HWMod
WS25

St Mot Hardware Modeling [VU] (191.011)
- WS25 —

Structural Modeling

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:05 (f8a58e9)

HWMod
WS25

Introduction

Introduction

Behavior Structure Geometry
Inputs : Keyboard -Memory -CPU n
SyStem Level Output: Display -*-i- @ -I;;atgi-
Function: ... [ouT)=
. . while input
Algorithmic read English text T e uP | PSP
translate to German PS/2
Level output German Text 10-Ctrl Interface 10-Ctrl RS232
if A="1" then
Register Transfer B:= B+1 [ram_|—*{Register]
gLeveI (RTL) o Sl Sl N
Biw B
end I
; B
Logic Level C=(DORB)AND A A
40 4 q
. . du _pdl L d2
Circuit Level at ~Rat * ¢ *loe {jjj_% ;

Introduction (cont’d)

HWMod
WS25

Structual Modeling

Create complex modules by combining and interconnecting (simpler)
sub-modules.

Introduction (cont’d)

HWMod
WS25

Structual Modeling

Create complex modules by combining and interconnecting (simpler)
sub-modules.

Top-Level Design/Entity

The design unit (entity) that sits on highest layer of a hierarchical hardware
design.

Introduction (cont’d)

HWMod
WS25

Structual Modeling

Create complex modules by combining and interconnecting (simpler)
sub-modules.

Top-Level Design/Entity

The design unit (entity) that sits on highest layer of a hierarchical hardware
design.

Unit Under Test (UUT)

The module instantiated in a testbench and whose behavior is verified.

Creating Instances — Example: Half Adder

HWMod
WS25

Instances

- O © ©® N O O M WN =

entity xor_gate is
port (
a, b in std_ulogic;
x : out std_ulogic
)i
end entity;

architecture arch of xor_gate is
begin

x <= a xor b;

end architecture;

- O © 00 N O o &~ W N =

cout

entity and_gate is
port (
a, b in std_ulogic;
x : out std_ulogic
)i
end entity;

architecture arch of and_gate is
begin

x <= a and b;

end architecture;

HWMod
WS25

Instances

Creating Instances — Example: Half Adder

0 N oA WD =

©

entity ha is
port (
a, b :
sum, cout
)i

end entity;

in std_ulogic;

architecture arch of ha
begin

and_gate_inst : entity
port map (a, b, cout);

xor_gate_inst : entity
port map (a, b, sum);
end architecture;

: out std_ulogic

is

work.and_gate

work.xor_gate

b cout

m Instances — statement part
m Two instantiation statements
m Positional association

m Inputs must be readable,
outputs writable

HWMod
WS25

Instances

Creating Instances — Example: Half Adder

0 N oA WD =

©

entity ha is
port (
g, lo 3
sum, cout
) i

end entity;

in std_ulogic;

architecture arch of ha
begin

and_gate_inst : entity
port map (a, b, cout);

xor_gate_inst : entity
port map (a, b, sum);
end architecture;

: out std_ulogic

is

work.and_gate

work.xor_gate

b cout

m Instances — statement part
m Two instantiation statements
m Positional association

m Inputs must be readable,
outputs writable

HWMod
WS25

Instances

Creating Instances — Example: Half Adder

0 N oA WD =

©

entity ha is
port (
a, b :
sum, cout
)i

end entity;

in std_ulogic;

architecture arch of ha
begin

and_gate_inst : entity
port map (a, b, cout);

xor_gate_inst : entity
port map (a, b, sum);
end architecture;

: out std_ulogic

is

work.and_gate

work.xor_gate

b cout

m Instances — statement part
m Two instantiation statements
m Positional association

m Inputs must be readable,
outputs writable

HWMod
WS25

Instances

Creating Instances — Example: Half Adder

0 N oA WD =

©

entity ha is
port (
a, b :
sum, cout
)i

end entity;

in std_ulogic;

architecture arch of ha
begin

and_gate_inst : entity
port map (a, b, cout);

xor_gate_inst : entity
port map (a, b, sum);
end architecture;

: out std_ulogic

is

work.and_gate

work.xor_gate

b cout

m Instances — statement part
m Two instantiation statements
m Positional association

m Inputs must be readable,
outputs writable

HWMod
WS25

Instances

Creating Instances — Example: Half Adder

0 N oA WD =

©

entity ha is
port (
a, b :
sum, cout
)i

end entity;

in std_ulogic;

architecture arch of ha
begin

and_gate_inst : entity
port map (a, b, cout);

xor_gate_inst : entity
port map (a, b, sum);
end architecture;

