
HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Hardware Modeling [VU] (191.011)
– WS24 –

Structural Modeling

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-12, 16:33 (21636bb)

Hardware Modeling [VU] (191.011)
– WS24 –

Structural Modeling

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Structural Modeling

In this lecture we will deepen our knowledge and skills regarding practical hardware design using VHDL and structural
modelling.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Introduction

Memory CPU IO

Control

System Level

Algorithmic
Level

if A=`1` then
 B:= B+1
else
 B:= B
end if

Register Transfer
Level (RTL)

RAM Register

A
LU

Counter

Logic Level

Circuit Level
dU
dt

 I
 C

dI
dt

d2I
dt2

R + L+=

Behavior Structure Geometry

D = NOT E

C = (D OR B) AND A

>1 &
E

B
C

A

while input
 Read
„Schilling“
 Calulate Euro
 Display „Euro“

Inputs : Keyboard
Output: Display
Funktion:

IN

OUT

Trans-
lator

INV

OR

AND

µP IO-Ctrl
8 PS/2

Interface

Memory
16

RS232
Interface

IO-Ctrl

PS/2µP

RS232

R
E
G

A
L
U

C
o
u
n
te

r

1

Introduction

Memory CPU IO

Control

System Level

Algorithmic
Level

if A=`1` then
 B:= B+1
else
 B:= B
end if

Register Transfer
Level (RTL)

RAM Register

A
LU

Counter

Logic Level

Circuit Level
dU
dt

 I
 C

dI
dt

d2I
dt2

R + L+=

Behavior Structure Geometry

D = NOT E

C = (D OR B) AND A

>1 &
E

B
C

A

while input
 Read
„Schilling“
 Calulate Euro
 Display „Euro“

Inputs : Keyboard
Output: Display
Funktion:

IN

OUT

Trans-
lator

INV

OR

AND

µP IO-Ctrl
8 PS/2

Interface

Memory
16

RS232
Interface

IO-Ctrl

PS/2µP

RS232

R
E
G

A
L
U

C
o
u
n
te

r

Structural Modeling
Introduction

Introduction

A fundamental aspect of any hardware description language is its support for hierarchical design, enabling the creation of
complex circuits by assembling simpler building blocks into larger systems. To understand the significance of this, imagine
an object-oriented programming language that prohibits objects from containing other objects. Obviously, such a language
would be severely limited in its utility. This design approach corresponds to the logic and register-transfer levels on the
structural axis of the Y-Diagram, which is why it is called ”structural modeling”.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Introduction (cont’d)

Structual Modeling

Create complex modules by combining and interconnecting (simpler)
sub-modules.

Top-Level Design/Entity

The design unit (entity) that sits on highest layer of a hierarchical hardware
design.

Unit Under Test (UUT)

The module instantiated in a testbench and whose behavior is verified.

2

Introduction (cont’d)

Structual Modeling

Create complex modules by combining and interconnecting (simpler)
sub-modules.

Top-Level Design/Entity

The design unit (entity) that sits on highest layer of a hierarchical hardware
design.

Unit Under Test (UUT)

The module instantiated in a testbench and whose behavior is verified.

Structural Modeling
Introduction

Introduction (cont’d)

Hence, structural modeling can be defined as the process of combining and interconnecting modules to create more complex
modules in a hierarchical fashion. Including an entity as a sub-module in another design unit in VHDL is referred to as
instantiation – the included sub-module being the instance. At this point, let us also define some other commonly used
terms in hardware design and testing related to instantiations that will be used throughout this course.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Introduction (cont’d)

Structual Modeling

Create complex modules by combining and interconnecting (simpler)
sub-modules.

Top-Level Design/Entity

The design unit (entity) that sits on highest layer of a hierarchical hardware
design.

Unit Under Test (UUT)

The module instantiated in a testbench and whose behavior is verified.

2

Introduction (cont’d)

Structual Modeling

Create complex modules by combining and interconnecting (simpler)
sub-modules.

Top-Level Design/Entity

The design unit (entity) that sits on highest layer of a hierarchical hardware
design.

Unit Under Test (UUT)

The module instantiated in a testbench and whose behavior is verified.

Structural Modeling
Introduction

Introduction (cont’d)

The top-level entity or top-level design refers to the highest or outermost module in a hierarchical design. It is the main
component that integrates all the lower-level modules and subcomponents. This top-level entity serves as the entry point for
the design and defines the inputs and outputs that connect the circuit to external systems.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Introduction (cont’d)

Structual Modeling

Create complex modules by combining and interconnecting (simpler)
sub-modules.

Top-Level Design/Entity

The design unit (entity) that sits on highest layer of a hierarchical hardware
design.

Unit Under Test (UUT)

The module instantiated in a testbench and whose behavior is verified.

2

Introduction (cont’d)

Structual Modeling

Create complex modules by combining and interconnecting (simpler)
sub-modules.

Top-Level Design/Entity

The design unit (entity) that sits on highest layer of a hierarchical hardware
design.

