Ls
ubprograms
Hardware Modeling [VU] (191.011)

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

Ws 202425

In order to facilitate reusability, maintainability, modularity and increased readability, VHDL comes with subprograms in dif-
ferent flavors. While we have already encountered them in previous lectures out of necessity, we will cover them in detail in
this dedicated lecture. Prominent examples we already saw are conversion functions like to_string, resolution functions,

as well as logic and arithmetic operators.

HWMod
WS24

it Hardware Modeling [VU] (191.011)
- WS24 -

Subprograms

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-12, 16:24 (b25118c)

I—Subprograms

L_Overview —

VHDL features two forms of subprograms, referred to as function and procedure. Both encapsulate sequential pieces
of code and take parameters which must be provided when calling the respective subprogram. You can compare them to
functions in C or methods in Java. We will now give a short overview about the differences between them before discussing
their respective properties in more detail.

Overview

HWMod
WS24

Subprograms m Functions

m Procedures

I—Subprograms
L_Overview
In VHDL, functions always return a value of a pre-defined base type, resulting in function calls being expressions. Therefore,

function calls must always be part of some statement, meaning the returned value must always be used. There is no option
The VHDL standard further differentiates between functions having no side effects and being

to drop it like in C, or Java.
deterministic, and functions for which this is not the case.

Overview
HWMod
WS24
Subprograms m Functions

m Call is expression returning a value

m Procedures

I—Subprograms

L_Overview

So-called pure functions only use their parameters to compute a return value and are therefore deterministic and free of
side effects.

Overview
HWMod
WS24
Subprograms m Functions

m Call is expression returning a value
m pure: No side effects, same parameters = same return value

m Procedures

I—Subprograms

L_Overview

In addition to pure functions, there are the so-called impure functions, which can have side effects and are allowed to
be nondeterministic, meaning that distinct calls with the same parameters may return different results. We will consider
examples for both kinds of functions later.

Overview
HWMod
WS24
Subprograms m Functions

m Call is expression returning a value
m pure: No side effects, same parameters = same return value
m impure: Side effects possible, return value can vary for identical calls

m Procedures

I—Subprograms

L_Overview

The other class of subprograms is the so-called procedure. Subprograms of this kind do not return a value, therefore only
operating via side effects.

Overview
HWMod
WS24
Subprograms m Functions

m Call is expression returning a value
m pure: No side effects, same parameters = same return value
m impure: Side effects possible, return value can vary for identical calls

m Procedures

I—Subprograms

L_Overview

Furthermore, without a value being returned, procedure calls are also not expressions but rather statements. This means
they are used on their own. A further difference to functions is that the subset of VHDL statements they are allowed to contain
is not as restrictive as the one of functions. We will explain this in more detail later.

Overview
HWMod
WS24
Subprograms m Functions

m Call is expression returning a value
m pure: No side effects, same parameters = same return value
m impure: Side effects possible, return value can vary for identical calls

m Procedures
m Call is statement with side effects and no return value

I—Subprograms

L_Overview

Before we continue, we want to show the syntax of subprogram calls via two examples.

Overview

HWMod
WS24

Subprograms m Functions

m Call is expression returning a value
m pure: No side effects, same parameters = same return value
m impure: Side effects possible, return value can vary for identical calls

m Procedures
m Call is statement with side effects and no return value
m Subprogram call

I—Subprograms

L_Overview

In the first example, we call the already encountered to_st ring function, which has a single parameter and returns a string.
Note how the syntax of the function call is just like the one you know from C and Java. That is, parameters are associated to
the respective arguments in parentheses. However, it is also possible to map parameters via named association, similar to

entity instantiations.

Overview
HWMod
WS24
Subprograms m Functions

m Call is expression returning a value
m pure: No side effects, same parameters = same return value
m impure: Side effects possible, return value can vary for identical calls

m Procedures
m Call is statement with side effects and no return value

m Subprogram call

m Parameters passed in parentheses
report to_string(x); —-- function call with one parameter

I—Subprograms

L_Overview

The other example shows a call to a procedure called stop that has no parameters. Observe how, different to C or Java,
that does not pass arguments does not feature parentheses.

Overview

HWMod
WS24

Subprograms m Functions
m Call is expression returning a value
m pure: No side effects, same parameters = same return value
m impure: Side effects possible, return value can vary for identical calls
m Procedures
m Call is statement with side effects and no return value
m Subprogram call
m Parameters passed in parentheses
report to_string(x); —-- function call with one parameter
m In case of zero parameters no parentheses
stop; —— procedure call without parameters

I—Subprograms

L_Overview

We will now continue by discussing functions in more detail.

Overview

HWMod
WS24

Subprograms m Functions
m Call is expression returning a value
m pure: No side effects, same parameters = same return value
m impure: Side effects possible, return value can vary for identical calls
m Procedures
m Call is statement with side effects and no return value
m Subprogram call
m Parameters passed in parentheses
report to_string(x); —-- function call with one parameter
m In case of zero parameters no parentheses
stop; —— procedure call without parameters

I—Subprograms
L—Functions
L_Functions

= Simplified declaration syntax

First, let us consider the syntax for declaring functions. Be aware though, that we will only consider a simple subset of
possible VHDL functions in this course and that we will restrict the declaration syntax accordingly. In case you are curious
though, be invited to have a look at the respective section of the VHDL standard.

Functions

HWMod
WS24

m Simplified declaration syntax

Overview

&
L-Subprograms —
L—Functions N
L_Functions

By now, you should already be quite familiar with the general structure of the function declaration, as the declarations of a
process, entity and architecture are quite similar. Nevertheless, we will now quickly go through it.

