HWMod
WS25

it Hardware Modeling [VU] (191.011)
— WS25 -

Subprograms

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:04 (f8a58e9)

Overview

HWMod
WS25

Subprograms m Functions

m Procedures

Overview

HWMod
WS25

Subprograms m Functions
m Call is expression returning a value

m Procedures

Overview

HWMod
WS25

Subprograms m Functions
m Call is expression returning a value

m pure: No side effects, same parameters = same return value

m Procedures

Overview

HWMod
WS25

Subprograms m Functions

m Call is expression returning a value
m pure: No side effects, same parameters = same return value
m impure: Side effects possible, return value can vary for identical calls

m Procedures

Overview

HWMod
WS25

Subprograms m Functions

m Call is expression returning a value
m pure: No side effects, same parameters = same return value
m impure: Side effects possible, return value can vary for identical calls

m Procedures

Overview

HWMod
WS25

Subprograms m Functions

m Call is expression returning a value
m pure: No side effects, same parameters = same return value
m impure: Side effects possible, return value can vary for identical calls

m Procedures
m Call is statement with side effects and no return value

Overview

HWMod
WS25

Subprograms m Functions

m Call is expression returning a value
m pure: No side effects, same parameters = same return value
m impure: Side effects possible, return value can vary for identical calls

m Procedures
m Call is statement with side effects and no return value
m Subprogram call

Overview

HWMod
WS25

Subprograms m Functions

m Call is expression returning a value
m pure: No side effects, same parameters = same return value
m impure: Side effects possible, return value can vary for identical calls

m Procedures
m Call is statement with side effects and no return value
m Subprogram call

m Parameters passed in parentheses
report to_string(x); —-- function call with one parameter

Overview

HWMod
WS25

Subprograms m Functions
m Call is expression returning a value
m pure: No side effects, same parameters = same return value
m impure: Side effects possible, return value can vary for identical calls
m Procedures
m Call is statement with side effects and no return value
m Subprogram call
m Parameters passed in parentheses
report to_string(x); —-- function call with one parameter
m In case of zero parameters no parentheses
stop; —— procedure call without parameters

Overview

HWMod
WS25

Subprograms m Functions
m Call is expression returning a value
m pure: No side effects, same parameters = same return value
m impure: Side effects possible, return value can vary for identical calls
m Procedures
m Call is statement with side effects and no return value
m Subprogram call
m Parameters passed in parentheses
report to_string(x); —-- function call with one parameter
m In case of zero parameters no parentheses
stop; —— procedure call without parameters

Functions

HWMod
WS25

m Simplified declaration syntax

Functions

HWMod
WS25

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] —- function body

5 return ...;

6 end function;

Functions

HWMod
WS25

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] —- function body

5 return ...;

6 end function;

Functions

HWMod
WS25

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] —- function body

5 return ...;

6 end function;

Functions

HWMod
WS25

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] —- function body

5 return ...;

6 end function;

m Type of the returned value can be scalar or composite

Functions

HWMod
WS25

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] —- function body

5 return ...;

6 end function;

m Type of the returned value can be scalar or composite
m Default is pure

Functions

HWMod
WS25

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] —- function body

5 return ...;

6 end function;

m Type of the returned value can be scalar or composite
m Default is pure
m Primarily for computing values

Functions

HWMod
WS25

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] -- function body

5 return ...;

6 end function;

m Type of the returned value can be scalar or composite
m Default is pure
m Primarily for computing values

= Does not advance simulation time

Functions

HWMod
WS25

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] -- function body

5 return ...;

6 end function;

m Type of the returned value can be scalar or composite
m Default is pure
m Primarily for computing values
= Does not advance simulation time
m Must not contain wait statements

Functions

HWMod
WS25

m Simplified declaration syntax

1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]

3 begin

4 [statement part] -- function body

5 return ...;

6 end function;

m Type of the returned value can be scalar or composite
m Default is pure
m Primarily for computing values
= Does not advance simulation time
m Must not contain wait statements
m Must also hold for subprograms called inside the body

