timing Analysis Illustration

Let us look at an illustration of what you heard on the previous slide. On the slide you can see a circuit consisting of ”k” input
flip-flops that capture the bits of a data word provided to them. The outputs of these flip-flops are connected to a block of
some combinational logic and the result of this logic is then captured by a flip-flop and provided at its output.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Static Timing Analysis Illustration

D Q

FF1

D Q

FF2

D Q

FFk

...

DATA1

DATA2

DATAk comb. logic D Q

FFm

OUT

CLK
tdly,1m

tdly,2m

tdly,km

11

Static Timing Analysis Illustration

D Q

FF1

D Q

FF2

D Q

FFk

...

DATA1

DATA2

DATAk comb. logic D Q

FFm

OUT

CLK
tdly,1m

tdly,2m

tdly,km

Synchronous Design Style
Timing Analysis

Static Timing Analysis Illustration

All flip-flops are connected to our global clock and the goal of the ”STA” is to determine the smallest possible clock period, or
equivalently the highest possible clock frequency.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Static Timing Analysis Illustration

D Q

FF1

D Q

FF2

D Q

FFk

...

DATA1

DATA2

DATAk comb. logic D Q

FFm

OUT

CLK
tdly,1m

tdly,2m

tdly,km

11

Static Timing Analysis Illustration

D Q

FF1

D Q

FF2

D Q

FFk

...

DATA1

DATA2

DATAk comb. logic D Q

FFm

OUT

CLK
tdly,1m

tdly,2m

tdly,km

Synchronous Design Style
Timing Analysis

Static Timing Analysis Illustration

We start by determining the worst-case delay on the path from the output of the first flip-flop, through the combinational logic,
to the input of the final flip flop. This path is highlighted in red.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Static Timing Analysis Illustration

D Q

FF1

D Q

FF2

D Q

FFk

...

DATA1

DATA2

DATAk comb. logic D Q

FFm

OUT

CLK
tdly,1m

tdly,2m

tdly,km

11

Static Timing Analysis Illustration

D Q

FF1

D Q

FF2

D Q

FFk

...

DATA1

DATA2

DATAk comb. logic D Q

FFm

OUT

CLK
tdly,1m

tdly,2m

tdly,km

Synchronous Design Style
Timing Analysis

Static Timing Analysis Illustration

Likewise we determine all other such paths from the remaining input flip-flops. Note that the propagation delay through the
combinational logic can and will usually be different for the different flip-flop outputs, as the signals run through different
gates.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Calculation Example

Highest possible clock frequency fclk when the flip-flops’ tco = tsu = 1ns?

Tclk = (14 + 1 + 1)ns ⇒ fclk = T−1
clk = (16ns)−1 = 62.5MHz

D Q

FFA

D Q

FFB

D Q

FFC

D Q

FFX

D Q

FFY

clk

A

B

C

X

Y

tpd,path = 11nstpd,path = 13ns path delay [ns]
FFA → FFX 11
FFA → FFX 13
FFA → FFY 10
FFA → FFY 14
FFB → FFX 13
FFB → FFY 11
FFB → FFY 14
FFC → FFX 11
FFC → FFX 2
FFC → FFY 11
FFC → FFY 10

12

Calculation Example

Highest possible clock frequency fclk when the flip-flops’ tco = tsu = 1ns?

Tclk = (14 + 1 + 1)ns ⇒ fclk = T−1
clk = (16ns)−1 = 62.5MHz

D Q

FFA

D Q

FFB

D Q

FFC

D Q

FFX

D Q

FFY

clk

A

B

C

X

Y

tpd,path = 11nstpd,path = 13ns path delay [ns]
FFA → FFX 11
FFA → FFX 13
FFA → FFY 10
FFA → FFY 14
FFB → FFX 13
FFB → FFY 11
FFB → FFY 14
FFC → FFX 11
FFC → FFX 2
FFC → FFY 11
FFC → FFY 10

Synchronous Design Style
Timing Analysis

Calculation Example

Let us now consider a bit less abstract example for a static timing analysis. On the slide you can see a circuit consisting
of three input flip-flops, a combinational function, and two output flip-flops. We want to determine the maximum possible
clock frequency such that only valid values are captured by the flip-flops. Naturally we require information about the timing
properties of the individual elements of the circuit to perform the ”STA”. Both the clock-to-output and the setup time for
the flip-flops are given to be one nanosecond. This means that it takes one nanosecond each time the flip-flop samples a
value until it is available at its output, and that the flip-flop inputs must be stable for at least one nanosecond before they get
sampled.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Calculation Example

Highest possible clock frequency fclk when the flip-flops’ tco = tsu = 1ns?