Functions

HWMod
WS24

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] -- function body

5 return ...;

6 end function;

&
L-Subprograms —
L_Functions N
L_Functions

Naturally, a funct ion declaration contains a function designator, just like as for an entity, an optional list of parameter as
well as a return type.

Functions

HWMod
WS24

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] -- function body

5 return ...;

6 end function;

®
I—Subprograms
L—Functions -
L_Functions

The designator can either be an identifier or an operator symbol, like a + or —. We will consider an example for both
soon.

Functions

HWMod
WS24

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] -- function body

5 return ...;

6 end function;

I—Subprograms
L—Functions ‘
I_ Fu nction S ' Type of the returned value can be scalar or composite

= Simplified declaration syntax

The purpose of the return type between the parameter list and the declarative part is to define the base type of the returned
values. This can be any scalar or composite type. It is even possible to specify an unconstrained composite type.

Functions

HWMod
WS24

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]
3 begin
4 [statement part] -- function body
5
6

return ...;
end function;

m Type of the returned value can be scalar or composite

L-Subprograms
LFunctions :
LFunctions I —

= Simplified declaration syntax

Of course we also need a means to declare whether a function is supposed to be pure or impure depending on which kind
it is. However, since all functions are pure per default this element of the declaration is optional until an impure function is
desired.

Functions

HWMod
WS24

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]
3 begin
4 [statement part] -- function body
5
6

return ...;
end function;

m Type of the returned value can be scalar or composite
m Default is pure

I—Subprograms
L—Functions
L_Functions

= Simplified declaration syntax

lue can be scalar or composite

Functions in VHDL are primarily supposed to be used for computing values.

Functions

HWMod
WS24

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] -- function body

5 return ...;

6 end function;

m Type of the returned value can be scalar or composite
m Default is pure
m Primarily for computing values

I—Subprograms
L—Functions
L_Functions

= Simplified declaration syntax

xr or composite

This is enforced by disallowing functions to advance the simulation time.

Functions

HWMod
WS24

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] -- function body

5 return ...;

6 end function;

m Type of the returned value can be scalar or composite
m Default is pure
m Primarily for computing values

= Does not advance simulation time

I—Subprograms
L—Functions
L_Functions

= Simplified declaration syntax

xr or composite

This is achieved by prohibiting functions to contain wait in their statement part, which can, other than that, in general consist
of a sequence of almost arbitrary sequential statements.

Functions

HWMod
WS24

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] -- function body

5 return ...;

6 end function;

m Type of the returned value can be scalar or composite
m Default is pure
m Primarily for computing values
= Does not advance simulation time
m Must not contain wait statements

I—Subprograms
L—Functions
L_Functions

= Simplified declaration syntax

Consequently, functions must also not call any other subprogram that advances the simulation time within their statement
part. While this is satisfied for all function calls per definition, we will later see that for procedures this is not always the case.

Functions

HWMod
WS24

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] -- function body

5 return ...;

6 end function;

m Type of the returned value can be scalar or composite
m Default is pure
m Primarily for computing values
= Does not advance simulation time
m Must not contain wait statements
m Must also hold for subprograms called inside the body

I—Subprograms
L—Functions
L_Functions

= Simplified declaration syntax

Finally, each path through a function’s body must end in a return statement. This can either be a single one at the end
of a function, or multiple ones in case of distinct termination conditions. Naturally, the type of the value returned by these
statements must fit the declared return type.

Functions
HWMod
WS24
m Simplified declaration syntax
1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
CEREY 2 [declarative_part]
3 begin
4 [statement part] -- function body
5 BEEblgl 66 o
6 end function;
m Type of the returned value can be scalar or composite
m Default is pure
m Primarily for computing values

= Does not advance simulation time
m Must not contain wait statements
m Must also hold for subprograms called inside the body

Must always end in return

I—Subprograms
L—Functions
L_Function Parameters

We will now discuss the optional parameter list of functions.

Function Parameters

HWMod
WS24

m Declaration syntax

Overview

I—Subprograms
L—Functions
L_Function Parameters

= Declaration syntax

A parameter list consists of lists, in the syntax referred to as parameters, of parameter identifiers that share class and type.
These lists are separated via semicolon.

Function Parameters

HWMod
WS24

m Declaration syntax
parameter_list ::= parameters{; parameters}

Overview

I_ SprrOgramS = Declaration syntax
L_Functions =
L_Function Parameters

Parameters can either be of the class constant, signal or file, with constant being the default. While we already
discussed the constant and signal classes by now, the £ile class was not yet thoroughly introduced. This will be the
content of an upcoming lecture. However, for now we simply need to know that it allows us to interact with a file of the local
filesystem. The class in the declaration of parameters is responsible for determining how the respective parameters are
passed to a function and what of it is accessible within the function’s statement part.

Function Parameters

HWMod
WS24

m Declaration syntax

parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type

Overview

I—Subprograms
L—Functions
L_Function Parameters

= Declaration syntax

= Examples

The slide shows an example function declaration with a parameter list. This list consists of two lists in turn, one featuring two
integer parameters, and one featuring a single natural parameter.

Function Parameters

HWMod
WS24

m Declaration syntax

parameter_list ::= parameters{; parameters}
o parameters ::= [constant|signal|file] identifier_list: type
verview
m Examples
function fl(a,b : integer; signal ¢ : natural) return bit

I—Subprograms
L—Functions
L_Function Parameters

= Examples

The default type is constant. In this case, parameters are simply passed to a function by copying their value. An important
consequence of this is that if you pass a signal to a constant parameter - which is possible - just its value will be copied
but not its attributes.