Functions

HWMod
WS25
m Simplified declaration syntax
1 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
T 2 [declarative_part]
3 begin
4 [statement part] -- function body
5 return ...;
6 end function;
m Type of the returned value can be scalar or composite
m Default is pure
m Primarily for computing values
= Does not advance simulation time
m Must not contain wait statements
m Must also hold for subprograms called inside the body
m Must always end in return

Function Parameters

HWMod
WS25

m Declaration syntax

Function Parameters

HWMod
WS25 .
m Declaration syntax
parameter_list ::= parameters{; parameters}
Overview

Function Parameters

HWMod
WS25

m Declaration syntax

parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type

Overview

Function Parameters

HWMod
WS25

m Declaration syntax

parameter_list ::= parameters{; parameters}
o parameters ::= [constant|signal|file] identifier_list: type
verview
m Examples
function fl(a,b : integer; signal ¢ : natural) return bit

Function Parameters

HWMod
WS25

m Declaration syntax

parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type

m Default parameter class is constant

Overview

m Examples

function fl(a,b : integer; signal ¢ : natural) return bit

Function Parameters

HWMod
WS25

m Declaration syntax

parameter_list ::= parameters{; parameters}

parameters ::= [constant|signal|file] identifier_list: type
m Default parameter class is constant

m Pass-by-copy

m If signal attributes are required use signal

Overview

m Examples

function fl(a,b : integer; signal ¢ : natural) return bit

Function Parameters

HWMod
WS25

m Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type
m Default parameter class is constant
m Pass-by-copy
m If signal attributes are required use signal
m Not modifiable by function (in general)

Overview

m Examples

function fl(a,b : integer; signal ¢ : natural) return bit

Function Parameters

HWMod
WS25

m Declaration syntax

parameter_list ::= parameters{; parameters}

parameters ::= [constant|signal|file] identifier_list: type
m Default parameter class is constant

m Pass-by-copy

m If signal attributes are required use signal

m Not modifiable by function (in general)
m Type: scalar or composite (possibly unconstrained)

Overview

m Examples

function fl(a,b : integer; signal ¢ : natural) return bit

Function Parameters

HWMod
WS25

m Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type
m Default parameter class is constant
m Pass-by-copy
m If signal attributes are required use signal
m Not modifiable by function (in general)
m Type: scalar or composite (possibly unconstrained)
m Default value possible

Overview

m Examples
function fl(a,b : integer; signal ¢ : natural) return bit
function f2(a : integer := 42) return bit

Function Parameters

HWMod
WS25

m Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type
m Default parameter class is constant
m Pass-by-copy
m If signal attributes are required use signal
m Not modifiable by function (in general)
m Type: scalar or composite (possibly unconstrained)
m Default value possible

Overview

m Examples
function fl(a,b : integer; signal ¢ : natural) return bit
function f2(a : integer := 42) return bit

function £3 return string

Pure Functions

HWMod
WS25

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

Pure Functions

Hilod m Always return same value when passed same parameters (determinism)

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

Pure Functions

Hilod m Always return same value when passed same parameters (determinism)
= Can only access its parameters and constants from outer scope

Pure

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

Pure Functions

Hilod m Always return same value when passed same parameters (determinism)
= Can only access its parameters and constants from outer scope

m Only computes value, no side effects

Pure

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

HWMod
WS25

Pure

Pure Functions

m Always return same value when passed same parameters (determinism)
= Can only access its parameters and constants from outer scope

m Only computes value, no side effects

m Examples
m Resolution functions (e.g., IEEE-1164’s resolved) &=

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

Pure Functions

Hilod m Always return same value when passed same parameters (determinism)
= Can only access its parameters and constants from outer scope
m Only computes value, no side effects

m Examples
A m Resolution functions (e.g., IEEE-1164’s resolved) &=
1 function resolved (s : std_ulogic_vector) return std_ulogic is
2 variable result : std_ulogic := 'Z’;
3 begin
4 [...]
5 return result;
6 end function;

