
HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Hardware Modeling [VU] (191.011)
– WS25 –
Subprograms

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:04 (f8a58e9)

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Overview 33

Functions

Call is expression returning a value
pure: No side effects, same parameters ⇒ same return value
impure: Side effects possible, return value can vary for identical calls

Procedures

Call is statement with side effects and no return value
Subprogram call

Parameters passed in parentheses
report to_string(x); -- function call with one parameter
In case of zero parameters no parentheses
stop; -- procedure call without parameters

1

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Overview 33

Functions
Call is expression returning a value

pure: No side effects, same parameters ⇒ same return value
impure: Side effects possible, return value can vary for identical calls

Procedures

Call is statement with side effects and no return value
Subprogram call

Parameters passed in parentheses
report to_string(x); -- function call with one parameter
In case of zero parameters no parentheses
stop; -- procedure call without parameters

1

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Overview 33

Functions
Call is expression returning a value
pure: No side effects, same parameters ⇒ same return value

impure: Side effects possible, return value can vary for identical calls

Procedures

Call is statement with side effects and no return value
Subprogram call

Parameters passed in parentheses
report to_string(x); -- function call with one parameter
In case of zero parameters no parentheses
stop; -- procedure call without parameters

1

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Overview 33

Functions
Call is expression returning a value
pure: No side effects, same parameters ⇒ same return value
impure: Side effects possible, return value can vary for identical calls

Procedures

Call is statement with side effects and no return value
Subprogram call

Parameters passed in parentheses
report to_string(x); -- function call with one parameter
In case of zero parameters no parentheses
stop; -- procedure call without parameters

1

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Overview 33

Functions
Call is expression returning a value
pure: No side effects, same parameters ⇒ same return value
impure: Side effects possible, return value can vary for identical calls

Procedures

Call is statement with side effects and no return value
Subprogram call

Parameters passed in parentheses
report to_string(x); -- function call with one parameter
In case of zero parameters no parentheses
stop; -- procedure call without parameters

1

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Overview 33

Functions
Call is expression returning a value
pure: No side effects, same parameters ⇒ same return value
impure: Side effects possible, return value can vary for identical calls

Procedures
Call is statement with side effects and no return value

Subprogram call

Parameters passed in parentheses
report to_string(x); -- function call with one parameter
In case of zero parameters no parentheses
stop; -- procedure call without parameters

1

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Overview 33

Functions
Call is expression returning a value
pure: No side effects, same parameters ⇒ same return value
impure: Side effects possible, return value can vary for identical calls

Procedures
Call is statement with side effects and no return value

Subprogram call

Parameters passed in parentheses
report to_string(x); -- function call with one parameter
In case of zero parameters no parentheses
stop; -- procedure call without parameters

1

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Overview 33

Functions
Call is expression returning a value
pure: No side effects, same parameters ⇒ same return value
impure: Side effects possible, return value can vary for identical calls

Procedures
Call is statement with side effects and no return value

Subprogram call
Parameters passed in parentheses
report to_string(x); -- function call with one parameter

In case of zero parameters no parentheses
stop; -- procedure call without parameters

1

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Overview 33

Functions
Call is expression returning a value
pure: No side effects, same parameters ⇒ same return value
impure: Side effects possible, return value can vary for identical calls

Procedures
Call is statement with side effects and no return value

Subprogram call
Parameters passed in parentheses
report to_string(x); -- function call with one parameter
In case of zero parameters no parentheses
stop; -- procedure call without parameters

1

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Overview 33

Functions
Call is expression returning a value
pure: No side effects, same parameters ⇒ same return value
impure: Side effects possible, return value can vary for identical calls

Procedures
Call is statement with side effects and no return value

Subprogram call
Parameters passed in parentheses
report to_string(x); -- function call with one parameter
In case of zero parameters no parentheses
stop; -- procedure call without parameters

1

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Functions 33

Simplified declaration syntax

 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
 [declarative_part]
 begin
 [statement part] -- function body
 return ...;
 end function;

Type of the returned value can be scalar or composite
Default is pure
Primarily for computing values

⇒ Does not advance simulation time

Must not contain wait statements 179

Must also hold for subprograms called inside the body

Must always end in return

2

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Functions 33

Simplified declaration syntax
 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
 [declarative_part]
 begin
 [statement part] -- function body
 return ...;
 end function;

Type of the returned value can be scalar or composite
Default is pure
Primarily for computing values

⇒ Does not advance simulation time

Must not contain wait statements 179

Must also hold for subprograms called inside the body

Must always end in return

2

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Functions 33

Simplified declaration syntax
 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
 [declarative_part]
 begin
 [statement part] -- function body
 return ...;
 end function;

Type of the returned value can be scalar or composite
Default is pure
Primarily for computing values