Tclk = (14 + 1 + 1)ns ⇒ fclk = T−1
clk = (16ns)−1 = 62.5MHz

4

6

3

2

5

4

2

4

10

D Q

FFA

D Q

FFB

D Q

FFC

D Q

FFX

D Q

FFY

clk

A

B

C

X

Y

tpd,path = 11nstpd,path = 13ns path delay [ns]
FFA → FFX 11
FFA → FFX 13
FFA → FFY 10
FFA → FFY 14
FFB → FFX 13
FFB → FFY 11
FFB → FFY 14
FFC → FFX 11
FFC → FFX 2
FFC → FFY 11
FFC → FFY 10

12

Calculation Example

Highest possible clock frequency fclk when the flip-flops’ tco = tsu = 1ns?

Tclk = (14 + 1 + 1)ns ⇒ fclk = T−1
clk = (16ns)−1 = 62.5MHz

4

6

3

2

5

4

2

4

10

D Q

FFA

D Q

FFB

D Q

FFC

D Q

FFX

D Q

FFY

clk

A

B

C

X

Y

tpd,path = 11nstpd,path = 13ns path delay [ns]
FFA → FFX 11
FFA → FFX 13
FFA → FFY 10
FFA → FFY 14
FFB → FFX 13
FFB → FFY 11
FFB → FFY 14
FFC → FFX 11
FFC → FFX 2
FFC → FFY 11
FFC → FFY 10

Synchronous Design Style
Timing Analysis

Calculation Example

The combinational gates have different propagation delays, shown in nanoseconds in the respective symbol. Now we have
to consider all possible paths from the output of a flip-flop to the input of a flip-flop.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Calculation Example

Highest possible clock frequency fclk when the flip-flops’ tco = tsu = 1ns?

Tclk = (14 + 1 + 1)ns ⇒ fclk = T−1
clk = (16ns)−1 = 62.5MHz

4

6

3

2

5

4

2

4

10

D Q

FFA

D Q

FFB

D Q

FFC

D Q

FFX

D Q

FFY

clk

A

B

C

X

Y

tpd,path = 11nstpd,path = 13ns path delay [ns]
FFA → FFX 11
FFA → FFX 13
FFA → FFY 10
FFA → FFY 14
FFB → FFX 13
FFB → FFY 11
FFB → FFY 14
FFC → FFX 11
FFC → FFX 2
FFC → FFY 11
FFC → FFY 10

12

Calculation Example

Highest possible clock frequency fclk when the flip-flops’ tco = tsu = 1ns?

Tclk = (14 + 1 + 1)ns ⇒ fclk = T−1
clk = (16ns)−1 = 62.5MHz

4

6

3

2

5

4

2

4

10

D Q

FFA

D Q

FFB

D Q

FFC

D Q

FFX

D Q

FFY

clk

A

B

C

X

Y

tpd,path = 11nstpd,path = 13ns path delay [ns]
FFA → FFX 11
FFA → FFX 13
FFA → FFY 10
FFA → FFY 14
FFB → FFX 13
FFB → FFY 11
FFB → FFY 14
FFC → FFX 11
FFC → FFX 2
FFC → FFY 11
FFC → FFY 10

Synchronous Design Style
Timing Analysis

Calculation Example

For example, one such path goes from the output of flip-flop ”A” via and ”AND” gate, an ”OR” gate, and finally and ”AND” gate
again to the input of flip-flop ”X”. The total propagation delay along this path is the sum of the gate delays and thus eleven
nanoseconds.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Calculation Example

Highest possible clock frequency fclk when the flip-flops’ tco = tsu = 1ns?

Tclk = (14 + 1 + 1)ns ⇒ fclk = T−1
clk = (16ns)−1 = 62.5MHz

4

6

3

2

5

4

2

4

10

D Q

FFA

D Q

FFB

D Q

FFC

D Q

FFX

D Q

FFY

clk

A

B

C

X

Y

tpd,path = 11nstpd,path = 13ns path delay [ns]
FFA → FFX 11
FFA → FFX 13
FFA → FFY 10
FFA → FFY 14
FFB → FFX 13
FFB → FFY 11
FFB → FFY 14
FFC → FFX 11
FFC → FFX 2
FFC → FFY 11
FFC → FFY 10

12

Calculation Example

Highest possible clock frequency fclk when the flip-flops’ tco = tsu = 1ns?