: out std_ulogic

is

work.and_gate

work.xor_gate

b cout

m Instances — statement part
m Two instantiation statements
m Positional association

m Inputs must be readable,
outputs writable

HWMod
WS25

Instances

Creating Instances — Example: Half Adder

0 N oA WD =

©

entity ha is
port (
a, b :
sum, cout
)i

end entity;

in std_ulogic;

architecture arch of ha
begin

and_gate_inst : entity
port map (a, b, cout);

xor_gate_inst : entity
port map (a, b, sum);
end architecture;

: out std_ulogic

is

work.and_gate

work.xor_gate

b cout

m Instances — statement part
m Two instantiation statements
m Positional association

m Inputs must be readable,
outputs writable

Port Map

RHA m Port map syntax

port map (association_list)
m Part in parentheses — Association list

Port Map

Port Map

RHA m Port map syntax
port map (association_list)
m Part in parentheses — Association list
m Named and positional associations possible

Port Map

Port Map

RHA m Port map syntax
port map(association_list)
m Part in parentheses — Association list
m Named and positional associations possible
m Named association oftentimes preferable over positional association
because of better
m clarity
m maintainability
m flexibility
m robustness (w.r.t. connection bugs)

Port Map

Port Map

RHA m Port map syntax

port map (association_list)
m Part in parentheses — Association list
m Named and positional associations possible
m Named association oftentimes preferable over positional association
because of better
m clarity
m maintainability
m flexibility
m robustness (w.r.t. connection bugs)
m Association list syntax
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part => Jactual_part

Port Map

Port Map

RHA m Port map syntax
port map (association_list)
m Part in parentheses — Association list
m Named and positional associations possible
m Named association oftentimes preferable over positional association
because of better
m clarity
m maintainability
m flexibility
m robustness (w.r.t. connection bugs)
m Association list syntax
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part => Jactual_part

m Don’t mix association styles in port maps

Port Map

Port Map

RHA m Port map syntax
port map (association_list)
m Part in parentheses — Association list
m Named and positional associations possible
m Named association oftentimes preferable over positional association
because of better
m clarity
m maintainability
m flexibility
m robustness (w.r.t. connection bugs)
m Association list syntax
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part => Jactual_part

m Don’t mix association styles in port maps

Port Map

Port Map

RHA m Port map syntax
port map (association_list)
m Part in parentheses — Association list
m Named and positional associations possible
m Named association oftentimes preferable over positional association
because of better
m clarity
m maintainability
m flexibility
m robustness (w.r.t. connection bugs)
m Association list syntax
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal part => Jactual_part

m Don’t mix association styles in port maps

Port Map

Port Map

RHA m Port map syntax
port map (association_list)
m Part in parentheses — Association list
m Named and positional associations possible
m Named association oftentimes preferable over positional association
because of better
m clarity
m maintainability
m flexibility
m robustness (w.r.t. connection bugs)
m Association list syntax
association_list ::= assoc_elem {, assoc_elem}
assoc_elem ::= [formal_part => Jactual_part

m Don’t mix association styles in port maps

Port Map

Port Map - Example: Full Adder

HWMod
WS25

Port Map

half adder

entity fa is

1
2 port (

3 a, b, cin : in std_ulogic;
4 sum, cout : out std_ulogic
5)

6 end entity;

Port Map - Example: Full Adder

HWMod

WS25
architecture arch of fa is
signal x, y, z : std_ulogic;
begin

hal : entity work.ha

1
2
3

Port Map 4

5 port map(a, b, x, v);

6

7

8

ha2 : entity work.ha
port map (

9 a => cin,

10 b => x,

half adder

1 entity fa is 1 cout => z,

2 port (12 sum => sum

3 a, b, cin : in std_ulogic; 13)5

4 sum, cout : out std_ulogic 14

5); 15 cout <=y or z;
6 end entity; 16 end architecture;

Port Map - Example: Full Adder

HWMod

WS25
architecture arch of fa is
signal x, y, z : std_ulogic;
begin

hal : entity work.ha

1
2
3

Port Map 4

5 port map(a, b, x, y);

6

7

8

ha2 : entity work.ha
port map (

9 a => cin,

10 b => x,

half adder

1 entity fa is 1 cout => z,

2 port (12 sum => sum

3 a, b, cin : in std_ulogic; 13)5

4 sum, cout : out std_ulogic 14

5); 15 cout <=y or z;
6 end entity; 16 end architecture;

Port Map - Example: Full Adder

HWMod
WS25

Port Map

'y
haif?&ﬁer

entity fa is

1
2 port (

3 a, b, cin : in std_ulogic;
4 sum, cout out std_ulogic
5)