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

Pure Functions

Hilod m Always return same value when passed same parameters (determinism)
= Can only access its parameters and constants from outer scope
m Only computes value, no side effects

m Examples
A m Resolution functions (e.g., IEEE-1164’s resolved) &=
1 function resolved (s : std_ulogic_vector) return std_ulogic is
2 variable result : std_ulogic := 'Z’;
3 begin
4 [...]
5 return result;
6 end function;

m Arithmetic and logic operators

1 function "+" (a, b: integer) return integer is
2 begin

3 return a+b;

4 end function;

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

Pure Functions

Hilod m Always return same value when passed same parameters (determinism)
= Can only access its parameters and constants from outer scope
m Only computes value, no side effects

m Examples
A m Resolution functions (e.g., IEEE-1164’s resolved) &=
1 function resolved (s : std_ulogic_vector) return std_ulogic is
2 variable result : std_ulogic := 'Z’;
3 begin
4 [...]
5 return result;
6 end function;

m Arithmetic and logic operators

1 function "+" (a, b: integer) return integer is
2 begin

3 return a+b;

4 end function;

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

Impure Functions

HWMod
WS25

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

Impure Functions

HWMod
wes m Might return different value for same parameters (nondeterminism)

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

Impure Functions

HWMod
WS25
m Might return different value for same parameters (nondeterminism)
m Examples

°f
z%

1 impure function now return delay_length; QPEN

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

HWMod
WS25

Impure

Impure Functions

m Might return different value for same parameters (nondeterminism)
m Can access signals and variables of outer scope

m Examples

1 impure function now return delay_length; QPEN

°f
z%

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

Impure Functions

HWMod
wes m Might return different value for same parameters (nondeterminism)

m Can access signals and variables of outer scope

m Side effects possible = function can be stateful
m Examples

1 impure function now return delay_length; SR

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

Impure Functions

HWMod
wes m Might return different value for same parameters (nondeterminism)

m Can access signals and variables of outer scope

m Side effects possible = function can be stateful
m Examples

1 impure function now return delay_length; SR

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

Impure Functions

HWMod
wes m Might return different value for same parameters (nondeterminism)

m Can access signals and variables of outer scope

m Side effects possible = function can be stateful
m Examples

1 impure function now return delay_length; QPEN

°f
z%

process is

1

2 variable ran : std_ulogic_vector (7 downto 0) := 8d"42";

3 impure function prng return integer is

4 begin

5 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
6 return to_integer (unsigned(ran));

7 end function;

8 [...]

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

Impure Functions

HWMod
wes m Might return different value for same parameters (nondeterminism)

m Can access signals and variables of outer scope

m Side effects possible = function can be stateful
m Examples

1 impure function now return delay_length; QPEN

°f
z%

process is

1

2 variable ran : std_ulogic_vector (7 downto 0) := 8d"42";

3 impure function prng return integer is

4 begin

5 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
6 return to_integer (unsigned(ran));

7 end function;

8 [...]

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

Impure Functions

HWMod
wes m Might return different value for same parameters (nondeterminism)

m Can access signals and variables of outer scope

m Side effects possible = function can be stateful
m Examples

1 impure function now return delay_length; QPEN

°f
z%

process is

1

2 variable ran : std_ulogic_vector (7 downto 0) := 8d"42";

3 impure function prng return integer is

4 begin

5 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
6 return to_integer (unsigned(ran));

7 end function;

8 [...]

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

Impure Functions

HWMod
wes m Might return different value for same parameters (nondeterminism)

m Can access signals and variables of outer scope

m Side effects possible = function can be stateful
m Examples

1 impure function now return delay_length; QPEN

°f
z%

process is

1

2 variable ran : std_ulogic_vector (7 downto 0) := 8d"42";

3 impure function prng return integer is

4 begin

5 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
6 return to_integer (unsigned(ran));

7 end function;

8 [...]

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

Impure Functions

HWMod
wes m Might return different value for same parameters (nondeterminism)

m Can access signals and variables of outer scope

m Side effects possible = function can be stateful
m Examples

1 impure function now return delay_length; QPEN

°f
z%

process is

1

2 variable ran : std_ulogic_vector (7 downto 0) := 8d"42";

3 impure function prng return integer is

4 begin

5 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
6 return to_integer (unsigned(ran));

7 end function;

8 [...]