⇒ Does not advance simulation time

Must not contain wait statements 179

Must also hold for subprograms called inside the body

Must always end in return

2

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Functions 33

Simplified declaration syntax
 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
 [declarative_part]
 begin
 [statement part] -- function body
 return ...;
 end function;

Type of the returned value can be scalar or composite
Default is pure
Primarily for computing values

⇒ Does not advance simulation time

Must not contain wait statements 179

Must also hold for subprograms called inside the body

Must always end in return

2

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Functions 33

Simplified declaration syntax
 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
 [declarative_part]
 begin
 [statement part] -- function body
 return ...;
 end function;

Type of the returned value can be scalar or composite

Default is pure
Primarily for computing values

⇒ Does not advance simulation time

Must not contain wait statements 179

Must also hold for subprograms called inside the body

Must always end in return

2

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Functions 33

Simplified declaration syntax
 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
 [declarative_part]
 begin
 [statement part] -- function body
 return ...;
 end function;

Type of the returned value can be scalar or composite
Default is pure

Primarily for computing values

⇒ Does not advance simulation time

Must not contain wait statements 179

Must also hold for subprograms called inside the body

Must always end in return

2

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Functions 33

Simplified declaration syntax
 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
 [declarative_part]
 begin
 [statement part] -- function body
 return ...;
 end function;

Type of the returned value can be scalar or composite
Default is pure
Primarily for computing values

⇒ Does not advance simulation time
Must not contain wait statements 179

Must also hold for subprograms called inside the body

Must always end in return

2

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Functions 33

Simplified declaration syntax
 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
 [declarative_part]
 begin
 [statement part] -- function body
 return ...;
 end function;

Type of the returned value can be scalar or composite
Default is pure
Primarily for computing values
⇒ Does not advance simulation time

Must not contain wait statements 179

Must also hold for subprograms called inside the body

Must always end in return

2

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Functions 33

Simplified declaration syntax
 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
 [declarative_part]
 begin
 [statement part] -- function body
 return ...;
 end function;

Type of the returned value can be scalar or composite
Default is pure
Primarily for computing values
⇒ Does not advance simulation time

Must not contain wait statements 179

Must also hold for subprograms called inside the body
Must always end in return

2

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Functions 33

Simplified declaration syntax
 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
 [declarative_part]
 begin
 [statement part] -- function body
 return ...;
 end function;

Type of the returned value can be scalar or composite
Default is pure
Primarily for computing values
⇒ Does not advance simulation time

Must not contain wait statements 179

Must also hold for subprograms called inside the body

Must always end in return

2

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Functions 33

Simplified declaration syntax
 [pure|impure] function designator [(parameter_list)] return TYPE_NAME is
 [declarative_part]
 begin
 [statement part] -- function body
 return ...;
 end function;

Type of the returned value can be scalar or composite
Default is pure
Primarily for computing values
⇒ Does not advance simulation time

Must not contain wait statements 179

Must also hold for subprograms called inside the body
Must always end in return

2

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Function Parameters 35

Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type

Default parameter class is constant

Pass-by-copy
If signal attributes are required use signal
Not modifiable by function (in general)

Type: scalar or composite (possibly unconstrained)
Default value possible

Examples
function f1(a,b : integer; signal c : natural) return bit
function f2(a : integer := 42) return bit
function f3 return string

3

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Function Parameters 35

Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type

Default parameter class is constant

Pass-by-copy
If signal attributes are required use signal
Not modifiable by function (in general)

Type: scalar or composite (possibly unconstrained)
Default value possible

Examples
function f1(a,b : integer; signal c : natural) return bit
function f2(a : integer := 42) return bit
function f3 return string

3

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Function Parameters 35

Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type

Default parameter class is constant

Pass-by-copy
If signal attributes are required use signal
Not modifiable by function (in general)

Type: scalar or composite (possibly unconstrained)
Default value possible

Examples
function f1(a,b : integer; signal c : natural) return bit
function f2(a : integer := 42) return bit
function f3 return string

3

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Function Parameters 35

Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type

Default parameter class is constant

Pass-by-copy
If signal attributes are required use signal
Not modifiable by function (in general)

Type: scalar or composite (possibly unconstrained)
Default value possible

Examples
function f1(a,b : integer; signal c : natural) return bit
function f2(a : integer := 42) return bit
function f3 return string

3

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Function Parameters 35

Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type

Default parameter class is constant

Pass-by-copy
If signal attributes are required use signal
Not modifiable by function (in general)

Type: scalar or composite (possibly unconstrained)
Default value possible

Examples
function f1(a,b : integer; signal c : natural) return bit
function f2(a : integer := 42) return bit
function f3 return string

3

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Function Parameters 35

Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type

Default parameter class is constant
Pass-by-copy
If signal attributes are required use signal

Not modifiable by function (in general)
Type: scalar or composite (possibly unconstrained)
Default value possible