Unit Under Test (UUT)

The module instantiated in a testbench and whose behavior is verified.

Structural Modeling
Introduction

Introduction (cont’d)

Another term that you will also hear quite often is Unit-Under-Test or UUT. It refers to the entity that is instantiated in a
testbench to validate its functionality.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Creating Instances – Example: Half Adder

cout

suma

b

1 entity xor_gate is
2 port (
3 a, b : in std_ulogic;
4 x : out std_ulogic
5);
6 end entity;
7

8 architecture arch of xor_gate is
9 begin

10 x <= a xor b;
11 end architecture;

1 entity and_gate is
2 port (
3 a, b : in std_ulogic;
4 x : out std_ulogic
5);
6 end entity;
7

8 architecture arch of and_gate is
9 begin

10 x <= a and b;
11 end architecture;

3

Creating Instances – Example: Half Adder

cout

suma

b

1 entity xor_gate is
2 port (
3 a, b : in std_ulogic;
4 x : out std_ulogic
5);
6 end entity;
7

8 architecture arch of xor_gate is
9 begin

10 x <= a xor b;
11 end architecture;

1 entity and_gate is
2 port (
3 a, b : in std_ulogic;
4 x : out std_ulogic
5);
6 end entity;
7

8 architecture arch of and_gate is
9 begin

10 x <= a and b;
11 end architecture;

Structural Modeling
Instances

Creating Instances – Example: Half Adder

Before we go into details on the formal syntax specification of instantiations in VHDL, let us first look at a simple code
example. Consider the half adder circuit shown on this slide, which is used to calculate the sum and carry of two single-bit
inputs and consists of a single ”XOR” and ”AND”-gate. We want to construct this circuit out of the two entities shown on the
slide. These two modules should already look quite familiar to you, as they simply use one concurrent signal assignment to
implement their desired behaviors. Also notice that we used the std_ulogic datatype for its inputs and outputs.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Creating Instances – Example: Half Adder

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate_inst : entity work.and_gate
11 port map (a, b, cout);
12

13 xor_gate_inst : entity work.xor_gate
14 port map (a, b, sum);
15 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

4

Creating Instances – Example: Half Adder

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate_inst : entity work.and_gate
11 port map (a, b, cout);
12

13 xor_gate_inst : entity work.xor_gate
14 port map (a, b, sum);
15 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

Structural Modeling
Instances

Creating Instances – Example: Half Adder

Here, we see an implementation of the half adder circuit using instances of the entities shown on the previous slides.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Creating Instances – Example: Half Adder

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate_inst : entity work.and_gate
11 port map (a, b, cout);
12

13 xor_gate_inst : entity work.xor_gate
14 port map (a, b, sum);
15 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

4

Creating Instances – Example: Half Adder

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate_inst : entity work.and_gate
11 port map (a, b, cout);
12

13 xor_gate_inst : entity work.xor_gate
14 port map (a, b, sum);
15 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

Structural Modeling
Instances

Creating Instances – Example: Half Adder

Its entity declaration lists the inputs a and b as well as the outputs sum and cout.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Creating Instances – Example: Half Adder

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate_inst : entity work.and_gate
11 port map (a, b, cout);
12

13 xor_gate_inst : entity work.xor_gate
14 port map (a, b, sum);
15 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

4

Creating Instances – Example: Half Adder

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate_inst : entity work.and_gate
11 port map (a, b, cout);
12

13 xor_gate_inst : entity work.xor_gate
14 port map (a, b, sum);
15 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

Structural Modeling
Instances

Creating Instances – Example: Half Adder

As already discussed in a previous lecture, in VHDL instances are created in the statement part of architectures.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Creating Instances – Example: Half Adder

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate_inst : entity work.and_gate
11 port map (a, b, cout);
12

13 xor_gate_inst : entity work.xor_gate
14 port map (a, b, sum);
15 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

4

Creating Instances – Example: Half Adder

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate_inst : entity work.and_gate
11 port map (a, b, cout);
12

13 xor_gate_inst : entity work.xor_gate
14 port map (a, b, sum);
15 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

Structural Modeling
Instances

Creating Instances – Example: Half Adder

To do so, one has to select a name for the instance followed by a colon and the name of the object that should be instantiated.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Creating Instances – Example: Half Adder

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate_inst : entity work.and_gate
11 port map (a, b, cout);
12

13 xor_gate_inst : entity work.xor_gate
14 port map (a, b, sum);
15 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

4

Creating Instances – Example: Half Adder

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate_inst : entity work.and_gate
11 port map (a, b, cout);
12

13 xor_gate_inst : entity work.xor_gate
14 port map (a, b, sum);
15 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

Structural Modeling
Instances

Creating Instances – Example: Half Adder

Then the port map statement is used to connect the interface signals of the instance to local signals available in the architec-
ture.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Creating Instances – Example: Half Adder

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate_inst : entity work.and_gate
11 port map (a, b, cout);
12

13 xor_gate_inst : entity work.xor_gate
14 port map (a, b, sum);
15 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

