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3 begin
4 [statement part] -- function body
5 return ...;
6 end function;
m Type of the returned value can be scalar or composite
m Default is pure
m Primarily for computing values
= Does not advance simulation time
m Must not contain wait statements
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m Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type
m Default parameter class is constant
m Pass-by-copy
m If signal attributes are required use signal
m Not modifiable by function (in general)
m Type: scalar or composite (possibly unconstrained)
m Default value possible

Overview

m Examples
function fl(a,b : integer; signal ¢ : natural) return bit
function f2(a : integer := 42) return bit

function £3 return string
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m Easier to understand and debug
m Use impure functions for
Recommendatons m nondeterministic behavior
m stateful functions
m file /O
m protected types
m Especially for impure functions with side effects: use sensible names!
m Caveat: File parameters can introduce non-determinism and side effects
into pure-functions
= Recommendation: Do not use file parameters for pure functions
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m Simplified declaration syntax

Parameters

parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]
identifier_list: [in|out]|inout] type

m Similar to ent ity port declaration
m Procedures can drive out and inout parameters

m Default parameter mode and class are in and constant
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m Subprograms can be declared in the declaration sections of
m entities and architectures
m processes and subprograms
m To facilitate reusability also possible in packages
m The package declaration contains declarations (e.g., constants, types,
components, subprograms etc.)
m The package body contains the subprogram bodies
= Similar to C function prototype and definition



Example - Package with Body

ﬂ»@g? 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package-local auxiliary function; must be declared before use in max3
Sl 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value?2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;



Example - Package with Body

ﬂ»@g? 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3 : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package-local auxiliary function; must be declared before use in max3
Sl 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;



Example - Package with Body

ﬂ»@g? 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package-local auxiliary function; must be declared before use in max3
— 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;



Example - Package with Body

ﬂ»@g? 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package-local auxiliary function; must be declared before use in max3
Sl 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value?2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;



Example - Package with Body

ﬂ»@g? i package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package-local auxiliary function; must be declared before use in max3
Sl 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;



Example - Package with Body

ﬂ»@g? 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package-local auxiliary function; must be declared before use in max3
Sl 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value?2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;



HWMod
WS25

Lecture Complete!

Modified: 2025-12-16, 16:04 (f8a58e9)



	Subprograms
	Functions
	Procedures
	Overloading
	Packages