Examples
function f1(a,b : integer; signal c : natural) return bit
function f2(a : integer := 42) return bit
function f3 return string

3

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Function Parameters 35

Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type

Default parameter class is constant
Pass-by-copy
If signal attributes are required use signal
Not modifiable by function (in general)

Type: scalar or composite (possibly unconstrained)
Default value possible

Examples
function f1(a,b : integer; signal c : natural) return bit
function f2(a : integer := 42) return bit
function f3 return string

3

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Function Parameters 35

Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type

Default parameter class is constant
Pass-by-copy
If signal attributes are required use signal
Not modifiable by function (in general)

Type: scalar or composite (possibly unconstrained)

Default value possible

Examples
function f1(a,b : integer; signal c : natural) return bit
function f2(a : integer := 42) return bit
function f3 return string

3

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Function Parameters 35

Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type

Default parameter class is constant
Pass-by-copy
If signal attributes are required use signal
Not modifiable by function (in general)

Type: scalar or composite (possibly unconstrained)
Default value possible

Examples
function f1(a,b : integer; signal c : natural) return bit
function f2(a : integer := 42) return bit
function f3 return string

3

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Function Parameters 35

Declaration syntax
parameter_list ::= parameters{; parameters}
parameters ::= [constant|signal|file] identifier_list: type

Default parameter class is constant
Pass-by-copy
If signal attributes are required use signal
Not modifiable by function (in general)

Type: scalar or composite (possibly unconstrained)
Default value possible

Examples
function f1(a,b : integer; signal c : natural) return bit
function f2(a : integer := 42) return bit
function f3 return string

3

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Pure Functions

Always return same value when passed same parameters (determinism)

⇒ Can only access its parameters and constants from outer scope

Only computes value, no side effects
Examples

Resolution functions (e.g., IEEE-1164’s resolved)
 function resolved (s : std_ulogic_vector) return std_ulogic is
 variable result : std_ulogic := ’Z’;
 begin
 [...]
 return result;
 end function;

Arithmetic and logic operators
 function "+" (a, b: integer) return integer is
 begin
 return a+b;
 end function;

4

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Pure Functions

Always return same value when passed same parameters (determinism)

⇒ Can only access its parameters and constants from outer scope
Only computes value, no side effects
Examples

Resolution functions (e.g., IEEE-1164’s resolved)
 function resolved (s : std_ulogic_vector) return std_ulogic is
 variable result : std_ulogic := ’Z’;
 begin
 [...]
 return result;
 end function;

Arithmetic and logic operators
 function "+" (a, b: integer) return integer is
 begin
 return a+b;
 end function;

4

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Pure Functions

Always return same value when passed same parameters (determinism)
⇒ Can only access its parameters and constants from outer scope

Only computes value, no side effects
Examples

Resolution functions (e.g., IEEE-1164’s resolved)
 function resolved (s : std_ulogic_vector) return std_ulogic is
 variable result : std_ulogic := ’Z’;
 begin
 [...]
 return result;
 end function;

Arithmetic and logic operators
 function "+" (a, b: integer) return integer is
 begin
 return a+b;
 end function;

4

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Pure Functions

Always return same value when passed same parameters (determinism)
⇒ Can only access its parameters and constants from outer scope

Only computes value, no side effects

Examples

Resolution functions (e.g., IEEE-1164’s resolved)
 function resolved (s : std_ulogic_vector) return std_ulogic is
 variable result : std_ulogic := ’Z’;
 begin
 [...]
 return result;
 end function;

Arithmetic and logic operators
 function "+" (a, b: integer) return integer is
 begin
 return a+b;
 end function;

4

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Pure Functions

Always return same value when passed same parameters (determinism)
⇒ Can only access its parameters and constants from outer scope

Only computes value, no side effects
Examples

Resolution functions (e.g., IEEE-1164’s resolved)
 function resolved (s : std_ulogic_vector) return std_ulogic is
 variable result : std_ulogic := ’Z’;
 begin
 [...]
 return result;
 end function;

Arithmetic and logic operators
 function "+" (a, b: integer) return integer is
 begin
 return a+b;
 end function;

4

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Pure Functions

Always return same value when passed same parameters (determinism)
⇒ Can only access its parameters and constants from outer scope

Only computes value, no side effects
Examples

Resolution functions (e.g., IEEE-1164’s resolved)
 function resolved (s : std_ulogic_vector) return std_ulogic is
 variable result : std_ulogic := ’Z’;
 begin
 [...]
 return result;
 end function;

Arithmetic and logic operators
 function "+" (a, b: integer) return integer is
 begin
 return a+b;
 end function;

4

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Pure Functions

Always return same value when passed same parameters (determinism)
⇒ Can only access its parameters and constants from outer scope

Only computes value, no side effects
Examples

Resolution functions (e.g., IEEE-1164’s resolved)
 function resolved (s : std_ulogic_vector) return std_ulogic is
 variable result : std_ulogic := ’Z’;
 begin
 [...]
 return result;
 end function;