Tclk = (14 + 1 + 1)ns ⇒ fclk = T−1
clk = (16ns)−1 = 62.5MHz

4

6

3

2

5

4

2

4

10

D Q

FFA

D Q

FFB

D Q

FFC

D Q

FFX

D Q

FFY

clk

A

B

C

X

Y

tpd,path = 11nstpd,path = 13ns path delay [ns]
FFA → FFX 11
FFA → FFX 13
FFA → FFY 10
FFA → FFY 14
FFB → FFX 13
FFB → FFY 11
FFB → FFY 14
FFC → FFX 11
FFC → FFX 2
FFC → FFY 11
FFC → FFY 10

Synchronous Design Style
Timing Analysis

Calculation Example

We can systematically continue to analyze all paths from flip-flop ”A” to one of the output flip-flops. The table to the right
contains the determined path delays.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Calculation Example

Highest possible clock frequency fclk when the flip-flops’ tco = tsu = 1ns?

Tclk = (14 + 1 + 1)ns ⇒ fclk = T−1
clk = (16ns)−1 = 62.5MHz

4

6

3

2

5

4

2

4

10

D Q

FFA

D Q

FFB

D Q

FFC

D Q

FFX

D Q

FFY

clk

A

B

C

X

Y

tpd,path = 11nstpd,path = 13ns path delay [ns]
FFA → FFX 11
FFA → FFX 13
FFA → FFY 10
FFA → FFY 14
FFB → FFX 13
FFB → FFY 11
FFB → FFY 14
FFC → FFX 11
FFC → FFX 2
FFC → FFY 11
FFC → FFY 10

12

Calculation Example

Highest possible clock frequency fclk when the flip-flops’ tco = tsu = 1ns?

Tclk = (14 + 1 + 1)ns ⇒ fclk = T−1
clk = (16ns)−1 = 62.5MHz

4

6

3

2

5

4

2

4

10

D Q

FFA

D Q

FFB

D Q

FFC

D Q

FFX

D Q

FFY

clk

A

B

C

X

Y

tpd,path = 11nstpd,path = 13ns path delay [ns]
FFA → FFX 11
FFA → FFX 13
FFA → FFY 10
FFA → FFY 14
FFB → FFX 13
FFB → FFY 11
FFB → FFY 14
FFC → FFX 11
FFC → FFX 2
FFC → FFY 11
FFC → FFY 10

Synchronous Design Style
Timing Analysis

Calculation Example

We then continue with the next flip-flop, in this case the one labelled ”B” and determine all paths to any output flip-flop. The
slide shows one such path with a delay of thirteen nanoseconds.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Calculation Example

Highest possible clock frequency fclk when the flip-flops’ tco = tsu = 1ns?

Tclk = (14 + 1 + 1)ns ⇒ fclk = T−1
clk = (16ns)−1 = 62.5MHz

4

6

3

2

5

4

2

4

10

D Q

FFA

D Q

FFB

D Q

FFC

D Q

FFX

D Q

FFY

clk

A

B

C

X

Y

tpd,path = 11nstpd,path = 13ns path delay [ns]
FFA → FFX 11
FFA → FFX 13
FFA → FFY 10
FFA → FFY 14
FFB → FFX 13
FFB → FFY 11
FFB → FFY 14
FFC → FFX 11
FFC → FFX 2
FFC → FFY 11
FFC → FFY 10

12

Calculation Example

Highest possible clock frequency fclk when the flip-flops’ tco = tsu = 1ns?