4

Creating Instances – Example: Half Adder

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate_inst : entity work.and_gate
11 port map (a, b, cout);
12

13 xor_gate_inst : entity work.xor_gate
14 port map (a, b, sum);
15 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

Structural Modeling
Instances

Creating Instances – Example: Half Adder

For our half adder example circuit we create two instances – one of each of the basic gates shown on the previous slide. The
local signals in the half adder architecture are connected to the interface signals of the entities using positional association.
This works exactly like with aggregate expressions – already introduced in a previous lecture to initialize records. The signals
are simply connected in the sequence of how they appear in the entity declaration of the instantiated entities. For our example
this means that the local signal a is connected to the ports named a of the instances, just as b is connected to b inputs. The
output x of the and gate is connected to cout, while the XOR’s output is connected to the sum signal. Of course it must
be ensured that signals that are connected to outputs of an instance are actually writable in the instantiation architecture.
Similarly, input signals must be readable. It would, for example, lead to a compilation error if the x output of one of the gates
would be connected to the a input of the half adder.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map

Association list 110

Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Port map syntax
port map(association_list)
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part =>] actual_part

5

Port Map

Association list 110

Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Port map syntax
port map(association_list)
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part =>] actual_part

Structural Modeling
Instances

Port Map

Formally the part inside the parentheses of the port map clause is referred to as an ”association list”. As its name suggests,
its purpose is to associate or map an interface signal of an instance with some local signal or expression. This can be done
using a positional mapping – like in the example on the previous slide – or using a named mapping.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map

Association list 110

Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Port map syntax
port map(association_list)
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part =>] actual_part

5

Port Map

Association list 110

Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Port map syntax
port map(association_list)
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part =>] actual_part

Structural Modeling
Instances

Port Map

In comparison to positional association, named association increases readability and reduces the chance of errors, especially
in designs with many signals or ports. By specifying each connection by name, the code becomes more self-explanatory, and
modifications, such as adding, removing, or rearranging ports, can be made without affecting the order of other connections.
Named association thus provides better clarity, maintainability, and flexibility, and is generally preferable to the positional
variant.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map

Association list 110

Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Port map syntax
port map(association_list)
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part =>] actual_part

5

Port Map

Association list 110

Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Port map syntax
port map(association_list)
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part =>] actual_part

Structural Modeling
Instances

Port Map

Syntactically the association list of a port clause looks very similar to an aggregate expression for records. If both positional
and named associations are used in the same association list, then all positional associations must appear first. Hence,
once a named association is used, the rest of the association list must only use named associations. However, although it
supported by the standard, we strongly advise against mixing association styles when creating instances! Note that we
will encounter association lists again, when we talk about function and procedure calls in an upcoming lecture. Here mixed
association styles can sometimes be beneficial when dealing with default parameters of a subprogram. The formal part
of a named association must refer to a port signal of the entity being instantiated. For port maps the actual part can be an
expression containing local signals or constants.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map - Example: Full Adder

a

b

cin

cout

sum

x

y

z

half adder

half adder

1 entity fa is
2 port (
3 a, b, cin : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;

1 architecture arch of fa is
2 signal x, y, z : std_ulogic;
3 begin
4 ha1 : entity work.ha
5 port map(a, b, x, y);
6

7 ha2 : entity work.ha
8 port map(
9 a => cin,

10 b => x,
11 cout => z,
12 sum => sum
13);
14

15 cout <= y or z;
16 end architecture;

6

Port Map - Example: Full Adder

a

b

cin

cout

sum

x

y

z

half adder

half adder

1 entity fa is
2 port (
3 a, b, cin : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;

1 architecture arch of fa is
2 signal x, y, z : std_ulogic;
3 begin
4 ha1 : entity work.ha
5 port map(a, b, x, y);
6

7 ha2 : entity work.ha
8 port map(
9 a => cin,

10 b => x,
11 cout => z,
12 sum => sum
13);
14

15 cout <= y or z;
16 end architecture;

Structural Modeling
Instances

Port Map - Example: Full Adder

OK, let’s look at another code example. You should already know the full adder circuit from a previous lecture. Notice that
the full adder can be broken down into two half adders and an ”OR”-gate. Hence, we will now implement an architecture that
contains two half adder instances.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map - Example: Full Adder

a

b

cin

cout

sum

x

y

z

half adder

half adder

1 entity fa is
2 port (
3 a, b, cin : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;

1 architecture arch of fa is
2 signal x, y, z : std_ulogic;
3 begin
4 ha1 : entity work.ha
5 port map(a, b, x, y);
6

7 ha2 : entity work.ha
8 port map(
9 a => cin,

10 b => x,
11 cout => z,
12 sum => sum
13);
14

15 cout <= y or z;
16 end architecture;

6

Port Map - Example: Full Adder

a

b

cin

cout

sum

x

y

z

half adder

half adder

1 entity fa is
2 port (
3 a, b, cin : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;

1 architecture arch of fa is
2 signal x, y, z : std_ulogic;
3 begin
4 ha1 : entity work.ha
5 port map(a, b, x, y);
6