Arithmetic and logic operators
 function "+" (a, b: integer) return integer is
 begin
 return a+b;
 end function;

4

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Pure Functions

Always return same value when passed same parameters (determinism)
⇒ Can only access its parameters and constants from outer scope

Only computes value, no side effects
Examples

Resolution functions (e.g., IEEE-1164’s resolved)
 function resolved (s : std_ulogic_vector) return std_ulogic is
 variable result : std_ulogic := ’Z’;
 begin
 [...]
 return result;
 end function;

Arithmetic and logic operators
 function "+" (a, b: integer) return integer is
 begin
 return a+b;
 end function;

4

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L80

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Impure Functions

Might return different value for same parameters (nondeterminism)
Can access signals and variables of outer scope
Side effects possible ⇒ function can be stateful
Examples

 impure function now return delay_length;

 process is
 variable ran : std_ulogic_vector(7 downto 0) := 8d"42";
 impure function prng return integer is
 begin
 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
 return to_integer(unsigned(ran));
 end function;
 [...]

5

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Impure Functions

Might return different value for same parameters (nondeterminism)

Can access signals and variables of outer scope
Side effects possible ⇒ function can be stateful
Examples

 impure function now return delay_length;

 process is
 variable ran : std_ulogic_vector(7 downto 0) := 8d"42";
 impure function prng return integer is
 begin
 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
 return to_integer(unsigned(ran));
 end function;
 [...]

5

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Impure Functions

Might return different value for same parameters (nondeterminism)

Can access signals and variables of outer scope
Side effects possible ⇒ function can be stateful

Examples
 impure function now return delay_length;

 process is
 variable ran : std_ulogic_vector(7 downto 0) := 8d"42";
 impure function prng return integer is
 begin
 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
 return to_integer(unsigned(ran));
 end function;
 [...]

5

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Impure Functions

Might return different value for same parameters (nondeterminism)
Can access signals and variables of outer scope

Side effects possible ⇒ function can be stateful

Examples
 impure function now return delay_length;

 process is
 variable ran : std_ulogic_vector(7 downto 0) := 8d"42";
 impure function prng return integer is
 begin
 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
 return to_integer(unsigned(ran));
 end function;
 [...]

5

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Impure Functions

Might return different value for same parameters (nondeterminism)
Can access signals and variables of outer scope
Side effects possible ⇒ function can be stateful
Examples

 impure function now return delay_length;

 process is
 variable ran : std_ulogic_vector(7 downto 0) := 8d"42";
 impure function prng return integer is
 begin
 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
 return to_integer(unsigned(ran));
 end function;
 [...]

5

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Impure Functions

Might return different value for same parameters (nondeterminism)
Can access signals and variables of outer scope
Side effects possible ⇒ function can be stateful
Examples

 impure function now return delay_length;

 process is
 variable ran : std_ulogic_vector(7 downto 0) := 8d"42";
 impure function prng return integer is
 begin
 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
 return to_integer(unsigned(ran));
 end function;
 [...]

5

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Impure Functions

Might return different value for same parameters (nondeterminism)
Can access signals and variables of outer scope
Side effects possible ⇒ function can be stateful
Examples

 impure function now return delay_length;

 process is
 variable ran : std_ulogic_vector(7 downto 0) := 8d"42";
 impure function prng return integer is
 begin
 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
 return to_integer(unsigned(ran));
 end function;
 [...]

5

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Impure Functions

Might return different value for same parameters (nondeterminism)
Can access signals and variables of outer scope
Side effects possible ⇒ function can be stateful
Examples

 impure function now return delay_length;

 process is
 variable ran : std_ulogic_vector(7 downto 0) := 8d"42";
 impure function prng return integer is
 begin
 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
 return to_integer(unsigned(ran));
 end function;
 [...]

5

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Impure Functions

Might return different value for same parameters (nondeterminism)
Can access signals and variables of outer scope
Side effects possible ⇒ function can be stateful
Examples

 impure function now return delay_length;

 process is
 variable ran : std_ulogic_vector(7 downto 0) := 8d"42";
 impure function prng return integer is
 begin
 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
 return to_integer(unsigned(ran));
 end function;
 [...]

5

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Impure Functions

Might return different value for same parameters (nondeterminism)
Can access signals and variables of outer scope
Side effects possible ⇒ function can be stateful
Examples

 impure function now return delay_length;

 process is
 variable ran : std_ulogic_vector(7 downto 0) := 8d"42";
 impure function prng return integer is
 begin
 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
 return to_integer(unsigned(ran));
 end function;
 [...]