Function Parameters

HWMod
WS24

m Declaration syntax

parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type

m Default parameter class is constant

Overview

m Examples

function fl(a,b : integer; signal c¢ : natural) return bit

I—Subprograms
L—Functions
L_Function Parameters

Therefore, if you need to access them, you need to declare the parameter to be of the signal class. In this case the attributes
will be copied as well. For example, this is done for the parameter c in the example shown on the slide.

Function Parameters

HWMod
WS24

m Declaration syntax

parameter_list ::= parameters{; parameters}

parameters ::= [constant|signal|file] identifier_list: type
m Default parameter class is constant

m Pass-by-copy

m If signal attributes are required use signal

Overview

m Examples

function fl(a,b : integer; signal c¢ : natural) return bit

I—Subprograms
L—Functions
L_Function Parameters

Also note that this pass-by-copy behavior means that parameters are in general not modifiable by functions.

Function Parameters

HWMod
WS24

m Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type
m Default parameter class is constant
m Pass-by-copy
m If signal attributes are required use signal
m Not modifiable by function (in general)

Overview

m Examples

function fl(a,b : integer; signal c¢ : natural) return bit

I—Subprograms
L—Functions
L_Function Parameters

= Declaration syntax

= Examples

The type of a parameter can be an arbitrary scalar or composite types, both constrained and unconstrained.

Function Parameters

HWMod
WS24

m Declaration syntax

parameter_list ::= parameters{; parameters}

parameters ::= [constant|signal|file] identifier_list: type
m Default parameter class is constant

m Pass-by-copy

m If signal attributes are required use signal

m Not modifiable by function (in general)
m Type: scalar or composite (possibly unconstrained)

Overview

m Examples

function fl(a,b : integer; signal c¢ : natural) return bit

I—Subprograms
L—Functions
L_Function Parameters

We also want to point out that it is possible to give parameters a default value as shown by the second example on the slide.
As in other programming languages, this value will be used when no respective parameter is passed during the function
call.

Function Parameters

HWMod
WS24

m Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type
m Default parameter class is constant
m Pass-by-copy
m If signal attributes are required use signal
m Not modifiable by function (in general)
m Type: scalar or composite (possibly unconstrained)
m Default value possible

Overview

m Examples
function fl(a,b : integer; signal c¢ : natural) return bit
function f2(a : integer := 42) return bit

I—Subprograms
L—Functions
L_Function Parameters

Finally, for the sake of completeness, the third example shows the declaration of a function without any parameters at all.
Note that, similar to calling such a function, no parentheses are used.

Function Parameters

HWMod
WS24

m Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type
m Default parameter class is constant
m Pass-by-copy
m If signal attributes are required use signal
m Not modifiable by function (in general)
m Type: scalar or composite (possibly unconstrained)
m Default value possible

Overview

m Examples
function fl(a,b : integer; signal c¢ : natural) return bit
function f2(a : integer := 42) return bit

function £3 return string

I—Subprograms
L—Functions
L_Pure Functions

As already mentioned before, there are two kinds of functions in VHDL, referred to as pure and impure. We will now discuss
pure functions.

Pure Functions

HWMod
WS24

Pure

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

I—Subprograms
L—Functions
L_Pure Functions

The idea behind pure functions is to make it explicit that a function is deterministic and that it does not have side effects. By
determinism, we mean that a function will always return the same value when passed the same parameters.

Pure Functions

Hilod m Always return same value when passed same parameters (determinism)

Pure

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

I—Subprograms
L—Functions
L_Pure Functions

To achieve this, pure functions are restricted to only use their parameters, as well as constants from the outer scope. A
function can thus, for example, use package constants to compute its return value.

Pure Functions

Hilod m Always return same value when passed same parameters (determinism)
= Can only access its parameters and constants from outer scope

Pure

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

I—Subprograms
L—Functions
L_Pure Functions

A consequence of a pure function not having access to anything from its outer scope other than constants is that it can also
note have any side-effects. While the idea of a pure function might sound odd at this point, this is actually something we
already encountered in previous lectures.

Pure Functions

Hilod m Always return same value when passed same parameters (determinism)
= Can only access its parameters and constants from outer scope

m Only computes value, no side effects

Pure

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

I—Subprograms
L—Functions
L_Pure Functions

One example are resolution functions like the one for std_logicinthe std_logic_1164 standard. Naturally we want this
resolution to be deterministic, as drivers applying the same values at different points in time should always result in the same
resolved value.

Pure Functions

Hilod m Always return same value when passed same parameters (determinism)
= Can only access its parameters and constants from outer scope
m Only computes value, no side effects
m Examples
A m Resolution functions (e.g., IEEE-1164’s resolved) &=

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

I—Subprograms
L—Functions
L_Pure Functions

The slide shows the declaration of this function. Since there is no explicit impure prefix, this function is a pure function. Note
how the single parameter is an unconstrained type.

Pure Functions

Hilod m Always return same value when passed same parameters (determinism)
= Can only access its parameters and constants from outer scope
m Only computes value, no side effects

m Examples
A m Resolution functions (e.g., IEEE-1164’s resolved) &=
1 function resolved (s : std_ulogic_vector) return std_ulogic is
2 variable result : std_ulogic := 'Z’;
3 begin
4 [...]
5 return result;
6 end function;

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

I—Subprograms
L—Functions
L_Pure Functions

Other examples are arithmetic and logic operators, like the integer addition shown on the slide.