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

Impure Functions

HWMod
wes m Might return different value for same parameters (nondeterminism)

m Can access signals and variables of outer scope

m Side effects possible = function can be stateful
m Examples

1 impure function now return delay_length; QPEN

°f
z%

process is

1

2 variable ran : std_ulogic_vector (7 downto 0) := 8d"42";

3 impure function prng return integer is

4 begin

5 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
6 return to_integer (unsigned(ran));

7 end function;

8 [...]

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

Recommendations

HWMod
WS25

Recommendations

HWMod
WS25

m Use pure functions whenever possible
m Easier to understand and debug

Recommendations

HWMod
WS25

m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for

Recommendations

HWMod
WS25

m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for
Recommendatons m nondeterministic behavior

Recommendations

HWMod
WS25

m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for

Recommendations ® nondeterministic behavior
m stateful functions

Recommendations

HWMod
WS25

m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for

Recommendations ® nondeterministic behavior
m stateful functions
m file /O

Recommendations

HWMod
WS25

m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for
Recommendatons m nondeterministic behavior
m stateful functions

m file I/O
m protected types

Recommendations

HWMod
WS25

m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for

Recommendations m nondeterministic behavior
m stateful functions
m file I/0O
m protected types

m Especially for impure functions with side effects: use sensible names!

Recommendations

HWMod
WS25

m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for

Recommendations m nondeterministic behavior
m stateful functions
m file I/0O
m protected types

m Especially for impure functions with side effects: use sensible names!

m Caveat: File parameters can introduce non-determinism and side effects
into pure-functions

Recommendations

HWMod
WS25

m Use pure functions whenever possible
m Easier to understand and debug
m Use impure functions for
Recommendatons m nondeterministic behavior
m stateful functions
m file /O
m protected types
m Especially for impure functions with side effects: use sensible names!
m Caveat: File parameters can introduce non-determinism and side effects
into pure-functions
= Recommendation: Do not use file parameters for pure functions

Procedures

HWMod
WS25

Procedures

HWMod
WS25

m Primarily to encapsulate sequential pieces of code (no return value)

Procedures

HWMod
WS25

m Primarily to encapsulate sequential pieces of code (no return value)
m Do not return a value

Procedures

HWMod
WS25

m Primarily to encapsulate sequential pieces of code (no return value)
m Do not return a value
Overview m However, return statements without value possible for termination

Procedures

HWMod
WS25

m Primarily to encapsulate sequential pieces of code (no return value)
m Do not return a value
Overview m However, return statements without value possible for termination

m Can contain wait statements

Procedures

HWMod
WS25

m Primarily to encapsulate sequential pieces of code (no return value)
m Do not return a value

Overview m However, return statements without value possible for termination
m Can contain wait statements
m Work via side effects

Procedures

HWMod
WS25

m Primarily to encapsulate sequential pieces of code (no return value)
m Do not return a value
Overview m However, return statements without value possible for termination
m Can contain wait statements
m Work via side effects
m Access and modify outer scope

Procedures

HWMod
WS25

m Primarily to encapsulate sequential pieces of code (no return value)
m Do not return a value
Overview m However, return statements without value possible for termination
m Can contain wait statements
m Work via side effects
m Access and modify outer scope
m Simplified declaration syntax

1 procedure identifier|[(parameter_list)] is
2 [declarative_part]

3 begin

4 [statement part] procedure body

5 end procedure;

Procedures

HWMod
WS25

m Primarily to encapsulate sequential pieces of code (no return value)
m Do not return a value
Overview m However, return statements without value possible for termination
m Can contain wait statements
m Work via side effects
m Access and modify outer scope
m Simplified declaration syntax

1 procedure identifier|[(parameter_list)] is
2 [declarative_part]

3 begin

4 [statement part] procedure body

5 end procedure;

Procedure Parameters

HWMod
WS25

m Simplified declaration syntax

Procedure Parameters

HWMod
WS25

m Simplified declaration syntax

Parameters

parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]
identifier_list: [in|out]|inout] type

Procedure Parameters

HWMod
WS25

m Simplified declaration syntax

Parameters

parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]
identifier_list: [in|out|inout] type