6 end entity;

architecture arch of fa is
signal x, vy, z std_ulogic;
begin

hal entity work.ha

port map(a, b, x, y);

ha2 : entity work.ha

port map (
a => cin,
b => x,

cout => z,
sum => sum

) i

cout <=y or z;
end architecture;

Port Map - Example: Full Adder

HWMod

WS25
architecture arch of fa is
signal x, y, z : std_ulogic;
begin

hal : entity work.ha

1
2
3

Port Map 4

5 port map(a, b, x, v);

6

7

8

ha2 : entity work.ha
port map (

9 a => cin,

10 b => x,

half adder

1 entity fa is 1 cout => z,

2 port (12 sum => sum

3 a, b, cin : in std_ulogic; 13)5

4 sum, cout : out std_ulogic 14

5); 15 cout <=y or z;
6 end entity; 16 end architecture;

Unused Ports

HWMod
WS25

Unused Ports

Unused Ports

HWMod
Ws2s Unused outputs

m Use open keyword
m Don’t leave unconnected!

Unused Ports
[...]

1

2 signal a, b, ¢, m : std_ulogic;
3 begin

4 majority : entity work.fa

5 port map (
6

7

8

a => a,

b => b,

c => c,
9 sum => open, —— not connected
10 cout =>m

11)5
2 [...]

Unused Ports

HWMod
Ws2s Unused outputs Unused inputs
m Use open keyword m Connect to constant
m Don’t leave unconnected! m If not connected — default value
nssed Fars L I
2 signal a, b, ¢, m : std_ulogic; 2 signal a, b, sum, cout : std_ulogic;
3 begin 3 begin
4 majority : entity work.fa 4 half_adder : entity work.fa
5 port map (5 port map (
6 a => a, 6 a => a,
7 b => Db, 7 b => Db,
8 c => ¢, 8 c=>"10", constant
9 sum => open, —— not connected 9 sum => sum,
10 cout => m 10 cout => cout
LR o)
12 [...] 12 [...]

Generic Map

HWMod
WS25

m Generic map syntax
generic map (association_list)

m Must appear before port map

Generic Map

HWMod
WS25

m Generic map syntax
generic map (association_list)

m Must appear before port map
m Use named association and avoid the positional style

Generic Map

HWMod
WS25

m Generic map syntax
generic map (association_list)

m Must appear before port map
m Use named association and avoid the positional style

m Formal parts must be compile-time constants (generics cannot be
connected to signals)

Generic Map — Example: Multiplexer

HWMod
WS25

entity mux is
generic (
N : positive

1
2
3
4
5 port (
6
7
8

Generic Map c : in std_ulogic; c
a : in std_ulogic_vector (N-1 downto 0); N
b : in std_ulogic_vector (N-1 downto 0); a + N
9 o : out std_ulogic_vector (N-1 downto 0) N + e}
0); —a
11 end entity; b

13 architecture arch of mux is
14 begin

15 o <= a when c¢c = 0’ else Db;
16 end architecture;

Generic Map — Example: Multiplexer (cont'd)

HWMod

WS25
LI
2 signal c¢ : std_ulogic;
3 signal a0, al : std_ulogic;
4 signal b : std_ulogic_vector (1l downto 0);
5 signal x, y : std_ulogic;

Generic Map 6 begin C —
7 mux_inst : entity work.mux al 2
8 generic map (N => 2) } 2 Y
9 port map (ao 5 {
10 c => ¢, 2
11 a => al & aol, b x
12 b => b,
13 o(0) => x,
14 o(l) => vy
15)

Generic Map — Example: Multiplexer (cont'd)

HWMod

WS25
1 [...]
2 signal c¢ : std_ulogic;
3 signal a0, al : std_ulogic;
4 signal b : std_ulogic_vector (1l downto 0);
5 signal x, y : std_ulogic;

Generic Map 6 begin C
7 mux_inst : entity work.mux al 2
8 generic map (N => 2) } 2 Y
9 port map (a0 5 {
10 = c, 2
11 a => al & ao0, b x
12 b => b,
13 o(0) => x,
14 o(l) =>vy
15)5

Generic Map — Example: Multiplexer (cont'd)

HWMod

WS25
1 [...]
2 signal c¢ : std_ulogic;
3 signal a0, al : std_ulogic;
4 signal b : std_ulogic_vector (1l downto 0);
5 signal x, y : std_ulogic;

Generic Map 6 begin C —
7 mux_inst : entity work.mux al 2
8 generic map (N => 2) } 2 Y
9 port map (ao 5 {
10 c => ¢, 2
11 a => al & ao, b x
12 b => b,
13 o(0) => x,
14 o(l) =>vy
15)i