7 ha2 : entity work.ha
8 port map(
9 a => cin,

10 b => x,
11 cout => z,
12 sum => sum
13);
14

15 cout <= y or z;
16 end architecture;

Structural Modeling
Instances

Port Map - Example: Full Adder

The two instances are named ha1 and ha2. The former one uses positional association in its port map, while the latter uses
the named association style. Notice that, although the first port map is much more compact, it is much harder to understand
to code without referring back to the half adder entity declaration. For, ha2 it is immediately clear what the inputs and outputs
do. Further notice, how the or-gate producing the final carry-out signal is implemented as a concurrent signal assignment.
This shows that instances, concurrent signal assignments as well as processes and other structures can be mixed in one
architecture. Also recall that the sequence of statements is irrelevant for the semantics of the code. You might want to pause
the video at this point, to really understand the shown circuit and code snippet.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Unused Ports

7

Unused Ports

Structural Modeling
Instances

Unused Ports

Oftentimes it is the case that not all interface signals of an instance are actually used or needed within the instantiating
architecture. Reasons for that might be the modular design of components, where the interface is made to be more generic
and reusable across different contexts. In such cases, signals may exist to accommodate various configurations, but not
all configurations require every signal. Another reason could be that the design includes optional features, controlled by
configuration parameters or generics, where only certain signals are used depending on how these options are set. In any
case, the question arises how to deal with these situations in code. For that we have to make a distinction between inputs
and outputs.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Unused Ports

Unused outputs
Use open keyword
Don’t leave unconnected!

1 [...]
2 signal a, b, c, m : std_ulogic;
3 begin
4 majority : entity work.fa
5 port map (
6 a => a,
7 b => b,
8 c => c,
9 sum => open, -- not connected

10 cout => m
11);
12 [...]

7

Unused Ports

Unused outputs
Use open keyword
Don’t leave unconnected!

1 [...]
2 signal a, b, c, m : std_ulogic;
3 begin
4 majority : entity work.fa
5 port map (
6 a => a,
7 b => b,
8 c => c,
9 sum => open, -- not connected

10 cout => m
11);
12 [...]

Structural Modeling
Instances

Unused Ports

Unused output ports should be clearly marked with the open keyword. While not strictly required by the VHDL language
specification, this is good practice as it improves readability by making unconnected outputs explicit and helps prevent
confusion. It also avoids potential warnings issued by some simulation or synthesis tools. In the example code, we
instantiated a full adder but ignored the sum output since as our intent is in using it solely as a majority gate – a function that
is implemented by the carry-output.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Unused Ports

Unused outputs
Use open keyword
Don’t leave unconnected!

1 [...]
2 signal a, b, c, m : std_ulogic;
3 begin
4 majority : entity work.fa
5 port map (
6 a => a,
7 b => b,
8 c => c,
9 sum => open, -- not connected

10 cout => m
11);
12 [...]

Unused inputs
Connect to constant
If not connected → default value

1 [...]
2 signal a, b, sum, cout : std_ulogic;
3 begin
4 half_adder : entity work.fa
5 port map (
6 a => a,
7 b => b,
8 c => ’0’, -- constant
9 sum => sum,

10 cout => cout
11);
12 [...]

7

Unused Ports

Unused outputs
Use open keyword
Don’t leave unconnected!

1 [...]
2 signal a, b, c, m : std_ulogic;
3 begin
4 majority : entity work.fa
5 port map (
6 a => a,
7 b => b,
8 c => c,
9 sum => open, -- not connected

10 cout => m
11);
12 [...]

Unused inputs
Connect to constant
If not connected → default value

1 [...]
2 signal a, b, sum, cout : std_ulogic;
3 begin
4 half_adder : entity work.fa
5 port map (
6 a => a,
7 b => b,
8 c => ’0’, -- constant
9 sum => sum,

10 cout => cout
11);
12 [...]

Structural Modeling
Instances

Unused Ports

For unused inputs, we recommend assigning them a constant value, as demonstrated in the example code. It’s also possible
to use the open keyword or simply leave them unconnected. In this case, the port’s default value - specified in the entity
declaration - will be applied. If no default value is specified, a compilation error will be raised. However, for the same reason
as already mentioned for outputs we strongly advise on using constant values.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map

Generic map syntax
generic map(association_list)

Must appear before port map

Use named association and avoid the positional style
Formal parts must be compile-time constants (generics cannot be
connected to signals)

8

Generic Map

Generic map syntax
generic map(association_list)

Must appear before port map

Use named association and avoid the positional style
Formal parts must be compile-time constants (generics cannot be
connected to signals)

Structural Modeling
Instances

Generic Map

Similar to how the ports of an instance are connected to local signals, there exists an analogous mechanism for generics in
the form of the generic-map clause. The generic-map clause also takes an association list and, hence, also supports named
and positional association.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map

Generic map syntax
generic map(association_list)

Must appear before port map
Use named association and avoid the positional style

Formal parts must be compile-time constants (generics cannot be
connected to signals)

