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Structual Modeling

Create complex modules by combining and interconnecting (simpler)
sub-modules.

Top-Level Design/Entity

The design unit (entity) that sits on highest layer of a hierarchical hardware
design.

Unit Under Test (UUT)

The module instantiated in a testbench and whose behavior is verified.
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Creating Instances – Example: Half Adder

cout

suma

b

 entity xor_gate is
 port (
 a, b : in std_ulogic;
 x : out std_ulogic
 );
 end entity;


 architecture arch of xor_gate is
 begin

 x <= a xor b;
 end architecture;

 entity and_gate is
 port (
 a, b : in std_ulogic;
 x : out std_ulogic
 );
 end entity;


 architecture arch of and_gate is
 begin

 x <= a and b;
 end architecture;
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Creating Instances – Example: Half Adder

 entity ha is
 port (
 a, b : in std_ulogic;
 sum, cout : out std_ulogic
 );
 end entity;


 architecture arch of ha is
 begin

 and_gate_inst : entity work.and_gate
 port map (a, b, cout);


 xor_gate_inst : entity work.xor_gate
 port map (a, b, sum);
 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable
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Port map syntax
port map(association_list)

Part in parentheses → Association list 110

Named and positional associations possible
Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Association list syntax
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part => ]actual_part

Don’t mix association styles in port maps
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a

b

cin

cout

sum

x

y

z

half adder

half adder

 entity fa is
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
 );
 end entity;

 architecture arch of fa is
 signal x, y, z : std_ulogic;
 begin
 ha1 : entity work.ha
 port map(a, b, x, y);


 ha2 : entity work.ha
 port map(
 a => cin,

 b => x,
 cout => z,
 sum => sum
 );


 cout <= y or z;
 end architecture;
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Unused Ports

Unused outputs
Use open keyword
Don’t leave unconnected!

 [...]
 signal a, b, c, m : std_ulogic;
 begin
 majority : entity work.fa
 port map (
 a => a,
 b => b,
 c => c,
 sum => open, -- not connected

 cout => m
 );
 [...]
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Unused Ports

Unused outputs
Use open keyword
Don’t leave unconnected!

 [...]
 signal a, b, c, m : std_ulogic;
 begin
 majority : entity work.fa
 port map (
 a => a,
 b => b,
 c => c,
 sum => open, -- not connected

 cout => m
 );
 [...]

Unused inputs
Connect to constant
If not connected → default value

 [...]
 signal a, b, sum, cout : std_ulogic;
 begin
 half_adder : entity work.fa
 port map (
 a => a,
 b => b,
 c => ’0’, -- constant
 sum => sum,

 cout => cout
 );
 [...]
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Generic map syntax
generic map(association_list)

Must appear before port map

Use named association and avoid the positional style
Formal parts must be compile-time constants (generics cannot be
connected to signals)
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Generic Map – Example: Multiplexer

 entity mux is
 generic (
 N : positive
 );
 port (
 c : in std_ulogic;
 a : in std_ulogic_vector(N-1 downto 0);
 b : in std_ulogic_vector(N-1 downto 0);
 o : out std_ulogic_vector(N-1 downto 0)

 );
 end entity;


 architecture arch of mux is
 begin
 o <= a when c = ’0’ else b;
 end architecture;

o
a

b

c

N
N

N
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Generic Map – Example: Multiplexer (cont’d)

 [...]
 signal c : std_ulogic;
 signal a0, a1 : std_ulogic;
 signal b : std_ulogic_vector(1 downto 0);
 signal x, y : std_ulogic;
 begin
 mux_inst : entity work.mux
 generic map (N => 2)
 port map (

 c => c,
 a => a1 & a0,
 b => b,
 o(0) => x,
 o(1) => y
 );
 [...]