Pure Functions

Hilod m Always return same value when passed same parameters (determinism)
= Can only access its parameters and constants from outer scope
m Only computes value, no side effects
m Examples
A m Resolution functions (e.g., IEEE-1164’s resolved) &=

1 function resolved (s : std_ulogic_vector) return std_ulogic is
2 variable result : std_ulogic := 'Z’;
3 begin
4 [...]
5 return result;
6 end function;

m Arithmetic and logic operators

1 function "+" (a, b: integer) return integer is
2 begin

3 return a+b;

4 end function;

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

I—Subprograms
L—Functions
L_Pure Functions

Note how the function designator is now an operator symbol instead of an identifier, showing that VHDL features operator
overloading like, for example, C++ and many other languages do.

Pure Functions

Hilod m Always return same value when passed same parameters (determinism)
= Can only access its parameters and constants from outer scope
m Only computes value, no side effects
m Examples
A m Resolution functions (e.g., IEEE-1164’s resolved) &=

1 function resolved (s : std_ulogic_vector) return std_ulogic is
2 variable result : std_ulogic := 'Z’;
3 begin
4 [...]
5 return result;
6 end function;

m Arithmetic and logic operators

1 function "+" (a, b: integer) return integer is
2 begin

3 return a+b;

4 end function;

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

I—Subprograms
L_Functions
L Impure Functions

An impure function is declared just like a pure function with the exception that it starts with the impure keyword.

Impure Functions

HWMod
WS24

Impure

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

I—Subprograms
L_Functions
L Impure Functions

= Might retun different value for same parameters (nondeterminisim)

In contrast to pure functions, it might return different values for the same parameter values. This essentially means that
impure functions are allowed to be non-deterministic.

Impure Functions

HWMod
e m Might return different value for same parameters (nondeterminism)

Impure

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

I—Subprograms
L_Functions
L Impure Functions

= Might retun different value for same parameters (nondeterminisim)

= Examples

An example where this nondeterminism is required is the now function that always returns the current simulation time when
called. The declaration of this function is shown on the slide. Naturally, the return value must be allowed to differ between
calls.

Impure Functions

HWMod
WS24
m Might return different value for same parameters (nondeterminism)
mevre m Examples

1 impure function now return delay_length; QPEN

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

I—Subprograms
L_Functions
L Impure Functions

= Might return different value for same parameters (nondeterminisim)
u Cana ind variables of outer scope

= Examples

To achieve this non-determinism, impure functions are not only allowed to access constants of the outer scope, but also
signals and variables.

Impure Functions

HWMod
WS24
m Might return different value for same parameters (nondeterminism)
m Can access signals and variables of outer scope
mevre m Examples

1 impure function now return delay_length; QPEN

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

I—Subprograms
L_Functions
L Impure Functions

Furthermore, in addition to this nondeterminism, impure functions are also allowed to have side effects. A consequence is
that a call of an impure function can modify some variable or signal from the outer scope. Note that this allows functions to
be stateful.

Impure Functions

HWMod
e m Might return different value for same parameters (nondeterminism)
m Can access signals and variables of outer scope
m Side effects possible = function can be stateful
mevre m Examples

1 impure function now return delay_length; QPEN

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

I—Subprograms
L_Functions
L Impure Functions

Let us now come to a bigger example, illustrating the need for nondeterminism and side effects. In particular, we will look at
a function for generating pseudo-random numbers.

Impure Functions

HWMod
e m Might return different value for same parameters (nondeterminism)
m Can access signals and variables of outer scope
m Side effects possible = function can be stateful
mevre m Examples

1 impure function now return delay_length; QPEN

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

I—Subprograms
L_Functions
L Impure Functions

The respective code is shown on the slide. We will now go through it step-by-step.

Impure Functions

HWMod
e m Might return different value for same parameters (nondeterminism)
m Can access signals and variables of outer scope
m Side effects possible = function can be stateful
mevre m Examples

1 impure function now return delay_length; QPEN

process 1is

1

2 variable ran : std_ulogic_vector (7 downto 0) := 8d"42";

3 impure function prng return integer is

4 begin

5 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
6 return to_integer (unsigned(ran));

7 end function;

8 [...]

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

I—Subprograms
L_Functions
L Impure Functions

Let us ignore the surrounding code for now and just focus on the function declaration. The function is supposed to return
a pseudo-random 8-bit number on each call. Since it does neither require nor take parameters and is supposed to return
different results, it must anturally be declared as impure function.

Impure Functions

HWMod
e m Might return different value for same parameters (nondeterminism)
m Can access signals and variables of outer scope
m Side effects possible = function can be stateful
mevre m Examples

1 impure function now return delay_length; QPEN

process 1is

1

2 variable ran : std_ulogic_vector (7 downto 0) := 8d"42";

3 impure function prng return integer is

4 begin

5 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
6 return to_integer (unsigned(ran));

7 end function;

8 [...]

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

I—Subprograms
L_Functions
L Impure Functions

Internally, the current value is always computed out of the previous one, starting with some initial value. To store the previous
value, this function clearly requires side effects.

Impure Functions

HWMod
e m Might return different value for same parameters (nondeterminism)
m Can access signals and variables of outer scope
m Side effects possible = function can be stateful
mevre m Examples

1 impure function now return delay_length; QPEN

process 1is

1

2 variable ran : std_ulogic_vector (7 downto 0) := 8d"42";

3 impure function prng return integer is

4 begin

5 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
6 return to_integer (unsigned(ran));

7 end function;

8 [...]

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

I—Subprograms
L_Functions
L Impure Functions

In particular, it assigns the result of some computation that is based on the current value of the ran variable to this exact
variable.

Impure Functions

HWMod
e m Might return different value for same parameters (nondeterminism)
m Can access signals and variables of outer scope
m Side effects possible = function can be stateful
mevre m Examples

1 impure function now return delay_length; QPEN

process 1is

1

2 variable ran : std_ulogic_vector (7 downto 0) := 8d"42";

3 impure function prng return integer is

4 begin

5 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
6 return to_integer (unsigned(ran));

7 end function;

8 [...]