5

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Impure Functions

Might return different value for same parameters (nondeterminism)
Can access signals and variables of outer scope
Side effects possible ⇒ function can be stateful
Examples

 impure function now return delay_length;

 process is
 variable ran : std_ulogic_vector(7 downto 0) := 8d"42";
 impure function prng return integer is
 begin
 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
 return to_integer(unsigned(ran));
 end function;
 [...]

5

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Impure Functions

Might return different value for same parameters (nondeterminism)
Can access signals and variables of outer scope
Side effects possible ⇒ function can be stateful
Examples

 impure function now return delay_length;

 process is
 variable ran : std_ulogic_vector(7 downto 0) := 8d"42";
 impure function prng return integer is
 begin
 ran := ran(6 downto 0) & (ran(7) xor ran(6) xor ran(2));
 return to_integer(unsigned(ran));
 end function;
 [...]

5

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L340

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Recommendations

Use pure functions whenever possible
Easier to understand and debug

Use impure functions for

nondeterministic behavior
stateful functions
file I/O
protected types

Especially for impure functions with side effects: use sensible names!
Caveat: File parameters can introduce non-determinism and side effects
into pure-functions

⇒ Recommendation: Do not use file parameters for pure functions

6

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Recommendations

Use pure functions whenever possible
Easier to understand and debug

Use impure functions for

nondeterministic behavior
stateful functions
file I/O
protected types

Especially for impure functions with side effects: use sensible names!
Caveat: File parameters can introduce non-determinism and side effects
into pure-functions

⇒ Recommendation: Do not use file parameters for pure functions

6

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Recommendations

Use pure functions whenever possible
Easier to understand and debug

Use impure functions for

nondeterministic behavior
stateful functions
file I/O
protected types

Especially for impure functions with side effects: use sensible names!
Caveat: File parameters can introduce non-determinism and side effects
into pure-functions

⇒ Recommendation: Do not use file parameters for pure functions

6

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Recommendations

Use pure functions whenever possible
Easier to understand and debug

Use impure functions for
nondeterministic behavior

stateful functions
file I/O
protected types

Especially for impure functions with side effects: use sensible names!
Caveat: File parameters can introduce non-determinism and side effects
into pure-functions

⇒ Recommendation: Do not use file parameters for pure functions

6

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Recommendations

Use pure functions whenever possible
Easier to understand and debug

Use impure functions for
nondeterministic behavior
stateful functions

file I/O
protected types

Especially for impure functions with side effects: use sensible names!
Caveat: File parameters can introduce non-determinism and side effects
into pure-functions

⇒ Recommendation: Do not use file parameters for pure functions

6

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Recommendations

Use pure functions whenever possible
Easier to understand and debug

Use impure functions for
nondeterministic behavior
stateful functions
file I/O

protected types

Especially for impure functions with side effects: use sensible names!
Caveat: File parameters can introduce non-determinism and side effects
into pure-functions

⇒ Recommendation: Do not use file parameters for pure functions

6

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Recommendations

Use pure functions whenever possible
Easier to understand and debug

Use impure functions for
nondeterministic behavior
stateful functions
file I/O
protected types

Especially for impure functions with side effects: use sensible names!
Caveat: File parameters can introduce non-determinism and side effects
into pure-functions

⇒ Recommendation: Do not use file parameters for pure functions

6

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Recommendations

Use pure functions whenever possible
Easier to understand and debug

Use impure functions for
nondeterministic behavior
stateful functions
file I/O
protected types

Especially for impure functions with side effects: use sensible names!

Caveat: File parameters can introduce non-determinism and side effects
into pure-functions

⇒ Recommendation: Do not use file parameters for pure functions

6

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Recommendations

Use pure functions whenever possible
Easier to understand and debug

Use impure functions for
nondeterministic behavior
stateful functions
file I/O
protected types

Especially for impure functions with side effects: use sensible names!
Caveat: File parameters can introduce non-determinism and side effects
into pure-functions

⇒ Recommendation: Do not use file parameters for pure functions

6

HWMod
WS25

Subprograms
Functions

Overview

Pure

Impure

Recommendations

Procedures

Overloading

Packages

Recommendations

Use pure functions whenever possible
Easier to understand and debug

Use impure functions for
nondeterministic behavior
stateful functions
file I/O
protected types

Especially for impure functions with side effects: use sensible names!
Caveat: File parameters can introduce non-determinism and side effects
into pure-functions
⇒ Recommendation: Do not use file parameters for pure functions

6

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedures 33

Primarily to encapsulate sequential pieces of code (no return value)
Do not return a value

However, return statements without value possible for termination

Can contain wait statements
Work via side effects

Access and modify outer scope

Simplified declaration syntax
 procedure identifier[(parameter_list)] is
 [declarative_part]
 begin
 [statement part] -- procedure body
 end procedure;

7

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedures 33

Primarily to encapsulate sequential pieces of code (no return value)

