
HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Hardware Modeling [VU] (191.011)
– WS25 –

Structural Modeling

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:05 (f8a58e9)

HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Introduction

Memory CPU IO

Control

System Level

Algorithmic
Level

if A=`1` then

 B:= B+1
else

 B:= B
end if

Register Transfer
Level (RTL)

RAM Register

A
LU

Counter

Logic Level

Circuit Level
dU
dt

 I
 C

dI
dt

d2I
dt2

R + L+=

Behavior Structure Geometry

D = NOT E

C = (D OR B) AND A

>1 &
E
B

C

A

while input
 read English text
 translate to German
 output German Text

Inputs : Keyboard
Output: Display
Function:

IN

OUT

Trans-
lator

INV

OR

AND

µP IO-Ctrl
8 PS/2

Interface

Memory
16

RS232
Interface

IO-Ctrl

PS/2µP

RS232

R
E
G

A
L
U

C
o
u
n
te

r

1

HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Introduction (cont’d)

Structual Modeling

Create complex modules by combining and interconnecting (simpler)
sub-modules.

Top-Level Design/Entity

The design unit (entity) that sits on highest layer of a hierarchical hardware
design.

Unit Under Test (UUT)

The module instantiated in a testbench and whose behavior is verified.

2

HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Introduction (cont’d)

Structual Modeling

Create complex modules by combining and interconnecting (simpler)
sub-modules.

Top-Level Design/Entity

The design unit (entity) that sits on highest layer of a hierarchical hardware
design.

Unit Under Test (UUT)

The module instantiated in a testbench and whose behavior is verified.

2

HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Introduction (cont’d)

Structual Modeling

Create complex modules by combining and interconnecting (simpler)
sub-modules.

Top-Level Design/Entity

The design unit (entity) that sits on highest layer of a hierarchical hardware
design.

Unit Under Test (UUT)

The module instantiated in a testbench and whose behavior is verified.

2

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Creating Instances – Example: Half Adder

cout

suma

b

 entity xor_gate is
 port (
 a, b : in std_ulogic;
 x : out std_ulogic
);
 end entity;

 architecture arch of xor_gate is
 begin

 x <= a xor b;
 end architecture;

 entity and_gate is
 port (
 a, b : in std_ulogic;
 x : out std_ulogic
);
 end entity;

 architecture arch of and_gate is
 begin

 x <= a and b;
 end architecture;

3

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Creating Instances – Example: Half Adder

 entity ha is
 port (
 a, b : in std_ulogic;
 sum, cout : out std_ulogic
);
 end entity;

 architecture arch of ha is
 begin

 and_gate_inst : entity work.and_gate
 port map (a, b, cout);

 xor_gate_inst : entity work.xor_gate
 port map (a, b, sum);
 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

4

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Creating Instances – Example: Half Adder

 entity ha is
 port (
 a, b : in std_ulogic;
 sum, cout : out std_ulogic
);
 end entity;

 architecture arch of ha is
 begin

 and_gate_inst : entity work.and_gate
 port map (a, b, cout);

 xor_gate_inst : entity work.xor_gate
 port map (a, b, sum);
 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

4

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Creating Instances – Example: Half Adder

 entity ha is
 port (
 a, b : in std_ulogic;
 sum, cout : out std_ulogic
);
 end entity;

 architecture arch of ha is
 begin

 and_gate_inst : entity work.and_gate
 port map (a, b, cout);

 xor_gate_inst : entity work.xor_gate
 port map (a, b, sum);
 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

4

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Creating Instances – Example: Half Adder

 entity ha is
 port (
 a, b : in std_ulogic;
 sum, cout : out std_ulogic
);
 end entity;

 architecture arch of ha is
 begin

 and_gate_inst : entity work.and_gate
 port map (a, b, cout);

 xor_gate_inst : entity work.xor_gate
 port map (a, b, sum);
 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

4

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Creating Instances – Example: Half Adder

 entity ha is
 port (
 a, b : in std_ulogic;
 sum, cout : out std_ulogic
);
 end entity;

 architecture arch of ha is
 begin

 and_gate_inst : entity work.and_gate
 port map (a, b, cout);

 xor_gate_inst : entity work.xor_gate
 port map (a, b, sum);
 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