x

y
a0

a1

b

c

2
2

2

10



HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

 [...]
 signal c : std_ulogic;
 signal a0, a1 : std_ulogic;
 signal b : std_ulogic_vector(1 downto 0);
 signal x, y : std_ulogic;
 begin
 mux_inst : entity work.mux
 generic map (N => 2)
 port map (

 c => c,
 a => a1 & a0,
 b => b,
 o(0) => x,
 o(1) => y
 );
 [...]

x

y
a0

a1

b

c

2
2

2

10



HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

 [...]
 signal c : std_ulogic;
 signal a0, a1 : std_ulogic;
 signal b : std_ulogic_vector(1 downto 0);
 signal x, y : std_ulogic;
 begin
 mux_inst : entity work.mux
 generic map (N => 2)
 port map (

 c => c,
 a => a1 & a0,
 b => b,
 o(0) => x,
 o(1) => y
 );
 [...]

x

y
a0

a1

b

c

2
2

2

10



HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

 [...]
 signal c : std_ulogic;
 signal a0, a1 : std_ulogic;
 signal b : std_ulogic_vector(1 downto 0);
 signal x, y : std_ulogic;
 begin
 mux_inst : entity work.mux
 generic map (N => 2)
 port map (

 c => c,
 a => a1 & a0,
 b => b,
 o(0) => x,
 o(1) => y
 );
 [...]

x

y
a0

a1

b

c

2
2

2

10



HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

 [...]
 signal c : std_ulogic;
 signal a0, a1 : std_ulogic;
 signal b : std_ulogic_vector(1 downto 0);
 signal x, y : std_ulogic;
 begin
 mux_inst : entity work.mux
 generic map (N => 2)
 port map (

 c => c,
 a => a1 & a0,
 b => b,
 o(0) => x,
 o(1) => y
 );
 [...]

x

y
a0

a1

b

c

2
2

2

10



HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

 [...]
 signal c : std_ulogic;
 signal a0, a1 : std_ulogic;
 signal b : std_ulogic_vector(1 downto 0);
 signal x, y : std_ulogic;
 begin
 mux_inst : entity work.mux
 generic map (N => 2)
 port map (

 c => c,
 a => a1 & a0,
 b => b,
 o(0) => x,
 o(1) => y
 );
 [...]

x

y
a0

a1

b

c

2
2

2

10



HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Components

Components are “entity prototype”
Component declaration syntax
component NAME is
[ generic ( {generic_element;} generic_element ); ]
[ port ( {port_element;} port_element ); ]
end component;

Components can be put in
packages
declarative part of architectures (blocks and generate statements)
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Components (cont’d)

Instantiation example
Entity: i : entity work.fa port map (...);
Component: i : fa port map (...);
Component (explicit): i : component fa port map (...);

Modularity, abstraction and separation of concerns
Compilation order
Entity may not always be available
Mixed-language designs

12
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Architecture Selection

Multiple different architectures possible for a single entity
⇒ How to select one?

Two possibilities
Specify architecture, when an entity is instantiated
Caution: This does not work for components!
Configurations

13
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Entity Instantiations

 entity mystery is
 port (
 a, b : in std_ulogic;
 x : out std_ulogic
 );
 end entity;


 architecture a1 of mystery is
 begin

 x <= a and b;
 end architecture;


 architecture a2 of mystery is
 begin
 x <= a xor b;
 end architecture;

 entity ha is
 port (
 a, b : in std_ulogic;
 sum, cout : out std_ulogic
 );
 end entity;


 architecture arch of ha is
 begin

 and_gate : entity work.mystery(a1)
 port map (a, b, cout);


 xor_gate : entity work.mystery(a2)
 port map (a, b, sum);
 end architecture;
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Configurations 26

 configuration dbg_top_conf of dbg_top is
 for dbg_top_arch
 for user_top_inst : user_top
 use entity user_top(arch_A);
 end for;
 end for;
 end configuration;

dbg top

user top inst : user top

dbg core inst : dbg core

multiple architectures
arch A, ..., arch Z

debugging logic for
the user top design
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