Generic Map — Example: Multiplexer (cont'd)

HWMod

WS25
LI
2 signal c¢ : std_ulogic;
3 signal a0, al : std_ulogic;
4 signal b : std_ulogic_vector (1l downto 0);
5 signal x, y : std_ulogic;

Generic Map 6 begin C —
7 mux_inst : entity work.mux al 2
8 generic map (N => 2) } 2 Y
9 port map (ao 5 {
10 c => ¢, 2
11 a => al & aol, b x
12 b => b,
13 o(0) => x,
14 o(l) => vy
15)

Generic Map — Example: Multiplexer (cont'd)

HWMod

WS25
LI
2 signal c¢ : std_ulogic;
3 signal a0, al : std_ulogic;
4 signal b : std_ulogic_vector (1l downto 0);
5 signal x, y : std_ulogic;

Generic Map 6 begin C —
7 mux_inst : entity work.mux al 2
8 generic map (N => 2) } 2 Y
9 port map (ao 5 {
10 c => ¢, 2
11 a => al & ao, b x
12 b => b,
13 o(0) => x,
14 o(l) => vy
15)

Generic Map — Example: Multiplexer (cont'd)

HWMod

WS25
1 [...]
2 signal c¢ : std_ulogic;
3 signal a0, al : std_ulogic;
4 signal b : std_ulogic_vector (1l downto 0);
5 signal x, y : std_ulogic;

Generic Map 6 begin C
7 mux_inst : entity work.mux al 2
8 generic map (N => 2) } 2 Y
9 port map (a0 5 {
10 = c, 2
11 a => al & ao0, b x
12 b => b,
13 o(0) => x,
14 o(l) =>vy
15)5

Components

HWMod
WS25

Components

HWMod
WS25

m Components are “entity prototype”

Components

HWMod
WS25

m Components are “entity prototype”

m Component declaration syntax
component NAME is

[generic ({generic_element;} generic_element

[port ({port_element;} port_element);]
end component;

Components

)i]

Components

HWMod
WS25

m Components are “entity prototype”

m Component declaration syntax
component NAME is

[generic ({generic_element;} generic_element

[port ({port_element;} port_element);]
end component;

m Components can be put in
m packages

Components
)i]

m declarative part of architectures (blocks and generate statements)

Components (cont’d)

HWMod
WS25

m Instantiation example

Cam—— m Entity: 1 : entity work.fa port map (...);
m Component: i : fa port map (...);
m Component (explicit): i : component fa port map (...);

m Modularity, abstraction and separation of concerns
m Compilation order

m Entity may not always be available

m Mixed-language designs

Architecture Selection

m Multiple different architectures possible for a single entity
= How to select one?
m Two possibilities
m Specify architecture, when an entity is instantiated

Caution: This does not work for components!
m Configurations

Entity Instantiations

HWMod
WS25

entity mystery is

1
2 port (
3 a, b : in std_ulogic;
4 x : out std_ulogic
5)i
Entity Instantiations 6 end entity;
7
8 architecture al of mystery is
9 begin

10 x <= a and b;
11 end architecture;

13 architecture a2 of mystery is
14 begin

15 x <= a xor b;

16 end architecture;

Entity Instantiations

HWMod
WS25

entity mystery is)
y my Y entity ha is

1
1
2 ort
P ()) 2 port (
3 a, b : in std_ulogic; .
. 3 a, b : in std_ulogic;
4 x : out std_ulogic
5); 4 sum, cout : out std_ulogic
’
) 5);
Eniity Instantiations 6 end entity; 6 ené entity;
7
7
8 architecture al of mystery is)
. Y Y 8 architecture arch of ha is
9 begin

9 begin
10 and_gate : entity work.mystery(al)
11 port map (a, b, cout);

10 x <= a and b;
11 end architecture;

13 architecture a2 of mystery is
14 begin

15 x <= a xor b;

16 end architecture;

13 xor_gate : entity work.mystery(a2)
14 port map (a, b, sum);
15 end architecture;

Configurations

HWMod
Ws25
dbg_top
s) N
dbg_core_inst : dbg_core
e N
1 configuration dbg_top_conf of dbg_top is debu‘ggmg IOgIc,for
Confiuratons > for dbg_top_arch the user top design
3 for user_top_inst : user_top L)
4 use entity user_top(arch_A);
5 d for; .
end tori user_top_inst : user_top
6 end for; - ~
7 end configuration;
multiple architectures
arch_A, ..., arch.Z
N J
N J

HWMod
WS25

Lecture Complete!

Modified: 2025-12-16, 16:05 (f8a58e9)

	Structural Modeling
	Introduction
	Instances
	Components
	Architecture Selection