4

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Creating Instances – Example: Half Adder

 entity ha is
 port (
 a, b : in std_ulogic;
 sum, cout : out std_ulogic
);
 end entity;

 architecture arch of ha is
 begin

 and_gate_inst : entity work.and_gate
 port map (a, b, cout);

 xor_gate_inst : entity work.xor_gate
 port map (a, b, sum);
 end architecture;

cout

suma

b

Instances → statement part
Two instantiation statements
Positional association
Inputs must be readable,
outputs writable

4

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map

Port map syntax
port map(association_list)

Part in parentheses → Association list 110

Named and positional associations possible
Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Association list syntax
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part =>]actual_part

Don’t mix association styles in port maps

5

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map

Port map syntax
port map(association_list)

Part in parentheses → Association list 110

Named and positional associations possible

Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Association list syntax
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part =>]actual_part

Don’t mix association styles in port maps

5

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map

Port map syntax
port map(association_list)

Part in parentheses → Association list 110

Named and positional associations possible
Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Association list syntax
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part =>]actual_part

Don’t mix association styles in port maps

5

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map

Port map syntax
port map(association_list)

Part in parentheses → Association list 110

Named and positional associations possible
Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Association list syntax
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part =>]actual_part

Don’t mix association styles in port maps

5

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map

Port map syntax
port map(association_list)

Part in parentheses → Association list 110

Named and positional associations possible
Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Association list syntax
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part =>]actual_part

Don’t mix association styles in port maps
5

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map

Port map syntax
port map(association_list)

Part in parentheses → Association list 110

Named and positional associations possible
Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Association list syntax
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part =>]actual_part

Don’t mix association styles in port maps
5

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map

Port map syntax
port map(association_list)

Part in parentheses → Association list 110

Named and positional associations possible
Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Association list syntax
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part =>]actual_part

Don’t mix association styles in port maps
5

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map

Port map syntax
port map(association_list)

Part in parentheses → Association list 110

Named and positional associations possible
Named association oftentimes preferable over positional association
because of better

clarity
maintainability
flexibility
robustness (w.r.t. connection bugs)

Association list syntax
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part =>]actual_part

Don’t mix association styles in port maps
5

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map - Example: Full Adder

a

b

cin

cout

sum

x

y

z

half adder

half adder

 entity fa is
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 end entity;

 architecture arch of fa is
 signal x, y, z : std_ulogic;
 begin
 ha1 : entity work.ha
 port map(a, b, x, y);

 ha2 : entity work.ha
 port map(
 a => cin,

 b => x,
 cout => z,
 sum => sum
);

 cout <= y or z;
 end architecture;

6

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map - Example: Full Adder

a

b

cin

cout

sum

x

y

z

half adder

half adder

 entity fa is
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 end entity;

 architecture arch of fa is
 signal x, y, z : std_ulogic;
 begin
 ha1 : entity work.ha
 port map(a, b, x, y);

 ha2 : entity work.ha
 port map(
 a => cin,

 b => x,
 cout => z,
 sum => sum
);

 cout <= y or z;
 end architecture;

6

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map - Example: Full Adder

a

b

cin

cout

sum

x

y

z

half adder

half adder

 entity fa is
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 end entity;

 architecture arch of fa is
 signal x, y, z : std_ulogic;
 begin
 ha1 : entity work.ha
 port map(a, b, x, y);

 ha2 : entity work.ha
 port map(
 a => cin,

 b => x,
 cout => z,
 sum => sum
);

 cout <= y or z;
 end architecture;

6

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map - Example: Full Adder

a

b

cin

cout

sum

x

y

z

half adder

half adder

 entity fa is
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 end entity;

 architecture arch of fa is
 signal x, y, z : std_ulogic;
 begin
 ha1 : entity work.ha
 port map(a, b, x, y);

 ha2 : entity work.ha
 port map(
 a => cin,

 b => x,
 cout => z,
 sum => sum
);

 cout <= y or z;
 end architecture;

6

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Port Map - Example: Full Adder

a

b

cin

cout

sum

x

y

z

half adder

half adder

 entity fa is
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 end entity;

 architecture arch of fa is
 signal x, y, z : std_ulogic;
 begin
 ha1 : entity work.ha
 port map(a, b, x, y);

 ha2 : entity work.ha
 port map(
 a => cin,

 b => x,
 cout => z,
 sum => sum
);

 cout <= y or z;
 end architecture;

6

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Unused Ports

7

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Unused Ports

Unused outputs
Use open keyword
Don’t leave unconnected!