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

I—Subprograms
L_Functions
L Impure Functions

This variable is declared in the outer scope of the function and initialized using a bit-string literal to get the pseudo-random
number generation going.

Impure Functions

HWMod
e m Might return different value for same parameters (nondeterminism)
m Can access signals and variables of outer scope
m Side effects possible = function can be stateful
mevre m Examples

1 impure function now return delay_length; QPEN

process is

1

2 variable ran : std_ulogic_vector (7 downto 0) := 8d"42";

3 impure function prng return integer is

4 begin

5 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
6 return to_integer (unsigned(ran));

7 end function;

8 [...]

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

I—Subprograms
L_Functions
L Impure Functions

We will not go into further detail about how the pseudo-random generation itself works. However, you might recognize this
as a linear feedback shift register.

Impure Functions

HWMod
e m Might return different value for same parameters (nondeterminism)
m Can access signals and variables of outer scope
m Side effects possible = function can be stateful
mevre m Examples

1 impure function now return delay_length; QPEN

process 1is

1

2 variable ran : std_ulogic_vector (7 downto 0) := 8d"42";

3 impure function prng return integer is

4 begin

5 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
6 return to_integer (unsigned(ran));

7 end function;

8 [...]

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

I—Subprograms
L_Functions
L_Recommendations

At this point you might ask yourself why you should even use pure functions when impure ones are a more powerful superset
of pure functions. This question is justified as there never is a real requirement to use a pure function.

Recommendations

HWMod
WS24

Recommendations

I—Subprograms
L_Functions
L_Recommendations

However, we still recommend you to use them whenever possible. The reasons being that this assists the tools in applying
optimizations and makes understanding and debugging your code significantly easier. Just consider yourself debugging code
from someone else and think about how comforting it would be when you could rule out whether a function has side effects

or not.

Recommendations

HWMod
WS24

m Use pure functions whenever possible
m Easier to understand and debug

Recommendations

I—Subprograms
L—Functions
L_Recommendations

Impure functions on the other hand, should only be used when you really require their properties.

Recommendations

HWMod
WS24

m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for

Recommendations

I—Subprograms
L_Functions
L_Recommendations

This is of course the case when your function is nondeterministic.

Recommendations
HWMod
WS24
m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for
Recommendatons m nondeterministic behavior

I—Subprograms
L_Functions
L_Recommendations

Another case is when you require your function to store something between calls.

Recommendations

HWMod
WS24

m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for

Recommendations m nondeterministic behavior
m stateful functions

I—Subprograms
L_Functions
L_Recommendations

Another use case is when you need to interface with the simulation host'’s file system. Clearly file /O require side effects.

Recommendations

HWMod
WS24

m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for

Recommendations m nondeterministic behavior
m stateful functions
m file /O

I—Subprograms
L_Functions
L_Recommendations

Finally impure functions are required when implementing protected types. While we have not covered these types yet, they
are quite a powerful feature of VHDL as they are somewhat akin to classes in object-oriented programming.

Recommendations

HWMod
WS24
m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for
Recommendations m nondeterministic behavior
m stateful functions
m file /O

m protected types

I—Subprograms

L_Functions
L_Recommendations

use sensible names!

At this point we also want to stress the need for good function names. This holds especially true if your functions have side

effects.

Recommendations

HWMod
WS24

m Use pure functions whenever possible
m Easier to understand and debug

m Use impure functions for
m nondeterministic behavior
m stateful functions
m file /O
m protected types
m Especially for impure functions with side effects: use sensible names!

Recommendations

I—Subprograms
L_Functions
L_Recommendations

Finally, we want to mention a caveat when using pure functions. As you might have noticed in the parameter list syntax
before, pure functions are allowed to have file parameters.

Recommendations

HWMod
WS24

m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for
Recommendatons m nondeterministic behavior
m stateful functions

m file I/O
m protected types

m Especially for impure functions with side effects: use sensible names!

m Caveat: File parameters can introduce non-determinism and side effects
into pure-functions

I—Subprograms
L_Functions
L_Recommendations

However, we strongly recommend you not to do this, as file I/O can always lead to side effects, nondeterminism with respect
to the function parameters, or both. This is strictly against the idea behind pure functions and you should therefore strictly
use impure functions in such cases.

Recommendations

HWMod
WS24

m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for
Recommendatons m nondeterministic behavior
m stateful functions
m file I/O
m protected types
m Especially for impure functions with side effects: use sensible names!
m Caveat: File parameters can introduce non-determinism and side effects
into pure-functions
= Recommendation: Do not use file parameters for pure functions

I—Subprograms
L_Procedures
L_Procedures

Next, let us talk about procedures, the second kind of subprograms.

Procedures

HWMod
WS24

Overview

I—Subprograms
L_Procedures
L_Procedures

' Primarily to encapsulate sequenial pieces of code (no return value)

While functions should primarily be used to compute values, procedures should be used to encapsulate sequential pieces of
code that do not produce a value. To some extent, they can be compared to void functions in C or Java.

Procedures

HWMod
WS24

m Primarily to encapsulate sequential pieces of code (no return value)

Overview

®
I—Subprograms

LProcedures
L_Procedures

There are two major differences when compared to functions. First, procedures never return a value.

Procedures

HWMod
WS24

m Primarily to encapsulate sequential pieces of code (no return value)
m Do not return a value

Overview

I—Subprograms
L_Procedures
L_Procedures

However, since procedures might terminate at multiple points in their body, they can contain return statements without a
value.