Do not return a value

However, return statements without value possible for termination

Can contain wait statements
Work via side effects

Access and modify outer scope

Simplified declaration syntax
 procedure identifier[(parameter_list)] is
 [declarative_part]
 begin
 [statement part] -- procedure body
 end procedure;

7

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedures 33

Primarily to encapsulate sequential pieces of code (no return value)
Do not return a value

However, return statements without value possible for termination

Can contain wait statements
Work via side effects

Access and modify outer scope

Simplified declaration syntax
 procedure identifier[(parameter_list)] is
 [declarative_part]
 begin
 [statement part] -- procedure body
 end procedure;

7

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedures 33

Primarily to encapsulate sequential pieces of code (no return value)
Do not return a value

However, return statements without value possible for termination

Can contain wait statements
Work via side effects

Access and modify outer scope

Simplified declaration syntax
 procedure identifier[(parameter_list)] is
 [declarative_part]
 begin
 [statement part] -- procedure body
 end procedure;

7

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedures 33

Primarily to encapsulate sequential pieces of code (no return value)
Do not return a value

However, return statements without value possible for termination

Can contain wait statements

Work via side effects

Access and modify outer scope

Simplified declaration syntax
 procedure identifier[(parameter_list)] is
 [declarative_part]
 begin
 [statement part] -- procedure body
 end procedure;

7

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedures 33

Primarily to encapsulate sequential pieces of code (no return value)
Do not return a value

However, return statements without value possible for termination

Can contain wait statements
Work via side effects

Access and modify outer scope

Simplified declaration syntax
 procedure identifier[(parameter_list)] is
 [declarative_part]
 begin
 [statement part] -- procedure body
 end procedure;

7

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedures 33

Primarily to encapsulate sequential pieces of code (no return value)
Do not return a value

However, return statements without value possible for termination

Can contain wait statements
Work via side effects

Access and modify outer scope

Simplified declaration syntax
 procedure identifier[(parameter_list)] is
 [declarative_part]
 begin
 [statement part] -- procedure body
 end procedure;

7

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedures 33

Primarily to encapsulate sequential pieces of code (no return value)
Do not return a value

However, return statements without value possible for termination

Can contain wait statements
Work via side effects

Access and modify outer scope

Simplified declaration syntax
 procedure identifier[(parameter_list)] is
 [declarative_part]
 begin
 [statement part] -- procedure body
 end procedure;

7

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedures 33

Primarily to encapsulate sequential pieces of code (no return value)
Do not return a value

However, return statements without value possible for termination

Can contain wait statements
Work via side effects

Access and modify outer scope

Simplified declaration syntax
 procedure identifier[(parameter_list)] is
 [declarative_part]
 begin
 [statement part] -- procedure body
 end procedure;

7

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedure Parameters 34

Simplified declaration syntax
parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]

identifier_list: [in|out|inout] type

Similar to entity port declaration

Procedures can drive out and inout parameters

Default parameter mode and class are in and constant

8

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedure Parameters 34

Simplified declaration syntax
parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]

identifier_list: [in|out|inout] type

Similar to entity port declaration

Procedures can drive out and inout parameters

Default parameter mode and class are in and constant

8

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedure Parameters 34

Simplified declaration syntax
parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]

identifier_list: [in|out|inout] type

Similar to entity port declaration

Procedures can drive out and inout parameters

Default parameter mode and class are in and constant

8

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedure Parameters 34

Simplified declaration syntax
parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]

identifier_list: [in|out|inout] type

Similar to entity port declaration

Procedures can drive out and inout parameters

Default parameter mode and class are in and constant

8

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedure Parameters 34

Simplified declaration syntax
parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]

identifier_list: [in|out|inout] type

Similar to entity port declaration
Procedures can drive out and inout parameters

Default parameter mode and class are in and constant

8

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedure Parameters 34

Simplified declaration syntax
parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]

identifier_list: [in|out|inout] type

Similar to entity port declaration
Procedures can drive out and inout parameters

Default parameter mode and class are in and constant

8

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Procedure Parameters 34

Simplified declaration syntax
parameter_list ::= [parameters]{; parameters}
parameters::=[constant|signal|file|variable]

identifier_list: [in|out|inout] type

Similar to entity port declaration
Procedures can drive out and inout parameters

Default parameter mode and class are in and constant

8

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Example - Procedure

Apply pulse to probe, wait and check if alive is set
probe, PULSE WIDTH, alive, alive cnt from outer scope

 procedure probe_alive(wait_time : time) is
 begin
 probe <= ’1’;
 wait for PULSE_WIDTH;
 probe <= ’0’;
 wait for wait_time;
 if alive = ’0’ then
 report "Module not alive";
 else

 alive_cnt := alive_cnt + 1;
 end if;
 end procedure;