 [...]
 signal a, b, c, m : std_ulogic;
 begin
 majority : entity work.fa
 port map (
 a => a,
 b => b,
 c => c,
 sum => open, -- not connected

 cout => m
);
 [...]

7

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Unused Ports

Unused outputs
Use open keyword
Don’t leave unconnected!

 [...]
 signal a, b, c, m : std_ulogic;
 begin
 majority : entity work.fa
 port map (
 a => a,
 b => b,
 c => c,
 sum => open, -- not connected

 cout => m
);
 [...]

Unused inputs
Connect to constant
If not connected → default value

 [...]
 signal a, b, sum, cout : std_ulogic;
 begin
 half_adder : entity work.fa
 port map (
 a => a,
 b => b,
 c => ’0’, -- constant
 sum => sum,

 cout => cout
);
 [...]

7

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map

Generic map syntax
generic map(association_list)

Must appear before port map

Use named association and avoid the positional style
Formal parts must be compile-time constants (generics cannot be
connected to signals)

8

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map

Generic map syntax
generic map(association_list)

Must appear before port map
Use named association and avoid the positional style

Formal parts must be compile-time constants (generics cannot be
connected to signals)

8

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map

Generic map syntax
generic map(association_list)

Must appear before port map
Use named association and avoid the positional style
Formal parts must be compile-time constants (generics cannot be
connected to signals)

8

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer

 entity mux is
 generic (
 N : positive
);
 port (
 c : in std_ulogic;
 a : in std_ulogic_vector(N-1 downto 0);
 b : in std_ulogic_vector(N-1 downto 0);
 o : out std_ulogic_vector(N-1 downto 0)

);
 end entity;

 architecture arch of mux is
 begin
 o <= a when c = ’0’ else b;
 end architecture;

o
a

b

c

N
N

N

9

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

 [...]
 signal c : std_ulogic;
 signal a0, a1 : std_ulogic;
 signal b : std_ulogic_vector(1 downto 0);
 signal x, y : std_ulogic;
 begin
 mux_inst : entity work.mux
 generic map (N => 2)
 port map (

 c => c,
 a => a1 & a0,
 b => b,
 o(0) => x,
 o(1) => y
);
 [...]

x

y
a0

a1

b

c

2
2

2

10

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

 [...]
 signal c : std_ulogic;
 signal a0, a1 : std_ulogic;
 signal b : std_ulogic_vector(1 downto 0);
 signal x, y : std_ulogic;
 begin
 mux_inst : entity work.mux
 generic map (N => 2)
 port map (

 c => c,
 a => a1 & a0,
 b => b,
 o(0) => x,
 o(1) => y
);
 [...]

x

y
a0

a1

b

c

2
2

2

10

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

 [...]
 signal c : std_ulogic;
 signal a0, a1 : std_ulogic;
 signal b : std_ulogic_vector(1 downto 0);
 signal x, y : std_ulogic;
 begin
 mux_inst : entity work.mux
 generic map (N => 2)
 port map (

 c => c,
 a => a1 & a0,
 b => b,
 o(0) => x,
 o(1) => y
);
 [...]

x

y
a0

a1

b

c

2
2

2

10

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

 [...]
 signal c : std_ulogic;
 signal a0, a1 : std_ulogic;
 signal b : std_ulogic_vector(1 downto 0);
 signal x, y : std_ulogic;
 begin
 mux_inst : entity work.mux
 generic map (N => 2)
 port map (

 c => c,
 a => a1 & a0,
 b => b,
 o(0) => x,
 o(1) => y
);
 [...]

x

y
a0

a1

b

c

2
2

2

10

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

 [...]
 signal c : std_ulogic;
 signal a0, a1 : std_ulogic;
 signal b : std_ulogic_vector(1 downto 0);
 signal x, y : std_ulogic;
 begin
 mux_inst : entity work.mux
 generic map (N => 2)
 port map (

 c => c,
 a => a1 & a0,
 b => b,
 o(0) => x,
 o(1) => y
);
 [...]