8

Generic Map

Generic map syntax
generic map(association_list)

Must appear before port map
Use named association and avoid the positional style

Formal parts must be compile-time constants (generics cannot be
connected to signals)

Structural Modeling
Instances

Generic Map

Using named association for generics provides the same benefits as for ports, such as improved clarity and reduced potential
for errors.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map

Generic map syntax
generic map(association_list)

Must appear before port map
Use named association and avoid the positional style
Formal parts must be compile-time constants (generics cannot be
connected to signals)

8

Generic Map

Generic map syntax
generic map(association_list)

Must appear before port map
Use named association and avoid the positional style
Formal parts must be compile-time constants (generics cannot be
connected to signals)

Structural Modeling
Instances

Generic Map

A major difference compared to mapping port signals is that the actual part of a generic association must always be a
compile-time constant expression. This means it cannot depend on runtime data or dynamically changing values, such as
signals. This ensures that the generic values are determined and fixed during simulation and synthesis. Oftentimes generics
are mapped to generics of the instantiating architecture which allows to pass paramaters down through a design hierarchy

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer

1 entity mux is
2 generic (
3 N : positive
4);
5 port (
6 c : in std_ulogic;
7 a : in std_ulogic_vector(N-1 downto 0);
8 b : in std_ulogic_vector(N-1 downto 0);
9 o : out std_ulogic_vector(N-1 downto 0)

10);
11 end entity;
12

13 architecture arch of mux is
14 begin
15 o <= a when c = ’0’ else b;
16 end architecture;

o
a

b

c

N
N

N

9

Generic Map – Example: Multiplexer

1 entity mux is
2 generic (
3 N : positive
4);
5 port (
6 c : in std_ulogic;
7 a : in std_ulogic_vector(N-1 downto 0);
8 b : in std_ulogic_vector(N-1 downto 0);
9 o : out std_ulogic_vector(N-1 downto 0)

10);
11 end entity;
12

13 architecture arch of mux is
14 begin
15 o <= a when c = ’0’ else b;
16 end architecture;

o
a

b

c

N
N

N

Structural Modeling
Instances

Generic Map – Example: Multiplexer

Let’s consider this generic two-to-one multiplexer, whose data width can be configured using the generic N. By now, the
shown code snippet should be quite clear to you. However, you can pause the video and take some time to understand it.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

1 [...]
2 signal c : std_ulogic;
3 signal a0, a1 : std_ulogic;
4 signal b : std_ulogic_vector(1 downto 0);
5 signal x, y : std_ulogic;
6 begin
7 mux_inst : entity work.mux
8 generic map (N => 2)
9 port map (

10 c => c,
11 a => a1 & a0,
12 b => b,
13 o(0) => x,
14 o(1) => y
15);
16 [...]

x

y
a0

a1

b

c

2
2

2

10

Generic Map – Example: Multiplexer (cont’d)

1 [...]
2 signal c : std_ulogic;
3 signal a0, a1 : std_ulogic;
4 signal b : std_ulogic_vector(1 downto 0);
5 signal x, y : std_ulogic;
6 begin
7 mux_inst : entity work.mux
8 generic map (N => 2)
9 port map (

10 c => c,
11 a => a1 & a0,
12 b => b,
13 o(0) => x,
14 o(1) => y
15);
16 [...]

x

y
a0

a1

b

c

2
2

2

Structural Modeling
Instances

Generic Map – Example: Multiplexer (cont’d)

Let’s say we want to instantiate this entity in some other architecture with a data width of two.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

1 [...]
2 signal c : std_ulogic;
3 signal a0, a1 : std_ulogic;
4 signal b : std_ulogic_vector(1 downto 0);
5 signal x, y : std_ulogic;
6 begin
7 mux_inst : entity work.mux
8 generic map (N => 2)
9 port map (

10 c => c,
11 a => a1 & a0,
12 b => b,
13 o(0) => x,
14 o(1) => y
15);
16 [...]

x

y
a0

a1

b

c

2
2

2

10

Generic Map – Example: Multiplexer (cont’d)

1 [...]
2 signal c : std_ulogic;
3 signal a0, a1 : std_ulogic;
4 signal b : std_ulogic_vector(1 downto 0);
5 signal x, y : std_ulogic;
6 begin
7 mux_inst : entity work.mux
8 generic map (N => 2)
9 port map (

10 c => c,
11 a => a1 & a0,
12 b => b,
13 o(0) => x,
14 o(1) => y
15);
16 [...]

x

y
a0

a1

b

c

2
2

2

Structural Modeling
Instances

Generic Map – Example: Multiplexer (cont’d)

Hence, we use a generic map clause that maps the generic N to the constant value two.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

1 [...]
2 signal c : std_ulogic;
3 signal a0, a1 : std_ulogic;
4 signal b : std_ulogic_vector(1 downto 0);
5 signal x, y : std_ulogic;
6 begin
7 mux_inst : entity work.mux
8 generic map (N => 2)
9 port map (