9

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Example - Procedure

Apply pulse to probe, wait and check if alive is set
probe, PULSE WIDTH, alive, alive cnt from outer scope

 procedure probe_alive(wait_time : time) is
 begin
 probe <= ’1’;
 wait for PULSE_WIDTH;
 probe <= ’0’;
 wait for wait_time;
 if alive = ’0’ then
 report "Module not alive";
 else

 alive_cnt := alive_cnt + 1;
 end if;
 end procedure;

9

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Example - Procedure

Apply pulse to probe, wait and check if alive is set
probe, PULSE WIDTH, alive, alive cnt from outer scope

 procedure probe_alive(wait_time : time) is
 begin
 probe <= ’1’;
 wait for PULSE_WIDTH;
 probe <= ’0’;
 wait for wait_time;
 if alive = ’0’ then
 report "Module not alive";
 else

 alive_cnt := alive_cnt + 1;
 end if;
 end procedure;

9

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Example - Procedure

Apply pulse to probe, wait and check if alive is set
probe, PULSE WIDTH, alive, alive cnt from outer scope

 procedure probe_alive(wait_time : time) is
 begin
 probe <= ’1’;
 wait for PULSE_WIDTH;
 probe <= ’0’;
 wait for wait_time;
 if alive = ’0’ then
 report "Module not alive";
 else

 alive_cnt := alive_cnt + 1;
 end if;
 end procedure;

9

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Example - Procedure

Apply pulse to probe, wait and check if alive is set
probe, PULSE WIDTH, alive, alive cnt from outer scope

 procedure probe_alive(wait_time : time) is
 begin
 probe <= ’1’;
 wait for PULSE_WIDTH;
 probe <= ’0’;
 wait for wait_time;
 if alive = ’0’ then
 report "Module not alive";
 else

 alive_cnt := alive_cnt + 1;
 end if;
 end procedure;

9

HWMod
WS25

Subprograms
Functions

Procedures

Overview

Parameters

Example

Overloading

Packages

Example - Procedure

Apply pulse to probe, wait and check if alive is set
probe, PULSE WIDTH, alive, alive cnt from outer scope

 procedure probe_alive(wait_time : time) is
 begin
 probe <= ’1’;
 wait for PULSE_WIDTH;
 probe <= ’0’;
 wait for wait_time;
 if alive = ’0’ then
 report "Module not alive";
 else

 alive_cnt := alive_cnt + 1;
 end if;
 end procedure;

9

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Subprogram Overloading 41

VHDL supports subprogram overloading

Overloaded subprograms must differ in one of the following
Number of parameters
Sequence of parameter types (if any)
The result base type (for functions)

Examples
 function add (a, b: integer) return integer
 function add (a: signed; b: integer) return integer
 function add (a: integer; b: signed) return integer
 function add (a: signed; b: integer) return signed

10

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Subprogram Overloading 41

VHDL supports subprogram overloading
Overloaded subprograms must differ in one of the following

Number of parameters
Sequence of parameter types (if any)
The result base type (for functions)

Examples
 function add (a, b: integer) return integer
 function add (a: signed; b: integer) return integer
 function add (a: integer; b: signed) return integer
 function add (a: signed; b: integer) return signed

10

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Subprogram Overloading 41

VHDL supports subprogram overloading
Overloaded subprograms must differ in one of the following

Number of parameters
Sequence of parameter types (if any)
The result base type (for functions)

Examples
 function add (a, b: integer) return integer
 function add (a: signed; b: integer) return integer
 function add (a: integer; b: signed) return integer
 function add (a: signed; b: integer) return signed

10

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Subprogram Overloading 41

VHDL supports subprogram overloading
Overloaded subprograms must differ in one of the following

Number of parameters
Sequence of parameter types (if any)
The result base type (for functions)

Examples
 function add (a, b: integer) return integer
 function add (a: signed; b: integer) return integer
 function add (a: integer; b: signed) return integer
 function add (a: signed; b: integer) return signed

10

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Subprogram Overloading 41

VHDL supports subprogram overloading
Overloaded subprograms must differ in one of the following

Number of parameters
Sequence of parameter types (if any)
The result base type (for functions)

Examples
 function add (a, b: integer) return integer
 function add (a: signed; b: integer) return integer
 function add (a: integer; b: signed) return integer
 function add (a: signed; b: integer) return signed

10

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Example

Subprograms in Packages 45

Subprograms can be declared in the declaration sections of

entities and architectures
processes and subprograms

To facilitate reusability also possible in packages

The package declaration contains declarations (e.g., constants, types,
components, subprograms etc.)
The package body contains the subprogram bodies

⇒ Similar to C function prototype and definition

11

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Example

Subprograms in Packages 45

Subprograms can be declared in the declaration sections of
entities and architectures
processes and subprograms

To facilitate reusability also possible in packages

The package declaration contains declarations (e.g., constants, types,
components, subprograms etc.)
The package body contains the subprogram bodies

⇒ Similar to C function prototype and definition

11

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Example

Subprograms in Packages 45

Subprograms can be declared in the declaration sections of
entities and architectures
processes and subprograms

To facilitate reusability also possible in packages

The package declaration contains declarations (e.g., constants, types,
components, subprograms etc.)
The package body contains the subprogram bodies

⇒ Similar to C function prototype and definition

11

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Example

Subprograms in Packages 45

Subprograms can be declared in the declaration sections of
entities and architectures
processes and subprograms

To facilitate reusability also possible in packages
The package declaration contains declarations (e.g., constants, types,
components, subprograms etc.)