Procedures
HWMod
WS24
m Primarily to encapsulate sequential pieces of code (no return value)
m Do not return a value
Overview m However, return statements without value possible for termination

I—Subprograms
L_Procedures
L_Procedures

Second, procedures are allowed to consume simulation time and therefore to contain wait statements.

Procedures
HWMod
WS24
m Primarily to encapsulate sequential pieces of code (no return value)
m Do not return a value
Overview m However, return statements without value possible for termination

m Can contain wait statements

I—Subprograms
L_Procedures
L_Procedures

With procedures never returning a value, it is intuitively clear that they only work through side effects.

Procedures
HWMod
WS24
m Primarily to encapsulate sequential pieces of code (no return value)
m Do not return a value
Overview m However, return statements without value possible for termination

m Can contain wait statements
m Work via side effects

I—Subprograms
L_Procedures
L_Procedures

Therefore, procedures can access, and in particular modify, their outer scope. A procedure could, for example, drive the
ports of an entity or signals declared in an architecture.

Procedures
HWMod
WS24
m Primarily to encapsulate sequential pieces of code (no return value)
m Do not return a value
Overview m However, return statements without value possible for termination

m Can contain wait statements
m Work via side effects
m Access and modify outer scope

I—Subprograms
L_Procedures
L_Procedures

Finally, let us look at the simplified declaration syntax of procedures, shown on the bottom of the slide.

Procedures

HWMod
WS24

m Primarily to encapsulate sequential pieces of code (no return value)
m Do not return a value
Overview m However, return statements without value possible for termination
m Can contain wait statements
m Work via side effects
m Access and modify outer scope
m Simplified declaration syntax

1 procedure identifier|[(parameter_list)] is
2 [declarative_part]

3 begin

4 [statement part] procedure body

5 end procedure;

I—Subprograms
L_Procedures
L_Procedures

All in all, the syntax is quite similar to the one of functions, except that there is no return type and that a procedure does
not have a designator, but rather just an identifier. Thus, operators cannot be implemented by procedures. However, this
should already be intuitively clear by now, considering that an operation requires a result and thus a return value. Let us now
discuss the properties of procedure parameters;

Procedures

HWMod
WS24

m Primarily to encapsulate sequential pieces of code (no return value)
m Do not return a value
Overview m However, return statements without value possible for termination
m Can contain wait statements
m Work via side effects
m Access and modify outer scope

m Simplified declaration syntax

1 procedure identifier|[(parameter_list)] is
2 [declarative_part]

3 begin

4 [statement part] procedure body

5 end procedure;

L Subprograms
L_Procedures
L Procedure Parameters

Just like functions, procedures can have arbitrary many parameters of a scalar or composite type.

Procedure Parameters

HWMod
WS24

m Simplified declaration syntax

Parameters

L Subprograms
L_Procedures
L Procedure Parameters

However, if we consider the simplified syntax shown on the slide, we can observe two differences compared to function
parameter lists. Can you spot them?

Procedure Parameters

HWMod
WS24

m Simplified declaration syntax

Parameters

parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]
identifier_list: [in|out]|inout] type

L Subprograms
L_Procedures
L Procedure Parameters

The most important difference is that you can declare a parameter’s mode to be in, out or inout.

Procedure Parameters

HWMod
WS24

m Simplified declaration syntax

Parameters

parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]
identifier_list: [in|out|inout] type

I—Subprograms
L_Procedures —
L Procedure Parameters SR

The semantics of these parameter modes are virtually the same as for entity ports of the respective mode.

Procedure Parameters

HWMod
WS24

m Simplified declaration syntax

Parameters

parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]
identifier_list: [in|out]|inout] type

m Similar to ent ity port declaration

L Subprograms
L_Procedures
L Procedure Parameters

In particular, a procedure can drive its parameters if they are of the mode out or inout.

Procedure Parameters

HWMod
WS24

m Simplified declaration syntax

Parameters

parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]
identifier_list: [in|out|inout] type

m Similar to ent ity port declaration
m Procedures can drive out and inout parameters

I—Subprograms
L—Procedures —
L—Procedure Parameters St s

Furthermore, procedures can have parameters of the variable class. Since functions cannot modify their parameters they
do not support this class and just treat respective instance as constants.

Procedure Parameters

HWMod
WS24

m Simplified declaration syntax

Parameters

parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]
identifier_list: [in|out]|inout] type

m Similar to ent ity port declaration
m Procedures can drive out and inout parameters

I—Subprograms
L_Procedures
L Procedure Parameters

= Simplifed declaration syntax

Note that the default mode and class are in and constant.

Procedure Parameters

HWMod
WS24

m Simplified declaration syntax

Parameters

parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]
identifier_list: [in|out]|inout] type

m Similar to ent ity port declaration
m Procedures can drive out and inout parameters

m Default parameter mode and class are in and constant

I—Subprograms
LProcedures
LExample - Procedure

Apply puise ind ch

ook f a1 v i set

e_ent from outer scope

Let us now consider the example procedure shown on the slide. Note that probe, PULSE_WIDTH, alive and alive_cnt
are assumed to be within the procedures scope.

Example - Procedure

HWMod
Wos Apply pulse to probe, wait and check if alive is set

B probe, PULSE_WIDTH, alive, alive_cnt from outer scope
1 procedure probe_alive(wait_time : time) is

Example 2 begin
3 probe <= '17;

4 wait for PULSE_WIDTH;

5 probe <= '0’;

6 wait for wait_time;

7 if alive = "0’ then

8 report "Module not alive";
9 else

10 alive_cnt := alive_cnt + 1;
11 end if;

12 end procedure;

I—Subprograms
LProcedures
LExample - Procedure

The purpose of the prob_alive procedure is to apply a high pulse of a constant width to a signal called probe and to then
wait and check for a response.