x

y
a0

a1

b

c

2
2

2

10

HWMod
WS25

Struct. Mod.
Introduction

Instances

Port Map

Unused Ports

Generic Map

Components

Architecture
Selection

Generic Map – Example: Multiplexer (cont’d)

 [...]
 signal c : std_ulogic;
 signal a0, a1 : std_ulogic;
 signal b : std_ulogic_vector(1 downto 0);
 signal x, y : std_ulogic;
 begin
 mux_inst : entity work.mux
 generic map (N => 2)
 port map (

 c => c,
 a => a1 & a0,
 b => b,
 o(0) => x,
 o(1) => y
);
 [...]

x

y
a0

a1

b

c

2
2

2

10

HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Components

Components are “entity prototype”
Component declaration syntax
component NAME is
[generic ({generic_element;} generic_element);]
[port ({port_element;} port_element);]
end component;

Components can be put in
packages
declarative part of architectures (blocks and generate statements)

11

HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Components

Components are “entity prototype”

Component declaration syntax
component NAME is
[generic ({generic_element;} generic_element);]
[port ({port_element;} port_element);]
end component;

Components can be put in
packages
declarative part of architectures (blocks and generate statements)

11

HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Components

Components are “entity prototype”
Component declaration syntax
component NAME is
[generic ({generic_element;} generic_element);]
[port ({port_element;} port_element);]
end component;

Components can be put in
packages
declarative part of architectures (blocks and generate statements)

11

HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Components

Components are “entity prototype”
Component declaration syntax
component NAME is
[generic ({generic_element;} generic_element);]
[port ({port_element;} port_element);]
end component;

Components can be put in
packages
declarative part of architectures (blocks and generate statements)

11

HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Components (cont’d)

Instantiation example
Entity: i : entity work.fa port map (...);
Component: i : fa port map (...);
Component (explicit): i : component fa port map (...);

Modularity, abstraction and separation of concerns
Compilation order
Entity may not always be available
Mixed-language designs

12

HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Entity Instantiations

Configurations

Architecture Selection

Multiple different architectures possible for a single entity
⇒ How to select one?

Two possibilities
Specify architecture, when an entity is instantiated
Caution: This does not work for components!
Configurations

13

HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Entity Instantiations

Configurations

Entity Instantiations

 entity mystery is
 port (
 a, b : in std_ulogic;
 x : out std_ulogic
);
 end entity;

 architecture a1 of mystery is
 begin

 x <= a and b;
 end architecture;

 architecture a2 of mystery is
 begin
 x <= a xor b;
 end architecture;

 entity ha is
 port (
 a, b : in std_ulogic;
 sum, cout : out std_ulogic
);
 end entity;

 architecture arch of ha is
 begin

 and_gate : entity work.mystery(a1)
 port map (a, b, cout);

 xor_gate : entity work.mystery(a2)
 port map (a, b, sum);
 end architecture;

14

HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Entity Instantiations

Configurations

Entity Instantiations

 entity mystery is
 port (
 a, b : in std_ulogic;
 x : out std_ulogic
);
 end entity;

 architecture a1 of mystery is
 begin

 x <= a and b;
 end architecture;

 architecture a2 of mystery is
 begin
 x <= a xor b;
 end architecture;

 entity ha is
 port (
 a, b : in std_ulogic;
 sum, cout : out std_ulogic
);
 end entity;

 architecture arch of ha is
 begin

 and_gate : entity work.mystery(a1)
 port map (a, b, cout);

 xor_gate : entity work.mystery(a2)
 port map (a, b, sum);
 end architecture;

14

HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Entity Instantiations

Configurations

Configurations 26

 configuration dbg_top_conf of dbg_top is
 for dbg_top_arch
 for user_top_inst : user_top
 use entity user_top(arch_A);
 end for;
 end for;
 end configuration;

dbg top

user top inst : user top

dbg core inst : dbg core

multiple architectures
arch A, ..., arch Z

debugging logic for
the user top design

15

HWMod
WS25

Struct. Mod.
Introduction

Instances

Components

Architecture
Selection

Entity Instantiations

Configurations Lecture Complete!

Modified: 2025-12-16, 16:05 (f8a58e9)

	Structural Modeling
	Introduction
	Instances
	Components
	Architecture Selection