The package body contains the subprogram bodies
⇒ Similar to C function prototype and definition

11

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Example

Subprograms in Packages 45

Subprograms can be declared in the declaration sections of
entities and architectures
processes and subprograms

To facilitate reusability also possible in packages
The package declaration contains declarations (e.g., constants, types,
components, subprograms etc.)
The package body contains the subprogram bodies

⇒ Similar to C function prototype and definition

11

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Example

Subprograms in Packages 45

Subprograms can be declared in the declaration sections of
entities and architectures
processes and subprograms

To facilitate reusability also possible in packages
The package declaration contains declarations (e.g., constants, types,
components, subprograms etc.)
The package body contains the subprogram bodies

⇒ Similar to C function prototype and definition

11

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Example

Example - Package with Body

 package math_pkg is
 constant WIDTH, HEIGHT : natural := 100;
 function max3(value1, value2, value3 : integer) return integer;
 end package;

 package body math_pkg is
 -- package-local auxiliary function; must be declared before use in max3
 function max(value1, value2 : integer) return integer is
 begin

 if value1 > value2 then
 return value1;
 end if;
 return value2;
 end function;

 function max3(value1, value2, value3 : integer) return integer is
 begin
 return max(max(value1, value2), value3);
 end function;
 end package body;

12

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Example

Example - Package with Body

 package math_pkg is
 constant WIDTH, HEIGHT : natural := 100;
 function max3(value1, value2, value3 : integer) return integer;
 end package;

 package body math_pkg is
 -- package-local auxiliary function; must be declared before use in max3
 function max(value1, value2 : integer) return integer is
 begin

 if value1 > value2 then
 return value1;
 end if;
 return value2;
 end function;

 function max3(value1, value2, value3 : integer) return integer is
 begin
 return max(max(value1, value2), value3);
 end function;
 end package body;

12

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Example

Example - Package with Body

 package math_pkg is
 constant WIDTH, HEIGHT : natural := 100;
 function max3(value1, value2, value3 : integer) return integer;
 end package;

 package body math_pkg is
 -- package-local auxiliary function; must be declared before use in max3
 function max(value1, value2 : integer) return integer is
 begin

 if value1 > value2 then
 return value1;
 end if;
 return value2;
 end function;

 function max3(value1, value2, value3 : integer) return integer is
 begin
 return max(max(value1, value2), value3);
 end function;
 end package body;

12

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Example

Example - Package with Body

 package math_pkg is
 constant WIDTH, HEIGHT : natural := 100;
 function max3(value1, value2, value3 : integer) return integer;
 end package;

 package body math_pkg is
 -- package-local auxiliary function; must be declared before use in max3
 function max(value1, value2 : integer) return integer is
 begin

 if value1 > value2 then
 return value1;
 end if;
 return value2;
 end function;

 function max3(value1, value2, value3 : integer) return integer is
 begin
 return max(max(value1, value2), value3);
 end function;
 end package body;

12

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Example

Example - Package with Body

 package math_pkg is
 constant WIDTH, HEIGHT : natural := 100;
 function max3(value1, value2, value3 : integer) return integer;
 end package;

 package body math_pkg is
 -- package-local auxiliary function; must be declared before use in max3
 function max(value1, value2 : integer) return integer is
 begin

 if value1 > value2 then
 return value1;
 end if;
 return value2;
 end function;

 function max3(value1, value2, value3 : integer) return integer is
 begin
 return max(max(value1, value2), value3);
 end function;
 end package body;

12

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Example

Example - Package with Body

 package math_pkg is
 constant WIDTH, HEIGHT : natural := 100;
 function max3(value1, value2, value3 : integer) return integer;
 end package;

 package body math_pkg is
 -- package-local auxiliary function; must be declared before use in max3
 function max(value1, value2 : integer) return integer is
 begin

 if value1 > value2 then
 return value1;
 end if;
 return value2;
 end function;

 function max3(value1, value2, value3 : integer) return integer is
 begin
 return max(max(value1, value2), value3);
 end function;
 end package body;

12

HWMod
WS25

Subprograms
Functions

Procedures

Overloading

Packages

Example

Lecture Complete!

Modified: 2025-12-16, 16:04 (f8a58e9)

	Subprograms
	Functions
	Procedures
	Overloading
	Packages