Example - Procedure

HWMod
Wos Apply pulse to probe, wait and check if alive is set

B probe, PULSE_WIDTH, alive, alive_cnt from outer scope
1 procedure probe_alive (wait_time : time) is

Example 2 begin
3 probe <= '17;

4 wait for PULSE_WIDTH;

5 probe <= '0’;

6 wait for wait_time;

7 if alive = "0’ then

8 report "Module not alive";
9 else

10 alive_cnt := alive_cnt + 1;
11 end if;

12 end procedure;

I—Subprograms
LProcedures
LExample - Procedure

Apply puise ind ch

ook f a1 v i set

e_ent from outer scope

In a first step the procedure drives the probe signal from the outer scope to 1. Recall that this would not be possible within
a function.

Example - Procedure

HWMod
Wos Apply pulse to probe, wait and check if alive is set

B probe, PULSE_WIDTH, alive, alive_cnt from outer scope
1 procedure probe_alive(wait_time : time) is

Example 2 begin
3 probe <= '1’;

4 wait for PULSE_WIDTH;

5 probe <= '0’;

6 wait for wait_time;

7 if alive = "0’ then

8 report "Module not alive";
9 else

10 alive_cnt := alive_cnt + 1;
11 end if;

12 end procedure;

I—Subprograms
LProcedures
LExample - Procedure

Apply puise ind ch

ook f a1 v i set

e_ent from outer scope

Next, it uses a wait statement to wait for the outer scope’s constant PULSE_WIDTH and resets the probe signal. Again, this
is not achievable using a function.

Example - Procedure

HWMod
Wos Apply pulse to probe, wait and check if alive is set

B probe, PULSE_WIDTH, alive, alive_cnt from outer scope
1 procedure probe_alive(wait_time : time) is

Example 2 begin
3 probe <= '17;

4 wait for PULSE_WIDTH;

5 probe <= '0’;

6 wait for wait_time;

7 if alive = "0’ then

8 report "Module not alive";
9 else

10 alive_cnt := alive_cnt + 1;
11 end if;

12 end procedure;

I—Subprograms
LProcedures
LExample - Procedure

Apply puise ind ch

ook f a1 v i set

e_ent from outer scope

Next the procedure wait for the value passed via its parameter and then checks if alive is active or not. In case of inactivity
a message is printed and otherwise a variable incremented.

Example - Procedure

HWMod
Wos Apply pulse to probe, wait and check if alive is set

B probe, PULSE_WIDTH, alive, alive_cnt from outer scope
1 procedure probe_alive(wait_time : time) is

Example 2 begin
3 probe <= '17;

4 wait for PULSE_WIDTH;

5 probe <= '0’;

6 wait for wait_time;

7 if alive = "0’ then

8 report "Module not alive";
9 else

10 alive_cnt := alive_cnt + 1;
11 end if;

12 end procedure;

I—Subprograms
LProcedures
LExample - Procedure

Apply puise ind ch

ook f a1 v i set

e_ent from outer scope

Admittedly, this procedure appears a bit artificial. However, it nicely shows that we can access and also modify objects from
the outer scope, and use wait statements inside a procedure. Later, in chapter 2, we will use procedures to write concise
and maintainable testbenches.

Example - Procedure

HWMod
Wos Apply pulse to probe, wait and check if alive is set

B probe, PULSE_WIDTH, alive, alive_cnt from outer scope
1 procedure probe_alive(wait_time : time) is

Example 2 begin
3 probe <= '17;

4 wait for PULSE_WIDTH;

5 probe <= '0’;

6 wait for wait_time;

7 if alive = "0’ then

8 report "Module not alive";
9 else

10 alive_cnt := alive_cnt + 1;
11 end if;

12 end procedure;

I—Subprograms
L-Overloading
L_Subprogram Overloading

subprogram overloading

Similar to Java or C, VHDL supports the overloading of subprograms.

Subprogram Overloading

HWMod
WS24

m VHDL supports subprogram overloading

Overloading

I—Subprograms
L-Overloading
L_Subprogram Overloading

By that we mean that it is possible to have multiple subprograms with the same identifier or operator symbol, where either
the parameter list or return type differ such that the compiler can derive which version of the function is the desired one.

Subprogram Overloading

HWMod
WS24

m VHDL supports subprogram overloading
Overonsing m Overloaded subprograms must differ in one of the following

m Number of parameters
m Sequence of parameter types (if any)
m The result base type (for functions)

I—Subprograms
L-Overloading
L_Subprogram Overloading

For illustration, the slide shows four functions with the same identifier where the compiler can easily determine the correct
one.

Subprogram Overloading

HWMod
WS24

m VHDL supports subprogram overloading
Overonsing m Overloaded subprograms must differ in one of the following

m Number of parameters
m Sequence of parameter types (if any)
m The result base type (for functions)

m Examples

1 function add (a, b: integer) return integer

2 function add (a: signed; b: integer) return integer
3 function add (a: integer; b: signed) return integer
4 (a:

function add signed; b: integer) return signed

I—Subprograms
L-Overloading
L_Subprogram Overloading

Note how the second and the third function only differ in the order of their parameter types.

Subprogram Overloading

HWMod
WS24

m VHDL supports subprogram overloading
ovetondng m Overloaded subprograms must differ in one of the following
m Number of parameters

m Sequence of parameter types (if any)
m The result base type (for functions)

m Examples

function add
function add
function add
function add

a, b: integer) return integer

a: signed; b: integer) return integer
a: integer; b: signed) return integer
a: signed; b: integer) return signed

BwW O =

I—Subprograms
L-Overloading
L_Subprogram Overloading

Furthermore, the second and the fourth function declarations only differ in their return type.