Tclk = (14 + 1 + 1)ns ⇒ fclk = T−1
clk = (16ns)−1 = 62.5MHz

4

6

3

2

5

4

2

4

10

D Q

FFA

D Q

FFB

D Q

FFC

D Q

FFX

D Q

FFY

clk

A

B

C

X

Y

tpd,path = 11nstpd,path = 13ns path delay [ns]
FFA → FFX 11
FFA → FFX 13
FFA → FFY 10
FFA → FFY 14
FFB → FFX 13
FFB → FFY 11
FFB → FFY 14
FFC → FFX 11
FFC → FFX 2
FFC → FFY 11
FFC → FFY 10

Synchronous Design Style
Timing Analysis

Calculation Example

After we are done enumerating all paths and determining their respective delay value, we can easily determine the critical
one. In this case we have two paths through the combinational logic with an overall delay of fourteen nanoseconds. They are
both highlighted in red in the table. Furthermore, one of them is highlighted in the circuit as well.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Calculation Example

Highest possible clock frequency fclk when the flip-flops’ tco = tsu = 1ns?

Tclk = (14 + 1 + 1)ns ⇒ fclk = T−1
clk = (16ns)−1 = 62.5MHz

4

6

3

2

5

4

2

4

10

D Q

FFA

D Q

FFB

D Q

FFC

D Q

FFX

D Q

FFY

clk

A

B

C

X

Y

tpd,path = 11nstpd,path = 13ns path delay [ns]
FFA → FFX 11
FFA → FFX 13
FFA → FFY 10
FFA → FFY 14
FFB → FFX 13
FFB → FFY 11
FFB → FFY 14
FFC → FFX 11
FFC → FFX 2
FFC → FFY 11
FFC → FFY 10

12

Calculation Example

Highest possible clock frequency fclk when the flip-flops’ tco = tsu = 1ns?

Tclk = (14 + 1 + 1)ns ⇒ fclk = T−1
clk = (16ns)−1 = 62.5MHz

4

6

3

2

5

4

2

4

10

D Q

FFA

D Q

FFB

D Q

FFC

D Q

FFX

D Q

FFY

clk

A

B

C

X

Y

tpd,path = 11nstpd,path = 13ns path delay [ns]
FFA → FFX 11
FFA → FFX 13
FFA → FFY 10
FFA → FFY 14
FFB → FFX 13
FFB → FFY 11
FFB → FFY 14
FFC → FFX 11
FFC → FFX 2
FFC → FFY 11
FFC → FFY 10

Synchronous Design Style
Timing Analysis

Calculation Example

Knowing the longest path through the combinational logic we can finally determine the highest possible clock period. To
do so we take the clock-to-output and setup times of our flip-flops, both one nanosecond, and add it to the critical path
we determined. This tells us that the smallest possible clock period is sixteen nanoseconds, resulting in a maximum clock
frequency of 62.5 MHz.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Benefits of Synchronous Design

Discretization of Time
Concentrate on points in time where all inputs and outputs are stable

⇒ Designing synchronous circuits is relatively easy and efficient
High efficiency

Just one single signal required to coordinate all activities in the circuit
This periodic clock signal is easy to generate

Proven in practice
Billion working designs

13

Benefits of Synchronous Design

Discretization of Time
Concentrate on points in time where all inputs and outputs are stable

⇒ Designing synchronous circuits is relatively easy and efficient
High efficiency

Just one single signal required to coordinate all activities in the circuit
This periodic clock signal is easy to generate

Proven in practice
Billion working designs

Synchronous Design Style
Timing Analysis

Benefits of Synchronous Design

Now that we understand the concept of synchronous design, let us review its benefits.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Benefits of Synchronous Design

Discretization of Time
Concentrate on points in time where all inputs and outputs are stable

⇒ Designing synchronous circuits is relatively easy and efficient

High efficiency
Just one single signal required to coordinate all activities in the circuit
This periodic clock signal is easy to generate

Proven in practice
Billion working designs

13

Benefits of Synchronous Design

Discretization of Time
Concentrate on points in time where all inputs and outputs are stable

⇒ Designing synchronous circuits is relatively easy and efficient

High efficiency
Just one single signal required to coordinate all activities in the circuit
This periodic clock signal is easy to generate

Proven in practice
Billion working designs

Synchronous Design Style
Timing Analysis

Benefits of Synchronous Design

First of all, the discretization of time through the clock makes it much easier to design a circuit. We do not need to consider
unstable signals or unwanted transitions. We just operate with stable values on a fixed time grid. By just concentrating on
the points in time, where all signals are stable, we can comparably easy and efficiently design circuits.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Benefits of Synchronous Design

Discretization of Time
Concentrate on points in time where all inputs and outputs are stable

⇒ Designing synchronous circuits is relatively easy and efficient
High efficiency