10 c => c,
11 a => a1 & a0,
12 b => b,
13 o(0) => x,
14 o(1) => y
15);
16 [...]

x

y
a0

a1

b

c

2
2

2

10

Generic Map – Example: Multiplexer (cont’d)

1 [...]
2 signal c : std_ulogic;
3 signal a0, a1 : std_ulogic;
4 signal b : std_ulogic_vector(1 downto 0);
5 signal x, y : std_ulogic;
6 begin
7 mux_inst : entity work.mux
8 generic map (N => 2)
9 port map (

10 c => c,
11 a => a1 & a0,
12 b => b,
13 o(0) => x,
14 o(1) => y
15);
16 [...]

x

y
a0

a1

b

c

2
2

2

Structural Modeling
Instances

Generic Map – Example: Multiplexer (cont’d)

Now, the inputs a and b as well as the output o can be connected to std_ulogic_vector signals of length two.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

1 [...]
2 signal c : std_ulogic;
3 signal a0, a1 : std_ulogic;
4 signal b : std_ulogic_vector(1 downto 0);
5 signal x, y : std_ulogic;
6 begin
7 mux_inst : entity work.mux
8 generic map (N => 2)
9 port map (

10 c => c,
11 a => a1 & a0,
12 b => b,
13 o(0) => x,
14 o(1) => y
15);
16 [...]

x

y
a0

a1

b

c

2
2

2

10

Generic Map – Example: Multiplexer (cont’d)

1 [...]
2 signal c : std_ulogic;
3 signal a0, a1 : std_ulogic;
4 signal b : std_ulogic_vector(1 downto 0);
5 signal x, y : std_ulogic;
6 begin
7 mux_inst : entity work.mux
8 generic map (N => 2)
9 port map (

10 c => c,
11 a => a1 & a0,
12 b => b,
13 o(0) => x,
14 o(1) => y
15);
16 [...]

x

y
a0

a1

b

c

2
2

2

Structural Modeling
Instances

Generic Map – Example: Multiplexer (cont’d)

This example snippet also shows the flexibility of association lists – specifically that the formal and actual parts are not
restricted to be simple identifiers.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

1 [...]
2 signal c : std_ulogic;
3 signal a0, a1 : std_ulogic;
4 signal b : std_ulogic_vector(1 downto 0);
5 signal x, y : std_ulogic;
6 begin
7 mux_inst : entity work.mux
8 generic map (N => 2)
9 port map (

10 c => c,
11 a => a1 & a0,
12 b => b,
13 o(0) => x,
14 o(1) => y
15);
16 [...]

x

y
a0

a1

b

c

2
2

2

10

Generic Map – Example: Multiplexer (cont’d)

1 [...]
2 signal c : std_ulogic;
3 signal a0, a1 : std_ulogic;
4 signal b : std_ulogic_vector(1 downto 0);
5 signal x, y : std_ulogic;
6 begin
7 mux_inst : entity work.mux
8 generic map (N => 2)
9 port map (

10 c => c,
11 a => a1 & a0,
12 b => b,
13 o(0) => x,
14 o(1) => y
15);
16 [...]

x

y
a0

a1

b

c

2
2

2

Structural Modeling
Instances

Generic Map – Example: Multiplexer (cont’d)

Notice, that the input a is mapped to two single-bit signals a0 and a1 using the concatenation operator.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

1 [...]
2 signal c : std_ulogic;
3 signal a0, a1 : std_ulogic;
4 signal b : std_ulogic_vector(1 downto 0);
5 signal x, y : std_ulogic;
6 begin
7 mux_inst : entity work.mux
8 generic map (N => 2)
9 port map (

10 c => c,
11 a => a1 & a0,
12 b => b,
13 o(0) => x,
14 o(1) => y
15);
16 [...]

x

y
a0

a1

b

c

2
2

2

10

Generic Map – Example: Multiplexer (cont’d)

1 [...]
2 signal c : std_ulogic;
3 signal a0, a1 : std_ulogic;
4 signal b : std_ulogic_vector(1 downto 0);
5 signal x, y : std_ulogic;
6 begin
7 mux_inst : entity work.mux
8 generic map (N => 2)
9 port map (

10 c => c,
11 a => a1 & a0,
12 b => b,
13 o(0) => x,
14 o(1) => y
15);
16 [...]

x

y
a0

a1

b

c

2
2

2

Structural Modeling
Instances

Generic Map – Example: Multiplexer (cont’d)

Moreover, the individual bits of output o are mapped separately to the local signals x and y.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Components

Components are “entity prototype”
Component declaration syntax
component NAME is
[generic ({generic_element;} generic_element);]
[port ({port_element;} port_element);]
end component;

Components can be put in
packages
declarative part of architectures (blocks and generate statements)

11

Components

Components are “entity prototype”
Component declaration syntax
component NAME is
[generic ({generic_element;} generic_element);]
[port ({port_element;} port_element);]
end component;

Components can be put in
packages
declarative part of architectures (blocks and generate statements)