Subprogram Overloading

HWMod
WS24

m VHDL supports subprogram overloading
ovetondng m Overloaded subprograms must differ in one of the following
m Number of parameters

m Sequence of parameter types (if any)
m The result base type (for functions)

m Examples

function add
function add
function add
function add

a, b: integer) return integer

a: signed; b: integer) return integer
a: integer; b: signed) return integer
a: signed; b: integer) return signed

BwW O =

I—Subprograms
L Packages PR —
I—Subprograms in Packages

Finally, let us end this lecture by discussing where subprograms can be declared.

Subprograms in Packages

HWMod
WS24

m Subprograms can be declared in the declaration sections of

Packages

I—Subprograms
L Packages
I—Subprograms in Packages

In principle, such declarations can occur in all declaration sections we encountered so far. In particular, this means that you
can declare subprograms in the declarative section of an entity, an architecture, a process or even a subprogram
itself.

Subprograms in Packages

HWMod
WS24

m Subprograms can be declared in the declaration sections of

m entities and architectures
m processes and subprograms

Packages

I—Subprograms
L Packages
I—Subprograms in Packages

However, none of these really facilitates wide-spread reuse of subprograms as all these declaration sections belong to specific
modules. This is where we can make use of packages. Recall that we have already seen packages in previous lectures,
where we considered them to be somewhat akin to C libraries or Java modules. However, so far we have only shown you
one half of what a package really comprises.

Subprograms in Packages

HWMod
WS24

m Subprograms can be declared in the declaration sections of

m entities and architectures
m processes and subprograms

m To facilitate reusability also possible in packages

Packages

I—Subprograms
L Packages
I—Subprograms in Packages

In particular, you know about the declarative part of a package. This part contains declarations of constants, types, com-
ponents and also subprograms to name the most important ones. However, in order to keep packages clean and compre-
hensible, subprogram declarations in packages are split into their signature and their body, where only the signature will be

contained in the package’s declarative section.

Subprograms in Packages

HWMod
WS24

m Subprograms can be declared in the declaration sections of
e m entities and architectures
m processes and subprograms
m To facilitate reusability also possible in packages
m The package declaration contains declarations (e.g., constants, types,
components, subprograms etc.)

I—Subprograms
L Packages
I—Subprograms in Packages

The bodies of subprograms, meaning their declarative and statement parts, must be contained in the so-called package
body.

Subprograms in Packages

HWMod
WS24

m Subprograms can be declared in the declaration sections of
m entities and architectures
m processes and subprograms
m To facilitate reusability also possible in packages
m The package declaration contains declarations (e.g., constants, types,
components, subprograms etc.)
m The package body contains the subprogram bodies

Packages

I—Subprograms @
L Packages
I—Subprograms in Packages

While this separation might seem odd initially, this is exactly what the C language does as well, with its function prototypes
and definitions. We will now consider an example to illustrate the declaration of subprograms in packages.

Subprograms in Packages

HWMod
WS24

m Subprograms can be declared in the declaration sections of
m entities and architectures
m processes and subprograms
m To facilitate reusability also possible in packages
m The package declaration contains declarations (e.g., constants, types,
components, subprograms etc.)

m The package body contains the subprogram bodies
= Similar to C function prototype and definition

Packages

I—Subprograms
I—Packages
L_Example - Package with Body

Consider the example package shown on the slide.

Example - Package with Body

ﬂ»@gﬁ 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package—-local auxiliary function; must be declared before use in max3
— 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;

I—Subprograms
I—Packages
L_Example - Package with Body

The first part is the declarative one we already know from previous lectures. It declares two constants, width and height,
and a function named max3 that computes the maximum of three integer numbers.

Example - Package with Body

ﬂ»@gﬁ 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package—-local auxiliary function; must be declared before use in max3
— 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;

I—Subprograms
I—Packages
L_Example - Package with Body

Below this declarative part, we can see a package body that contains the implementation of all functions declared in the
declarative part of the package. Since the compiler is aware of all subprograms signatures due to the package declarations,
the implementations inside the body of these subprograms can be in arbitrary order.

Example - Package with Body

ﬂx@gﬁ 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package-local auxiliary function; must be use in max3
— 8 function max(valuel, value2 : integer) return integer

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;

20 end package body;

I—Subprograms
I—Packages
L_Example - Package with Body

Finally, be aware that is also possible to have subprograms inside the package body only, meaning without their signature
occurring in the declarative part. This is useful if you require some package-internal auxiliary functions.

Example - Package with Body

ﬂ»@gﬁ 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package—-local auxiliary function; must be declared before use in max3
— 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;

I—Subprograms
I—Packages
L_Example - Package with Body

The example shows such a package-local auxiliary function, named max, which is used by max3.

Example - Package with Body

ﬂ»@gﬁ 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package—-local auxiliary function; must be declared before use in max3
— 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;

I—Subprograms
I—Packages
L_Example - Package with Body

Be aware that subprograms which are only declared in the package body are not visible outside this body. Therefore, if you
would import the shown math package into a program of yours, max would not be visible. Finally, we want to point out that
such local subprograms must be declared before their use, as is the case in the example.

Example - Package with Body

ﬂ»@gﬁ 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package—-local auxiliary function; must be declared before use in max3
— 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

HWMod
WS24

Example

Lecture Complete!

Modified: 2025-03-12, 16:24 (b25118c)

	Subprograms
	Functions
	Procedures
	Overloading
	Packages