Just one single signal required to coordinate all activities in the circuit
This periodic clock signal is easy to generate

Proven in practice
Billion working designs

13

Benefits of Synchronous Design

Discretization of Time
Concentrate on points in time where all inputs and outputs are stable

⇒ Designing synchronous circuits is relatively easy and efficient
High efficiency

Just one single signal required to coordinate all activities in the circuit
This periodic clock signal is easy to generate

Proven in practice
Billion working designs

Synchronous Design Style
Timing Analysis

Benefits of Synchronous Design

But also the implementation is very efficient. If we need to implement some coordination for our circuit, what could be simpler
than using a ”single” signal for this purpose! And a periodic signal can be easily generated by an oscillator. In practice, most
often a crystal oscillator is used due to its good stability.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Benefits of Synchronous Design

Discretization of Time
Concentrate on points in time where all inputs and outputs are stable

⇒ Designing synchronous circuits is relatively easy and efficient
High efficiency

Just one single signal required to coordinate all activities in the circuit
This periodic clock signal is easy to generate

Proven in practice
Billion working designs

13

Benefits of Synchronous Design

Discretization of Time
Concentrate on points in time where all inputs and outputs are stable

⇒ Designing synchronous circuits is relatively easy and efficient
High efficiency

Just one single signal required to coordinate all activities in the circuit
This periodic clock signal is easy to generate

Proven in practice
Billion working designs

Synchronous Design Style
Timing Analysis

Benefits of Synchronous Design

And finally, synchronous design has proven useful in billions of working designs, and engineers have lots of experiences with
it.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Issues with Synchronous Design

Clock distribution
Clock edges must arrive at all flip flops at (nearly) the same time

⇒ The clock network is power hungry and challenging to design
Delay uncertainties

Propagation delays vary with temperature, supply voltage and are subject to
fabrication tolerances

⇒ Require worst-case assumptions, wasting performance
Rigid timing, no graceful degradation

Propagation delay exceeds clock period ⇒ completely wrong results
produced

However: synchronous design is the most widely used design style
Alternatives exist (advanced courses)

14

Issues with Synchronous Design

Clock distribution
Clock edges must arrive at all flip flops at (nearly) the same time

⇒ The clock network is power hungry and challenging to design
Delay uncertainties

Propagation delays vary with temperature, supply voltage and are subject to
fabrication tolerances

⇒ Require worst-case assumptions, wasting performance
Rigid timing, no graceful degradation

Propagation delay exceeds clock period ⇒ completely wrong results
produced

However: synchronous design is the most widely used design style
Alternatives exist (advanced courses)

Synchronous Design Style
Timing Analysis

Issues with Synchronous Design

However, there are a couple of issues with synchronous design as well.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Issues with Synchronous Design

Clock distribution
Clock edges must arrive at all flip flops at (nearly) the same time

⇒ The clock network is power hungry and challenging to design

Delay uncertainties
Propagation delays vary with temperature, supply voltage and are subject to
fabrication tolerances

⇒ Require worst-case assumptions, wasting performance
Rigid timing, no graceful degradation

Propagation delay exceeds clock period ⇒ completely wrong results
produced

However: synchronous design is the most widely used design style
Alternatives exist (advanced courses)

14

Issues with Synchronous Design

Clock distribution
Clock edges must arrive at all flip flops at (nearly) the same time

⇒ The clock network is power hungry and challenging to design

Delay uncertainties
Propagation delays vary with temperature, supply voltage and are subject to
fabrication tolerances

⇒ Require worst-case assumptions, wasting performance
Rigid timing, no graceful degradation

Propagation delay exceeds clock period ⇒ completely wrong results
produced

However: synchronous design is the most widely used design style
Alternatives exist (advanced courses)

Synchronous Design Style
Timing Analysis

Issues with Synchronous Design

A central assumption for our coordination approach was that the clock establishes a global time base that is perceived by
all flip-flops in the exact same way. This means all flip-flops must receive the clock edges at the same time. This is close
to impossible, since the distribution of the clock requires a huge tree of signal lines. These signal lines have delays, and
for signal integrity purposes there may be buffers inserted that add extra delay. So a very careful balancing of these delays
and clever arrangement of the tree needs to be done. In addition, the large tree wit its numerous buffers consumes a lot of
power.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Issues with Synchronous Design

Clock distribution
Clock edges must arrive at all flip flops at (nearly) the same time