Procedure Parameters

HWMod
WS25

m Simplified declaration syntax

Parameters

parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]
identifier_list: [in|out]|inout] type

m Similar to ent ity port declaration

Procedure Parameters

HWMod
WS25

m Simplified declaration syntax

Parameters

parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]
identifier_list: [in|out|inout] type

m Similar to ent ity port declaration
m Procedures can drive out and inout parameters

Procedure Parameters

HWMod
WS25

m Simplified declaration syntax

Parameters

parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]
identifier_list: [in|out]|inout] type

m Similar to ent ity port declaration
m Procedures can drive out and inout parameters

Procedure Parameters

HWMod
WS25

m Simplified declaration syntax

Parameters

parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]
identifier_list: [in|out]|inout] type

m Similar to ent ity port declaration
m Procedures can drive out and inout parameters

m Default parameter mode and class are in and constant

Example - Procedure

HWMod
wee Apply pulse to probe, wait and check if alive is set

B probe, PULSE_WIDTH, alive, alive_cnt from outer scope
1 procedure probe_alive (wait_time : time) is

Example 2 begin
3 probe <= '17';

4 wait for PULSE_WIDTH;

5 probe <= '0’;

6 wait for wait_time;

7 if alive = "0’ then

8 report "Module not alive";
9 else

10 alive_cnt := alive_cnt + 1;
11 end if;

12 end procedure;

Example - Procedure

HWMod
wee Apply pulse to probe, wait and check if alive is set

B probe, PULSE_WIDTH, alive, alive_cnt from outer scope
1 procedure probe_alive (wait_time : time) is

Example 2 begin
3 probe <= '17';

4 wait for PULSE_WIDTH;

5 probe <= '0’;

6 wait for wait_time;

7 if alive = "0’ then

8 report "Module not alive";
9 else

10 alive_cnt := alive_cnt + 1;
11 end if;

12 end procedure;

Example - Procedure

HWMod
wee Apply pulse to probe, wait and check if alive is set

B probe, PULSE_WIDTH, alive, alive_cnt from outer scope
1 procedure probe_alive (wait_time : time) is

Example 2 begin
3 probe <= '1’;

4 wait for PULSE_WIDTH;

5 probe <= '0’;

6 wait for wait_time;

7 if alive = "0’ then

8 report "Module not alive";
9 else

10 alive_cnt := alive_cnt + 1;
11 end if;

12 end procedure;

Example - Procedure

HWMod
wee Apply pulse to probe, wait and check if alive is set

B probe, PULSE_WIDTH, alive, alive_cnt from outer scope
1 procedure probe_alive (wait_time : time) is

Example 2 begin
3 probe <= '17';

4 wait for PULSE_WIDTH;

5 probe <= '0’;

6 wait for wait_time;

7 if alive = "0’ then

8 report "Module not alive";
9 else

10 alive_cnt := alive_cnt + 1;
11 end if;

12 end procedure;

Example - Procedure

HWMod
wee Apply pulse to probe, wait and check if alive is set

B probe, PULSE_WIDTH, alive, alive_cnt from outer scope
1 procedure probe_alive (wait_time : time) is

Example 2 begin
3 probe <= '17';

4 wait for PULSE_WIDTH;

5 probe <= '0’;

6 wait for wait_time;

7 if alive = "0’ then

8 report "Module not alive";
9 else

10 alive_cnt := alive_cnt + 1;
11 end if;

12 end procedure;

Example - Procedure

HWMod
wee Apply pulse to probe, wait and check if alive is set

B probe, PULSE_WIDTH, alive, alive_cnt from outer scope
1 procedure probe_alive (wait_time : time) is

Example 2 begin
3 probe <= '17';

4 wait for PULSE_WIDTH;

5 probe <= '0’;

6 wait for wait_time;

7 if alive = "0’ then

8 report "Module not alive";
9 else

10 alive_cnt := alive_cnt + 1;
11 end if;

12 end procedure;

Subprogram Overloading

HWMod
WS25

m VHDL supports subprogram overloading

Overloading

Subprogram Overloading

HWMod
WS25

m VHDL supports subprogram overloading
m Overloaded subprograms must differ in one of the following

m Number of parameters
m Sequence of parameter types (if any)
m The result base type (for functions)