Structural Modeling
Components

Components

You have probably noticed that in all instantiation examples in this lecture, we had to specify more than just the name of the
entity. In particular, we always had to explicitly state that we want to instantiate an entity using the entity keyword followed
by the name of the library the entity resides in – in our case the default library ”work” – and the actual name of the entity.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Components

Components are “entity prototype”

Component declaration syntax
component NAME is
[generic ({generic_element;} generic_element);]
[port ({port_element;} port_element);]
end component;

Components can be put in
packages
declarative part of architectures (blocks and generate statements)

11

Components

Components are “entity prototype”

Component declaration syntax
component NAME is
[generic ({generic_element;} generic_element);]
[port ({port_element;} port_element);]
end component;

Components can be put in
packages
declarative part of architectures (blocks and generate statements)

Structural Modeling
Components

Components

This was necessary because we did not declare components to our entities. To draw a comparison to the C programming
language, you can view a component as the prototype of an entity. The prototype contains only interface information, without
providing any details about its internal implementation. Just as function prototypes in C allow you to reference functions
before they are defined, component declarations in VHDL allow you to instantiate and reference entities in your design
without knowing the full implementation at that point.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Components

Components are “entity prototype”
Component declaration syntax
component NAME is
[generic ({generic_element;} generic_element);]
[port ({port_element;} port_element);]
end component;

Components can be put in
packages
declarative part of architectures (blocks and generate statements)

11

Components

Components are “entity prototype”
Component declaration syntax
component NAME is
[generic ({generic_element;} generic_element);]
[port ({port_element;} port_element);]
end component;

Components can be put in
packages
declarative part of architectures (blocks and generate statements)

Structural Modeling
Components

Components

As shown in the formal syntax specification, entity and component declarations look quite similar. However, as we are
only interested in the interface and not in any implementation details components do not have a declarative or statement
part.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Components

Components are “entity prototype”
Component declaration syntax
component NAME is
[generic ({generic_element;} generic_element);]
[port ({port_element;} port_element);]
end component;

Components can be put in
packages
declarative part of architectures (blocks and generate statements)

11

Components

Components are “entity prototype”
Component declaration syntax
component NAME is
[generic ({generic_element;} generic_element);]
[port ({port_element;} port_element);]
end component;

Components can be put in
packages
declarative part of architectures (blocks and generate statements)

Structural Modeling
Components

Components

In the C programming language the function prototypes are usually put into header files, while their implementation is kept
separate in some C file. In VHDL you can do a similar thing, by putting components in packages and include them elsewhere
in you design. However, it is also possible to declare them directly in declarative parts of architectures.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Components (cont’d)

Instantiation example
Entity: i : entity work.fa port map (...);
Component: i : fa port map (...);
Component (explicit): i : component fa port map (...);

Modularity, abstraction and separation of concerns
Compilation order
Entity may not always be available
Mixed-language designs

12

Components (cont’d)

Instantiation example
Entity: i : entity work.fa port map (...);
Component: i : fa port map (...);
Component (explicit): i : component fa port map (...);

Modularity, abstraction and separation of concerns
Compilation order
Entity may not always be available
Mixed-language designs

Structural Modeling
Components

Components (cont’d)

Now the question may arise, why even bother with components? As shown in the code examples the component instantia-
tion syntax is a little simpler and more compact. Generally, the same arguments as for structuring C programs into header
and source files apply here. Components in VHDL, like functions and modules in C, help break down complex designs into
smaller, more manageable parts, promoting modularity and reusability and a separation of concerns. Moreover, they help
to relax constraints on the compilation order and can, hence, improve compilation and synthesis speeds. Sometimes, it
can also be the case that you don’t have access to a modules’ implementation – neither its entity nor its architecture. This
can, for example, occur when you’re working with precompiled IP cores or third-party libraries provided by FPGA vendors
or other companies. In such cases, you are given a black box view of the module, where the internal workings are hidden,
but the external interface is available in the form of a component declaration. You can again compare this to the situation
in software development where you have a precompiled library, without access to its source code. In both cases, you are
provided with the interface – in software, typically in the form of a header file – that describes the inputs and outputs, or
functions and their arguments. Components are also needed when you are working with mixed-language designs – for
example when you mix VHDL and Verilog in a single project.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Entity Instantiations

Configurations

Architecture Selection

Multiple different architectures possible for a single entity
⇒ How to select one?

Two possibilities
Specify architecture, when an entity is instantiated
Caution: This does not work for components!
Configurations

13

Architecture Selection

Multiple different architectures possible for a single entity
⇒ How to select one?