⇒ The clock network is power hungry and challenging to design
Delay uncertainties

Propagation delays vary with temperature, supply voltage and are subject to
fabrication tolerances

⇒ Require worst-case assumptions, wasting performance

Rigid timing, no graceful degradation
Propagation delay exceeds clock period ⇒ completely wrong results
produced

However: synchronous design is the most widely used design style
Alternatives exist (advanced courses)

14

Issues with Synchronous Design

Clock distribution
Clock edges must arrive at all flip flops at (nearly) the same time

⇒ The clock network is power hungry and challenging to design
Delay uncertainties

Propagation delays vary with temperature, supply voltage and are subject to
fabrication tolerances

⇒ Require worst-case assumptions, wasting performance

Rigid timing, no graceful degradation
Propagation delay exceeds clock period ⇒ completely wrong results
produced

However: synchronous design is the most widely used design style
Alternatives exist (advanced courses)

Synchronous Design Style
Timing Analysis

Issues with Synchronous Design

Another major issue comes from the fact that propagation delays are in practice not well known. They vary with temperature
and supply voltage, and in the nanoscale, fabrication delay is also subject to considerable tolerances. So in the static timing
analysis we need to stay on the safe side and assume the worst conceivable conditions, the so-called worst case. This then
results in a conservative clock limit for the whole design, while most of the individual chips implementing the circuit could in
fact go faster.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Issues with Synchronous Design

Clock distribution
Clock edges must arrive at all flip flops at (nearly) the same time

⇒ The clock network is power hungry and challenging to design
Delay uncertainties

Propagation delays vary with temperature, supply voltage and are subject to
fabrication tolerances

⇒ Require worst-case assumptions, wasting performance
Rigid timing, no graceful degradation

Propagation delay exceeds clock period ⇒ completely wrong results
produced

However: synchronous design is the most widely used design style
Alternatives exist (advanced courses)

14

Issues with Synchronous Design

Clock distribution
Clock edges must arrive at all flip flops at (nearly) the same time

⇒ The clock network is power hungry and challenging to design
Delay uncertainties

Propagation delays vary with temperature, supply voltage and are subject to
fabrication tolerances

⇒ Require worst-case assumptions, wasting performance
Rigid timing, no graceful degradation

Propagation delay exceeds clock period ⇒ completely wrong results
produced

However: synchronous design is the most widely used design style
Alternatives exist (advanced courses)

Synchronous Design Style
Timing Analysis

Issues with Synchronous Design

Finally, if a delay ever exceeds the worst case assumption, the circuit will deliver a completely wrong result. There is no
gradual way of failing like a delayed or just slightly incorrect result.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis

Issues with Synchronous Design

Clock distribution
Clock edges must arrive at all flip flops at (nearly) the same time

⇒ The clock network is power hungry and challenging to design
Delay uncertainties

Propagation delays vary with temperature, supply voltage and are subject to
fabrication tolerances

⇒ Require worst-case assumptions, wasting performance
Rigid timing, no graceful degradation

Propagation delay exceeds clock period ⇒ completely wrong results
produced

However: synchronous design is the most widely used design style
Alternatives exist (advanced courses)

14

Issues with Synchronous Design

Clock distribution
Clock edges must arrive at all flip flops at (nearly) the same time

⇒ The clock network is power hungry and challenging to design
Delay uncertainties

Propagation delays vary with temperature, supply voltage and are subject to
fabrication tolerances

⇒ Require worst-case assumptions, wasting performance
Rigid timing, no graceful degradation

Propagation delay exceeds clock period ⇒ completely wrong results
produced

However: synchronous design is the most widely used design style
Alternatives exist (advanced courses)

Synchronous Design Style
Timing Analysis

Issues with Synchronous Design

In spite of all that, synchronous design is by far the most widely adopted design style and the standard way of doing digital
design. However, it should be noted that it is also possible to achieve the required coordination without a clock using the
asynchronous design paradigm. You can learn more about that in more advanced courses.



HWMod
WS24

Sync. Design
Gates

Seq. Logic

Timing

Functions

Coordination

Timing Analysis Lecture Complete!

Modified: 2025-03-12, 16:33 (21636bb)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.


	Synchronous Design Style
	Gates
	Seq. Logic
	Timing
	Functions
	Coordination
	Timing Analysis