Subprogram Overloading

HWMod
WS25

m VHDL supports subprogram overloading

m Overloaded subprograms must differ in one of the following
m Number of parameters
m Sequence of parameter types (if any)
m The result base type (for functions)

m Examples

1 function add
2 function add
3 function add
4 function add

a, b: integer) return integer

a: signed; b: integer) return integer
a: integer; b: signed) return integer
a: signed; b: integer) return signed

Subprogram Overloading

HWMod
WS25

m VHDL supports subprogram overloading

m Overloaded subprograms must differ in one of the following
m Number of parameters
m Sequence of parameter types (if any)
m The result base type (for functions)

m Examples

1 function add
2 function add
3 function add
4 function add

a, b: integer) return integer

a: signed; b: integer) return integer
a: integer; b: signed) return integer
a: signed; b: integer) return signed

Subprogram Overloading

HWMod
WS25

m VHDL supports subprogram overloading

m Overloaded subprograms must differ in one of the following
m Number of parameters
m Sequence of parameter types (if any)
m The result base type (for functions)

m Examples

1 function add
2 function add
3 function add
4 function add

a, b: integer) return integer

a: signed; b: integer) return integer
a: integer; b: signed) return integer
a: signed; b: integer) return signed

Subprograms in Packages

HWMod
WS25

m Subprograms can be declared in the declaration sections of

Subprograms in Packages

HWMod
WS25

m Subprograms can be declared in the declaration sections of

m entities and architectures
m processes and subprograms

Subprograms in Packages

HWMod
WS25

m Subprograms can be declared in the declaration sections of

m entities and architectures
m processes and subprograms

m To facilitate reusability also possible in packages

Subprograms in Packages

HWMod
WS25

m Subprograms can be declared in the declaration sections of

m entities and architectures
m processes and subprograms

m To facilitate reusability also possible in packages

m The package declaration contains declarations (e.g., constants, types,
components, subprograms etc.)

Subprograms in Packages

HWMod
WS25

m Subprograms can be declared in the declaration sections of
m entities and architectures
m processes and subprograms
m To facilitate reusability also possible in packages
m The package declaration contains declarations (e.g., constants, types,
components, subprograms etc.)
m The package body contains the subprogram bodies

Subprograms in Packages

HWMod
WS25

m Subprograms can be declared in the declaration sections of
m entities and architectures
m processes and subprograms
m To facilitate reusability also possible in packages
m The package declaration contains declarations (e.g., constants, types,
components, subprograms etc.)
m The package body contains the subprogram bodies
= Similar to C function prototype and definition

Example - Package with Body

ﬂ»@g? 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package-local auxiliary function; must be declared before use in max3
Sl 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value?2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;

Example - Package with Body

ﬂ»@g? 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3 : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package-local auxiliary function; must be declared before use in max3
Sl 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;

Example - Package with Body

ﬂ»@g? 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package-local auxiliary function; must be declared before use in max3
— 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;

Example - Package with Body

ﬂ»@g? 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package-local auxiliary function; must be declared before use in max3
Sl 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value?2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;

Example - Package with Body

ﬂ»@g? i package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package-local auxiliary function; must be declared before use in max3
Sl 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;

Example - Package with Body

ﬂ»@g? 1 package math_pkg is

2 constant WIDTH, HEIGHT : natural := 100;

3 function max3(valuel, value2, value3d : integer) return integer;

4 end package;

5

6 package body math_pkg is

7 —-— package-local auxiliary function; must be declared before use in max3
Sl 8 function max (valuel, value2 : integer) return integer is

9 begin

10 if valuel > value2 then

11 return valuel;

12 end if;

13 return value?2;

14 end function;

15

16 function max3(valuel, value2, value3 : integer) return integer is

17 begin

18 return max (max (valuel, value2), value3);

19 end function;
20 end package body;

HWMod
WS25

Lecture Complete!

Modified: 2025-12-16, 16:04 (f8a58e9)

	Subprograms
	Functions
	Procedures
	Overloading
	Packages