Two possibilities
Specify architecture, when an entity is instantiated
Caution: This does not work for components!
Configurations

Structural Modeling
Architecture Selection

Architecture Selection

As we have discussed in a previous lecture, an entity can have multiple different architectures. So you might ask yourself,
how we can select a particular one when creating an instance of a module. VHDL offers two possibilities to do that.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Entity Instantiations

Configurations

Entity Instantiations

1 entity mystery is
2 port (
3 a, b : in std_ulogic;
4 x : out std_ulogic
5);
6 end entity;
7

8 architecture a1 of mystery is
9 begin

10 x <= a and b;
11 end architecture;
12

13 architecture a2 of mystery is
14 begin
15 x <= a xor b;
16 end architecture;

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate : entity work.mystery(a1)
11 port map (a, b, cout);
12

13 xor_gate : entity work.mystery(a2)
14 port map (a, b, sum);
15 end architecture;

14

Entity Instantiations

1 entity mystery is
2 port (
3 a, b : in std_ulogic;
4 x : out std_ulogic
5);
6 end entity;
7

8 architecture a1 of mystery is
9 begin

10 x <= a and b;
11 end architecture;
12

13 architecture a2 of mystery is
14 begin
15 x <= a xor b;
16 end architecture;

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate : entity work.mystery(a1)
11 port map (a, b, cout);
12

13 xor_gate : entity work.mystery(a2)
14 port map (a, b, sum);
15 end architecture;

Structural Modeling
Architecture Selection

Entity Instantiations

When creating an instance of an entity, it is possible to specify the name of the architecture that should be used after the
entity name in parentheses. Note however, that this only works for entity instantiation and not for components. In the
example code on the left we have declared a simple entity with two inputs and one output called ”mystery”. It has two
different architectures, a1 and a2, implementing the behavior of an ”XOR” and an ”and”-gate, respectively.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Entity Instantiations

Configurations

Entity Instantiations

1 entity mystery is
2 port (
3 a, b : in std_ulogic;
4 x : out std_ulogic
5);
6 end entity;
7

8 architecture a1 of mystery is
9 begin

10 x <= a and b;
11 end architecture;
12

13 architecture a2 of mystery is
14 begin
15 x <= a xor b;
16 end architecture;

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate : entity work.mystery(a1)
11 port map (a, b, cout);
12

13 xor_gate : entity work.mystery(a2)
14 port map (a, b, sum);
15 end architecture;

14

Entity Instantiations

1 entity mystery is
2 port (
3 a, b : in std_ulogic;
4 x : out std_ulogic
5);
6 end entity;
7

8 architecture a1 of mystery is
9 begin

10 x <= a and b;
11 end architecture;
12

13 architecture a2 of mystery is
14 begin
15 x <= a xor b;
16 end architecture;

1 entity ha is
2 port (
3 a, b : in std_ulogic;
4 sum, cout : out std_ulogic
5);
6 end entity;
7

8 architecture arch of ha is
9 begin

10 and_gate : entity work.mystery(a1)
11 port map (a, b, cout);
12

13 xor_gate : entity work.mystery(a2)
14 port map (a, b, sum);
15 end architecture;

Structural Modeling
Architecture Selection

Entity Instantiations

On the right side we can now see how to use this gate to implement the half adder circuit, we have already seen on a previous
slide. Notice how the architecture names appear next to name of the entity names.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Entity Instantiations

Configurations

Configurations 26

1 configuration dbg_top_conf of dbg_top is
2 for dbg_top_arch
3 for user_top_inst : user_top
4 use entity user_top(arch_A);
5 end for;
6 end for;
7 end configuration;

dbg top

user top inst : user top

dbg core inst : dbg core

multiple architectures
arch A, ..., arch Z

debugging logic for
the user top design

15

Configurations 26

1 configuration dbg_top_conf of dbg_top is
2 for dbg_top_arch
3 for user_top_inst : user_top
4 use entity user_top(arch_A);
5 end for;
6 end for;
7 end configuration;

dbg top

user top inst : user top

dbg core inst : dbg core

multiple architectures
arch A, ..., arch Z

debugging logic for
the user top design

Structural Modeling
Architecture Selection

Configurations

The other possibility to select between architectures is via the use of an VHDL language feature called configurations.
However, we don’t want to go into too much detail about this feature as its syntax is a little involved. It suffices, if you know
that a configuration, can – among other things – select a particular architecture for a particular instance in a design, without
the need to change the architecture in which this instance is created. Let us close this lecture with a simple practical
example for a configuration, that we will also encounter in the exercise part of this course. For tasks that must be loaded
onto the FPGA board you will have a top-level entity named debug-top, which contains two instances – the instance of the
user-top design and the debug-core, which provides some debugging capabilities. The figure on the right illustrates this
design hierarchy. The user-top design has a fixed entity specification, and you will have to implement different architectures
for the various tasks of the exercise sheet. Since we don’t want to always change the debug-top architecture when we want
to switch between different architectures for the individual tasks we can use a configuration. The code snippet on the left of
the slide shows how this can look like. It creates a configuration named debug-top-conf for the debug-top entity, which has
a single architecture named debug-top-arch. For this architecture it then specifies that the instance named user-top-inst of
the user-top entity shall use the arch-A architecture. Now, to change the architecture we only have to change line 4 of our
configuration.

HWMod
WS24

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Entity Instantiations

Configurations Lecture Complete!

Modified: 2025-03-12, 16:33 (21636bb)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

	Structural Modeling
	Introduction
	Instances
	Components
	Architecture Selection

