
HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Hardware Modeling [VU] (191.011)
– WS24 –

Sequential Circuit Elements in VHDL

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-12, 16:32 (21636bb)

Hardware Modeling [VU] (191.011)
– WS24 –

Sequential Circuit Elements in VHDL

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Sequential Circuit Elements in VHDL

This lecture covers how sequential circuit elements, such as flip-flops and latches, are modeled in VHDL, how they differ and
how to deal with them in simulation.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Introduction

Combinational logic cannot retain any data

Latches and flip-flops are single-bit storage elements
Operation principle

Latches: level-sensitive
Flip-flops: edge-triggered

Latches can be problematic in synchronous designs!
Common Types

Latches: RS, D
Flip-flops: JK, T, D

Relevant for this course: Data (D) type

1

Introduction

Combinational logic cannot retain any data

Latches and flip-flops are single-bit storage elements
Operation principle

Latches: level-sensitive
Flip-flops: edge-triggered

Latches can be problematic in synchronous designs!
Common Types

Latches: RS, D
Flip-flops: JK, T, D

Relevant for this course: Data (D) type

Sequential Circuit Elements in VHDL
Introduction

Introduction

So far, we have only dealt with purely combinational VHDL designs. That is, circuits that compute outputs based solely on
their current inputs, without any memory or feedback. These circuits do not store state information, meaning their outputs are
immediately and directly influenced by changes in inputs, with no dependence on previous input values or timing. However,
as we have learned in the lecture about synchronous design, sequential circuits require memory elements, allowing them to
store and utilize past states or input values. In synchronous designs, the circuit behavior is coordinated by a clock signal,
controlling when state changes occur in memory elements such as latches and flip-flops. In this lecture we will show you
how to implement these memory elements in VHDL and how to use them in a circuit.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Introduction

Combinational logic cannot retain any data
Latches and flip-flops are single-bit storage elements

Operation principle
Latches: level-sensitive
Flip-flops: edge-triggered

Latches can be problematic in synchronous designs!
Common Types

Latches: RS, D
Flip-flops: JK, T, D

Relevant for this course: Data (D) type

1

Introduction

Combinational logic cannot retain any data
Latches and flip-flops are single-bit storage elements

Operation principle
Latches: level-sensitive
Flip-flops: edge-triggered

Latches can be problematic in synchronous designs!
Common Types

Latches: RS, D
Flip-flops: JK, T, D

Relevant for this course: Data (D) type

Sequential Circuit Elements in VHDL
Introduction

Introduction

Both latches and flip-flops are storage elementsthat hold a single bit of data. An upcoming lecture will discuss larger memory
elements, such as RAMs, ROMs and FIFOs.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Introduction

Combinational logic cannot retain any data
Latches and flip-flops are single-bit storage elements
Operation principle

Latches: level-sensitive
Flip-flops: edge-triggered

Latches can be problematic in synchronous designs!
Common Types

Latches: RS, D
Flip-flops: JK, T, D

Relevant for this course: Data (D) type

1

Introduction

Combinational logic cannot retain any data
Latches and flip-flops are single-bit storage elements
Operation principle

Latches: level-sensitive
Flip-flops: edge-triggered

Latches can be problematic in synchronous designs!
Common Types

Latches: RS, D
Flip-flops: JK, T, D

Relevant for this course: Data (D) type

Sequential Circuit Elements in VHDL
Introduction

Introduction

The major difference between latches and flip-flops is how they react to their input signals and what events cause them to
update their internal state. While latches operate based on signal levels, flip-flops only react to rising or falling clock edges.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Introduction

Combinational logic cannot retain any data
Latches and flip-flops are single-bit storage elements
Operation principle

Latches: level-sensitive
Flip-flops: edge-triggered

Latches can be problematic in synchronous designs!

Common Types
Latches: RS, D
Flip-flops: JK, T, D

Relevant for this course: Data (D) type

1

Introduction

Combinational logic cannot retain any data
Latches and flip-flops are single-bit storage elements
Operation principle

Latches: level-sensitive
Flip-flops: edge-triggered

Latches can be problematic in synchronous designs!

Common Types
Latches: RS, D
Flip-flops: JK, T, D

Relevant for this course: Data (D) type

Sequential Circuit Elements in VHDL
Introduction

Introduction

The level-sensitive nature of latches makes them somewhat problematic in synchronous designs, as an upcoming lecture
will discuss. Thus, they must be strictly avoided in designs during this course. Nevertheless, it is important to cover both
concepts as they represent fundamental building blocks of digital systems and to understand the potentially problematic
aspects of them.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Introduction

Combinational logic cannot retain any data
Latches and flip-flops are single-bit storage elements
Operation principle

Latches: level-sensitive
Flip-flops: edge-triggered

Latches can be problematic in synchronous designs!
Common Types

Latches: RS, D
Flip-flops: JK, T, D

Relevant for this course: Data (D) type

1

Introduction

Combinational logic cannot retain any data
Latches and flip-flops are single-bit storage elements
Operation principle

Latches: level-sensitive
Flip-flops: edge-triggered

Latches can be problematic in synchronous designs!
Common Types

Latches: RS, D
Flip-flops: JK, T, D

Relevant for this course: Data (D) type

Sequential Circuit Elements in VHDL
Introduction

Introduction

You might have already learned in other courses, that there exists a range of latches and flip-flops, such as RS or D latches,
and JK, T or D flip-flops.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Introduction

Combinational logic cannot retain any data
Latches and flip-flops are single-bit storage elements
Operation principle

Latches: level-sensitive
Flip-flops: edge-triggered

Latches can be problematic in synchronous designs!
Common Types

Latches: RS, D
Flip-flops: JK, T, D

Relevant for this course: Data (D) type

1

Introduction

Combinational logic cannot retain any data
Latches and flip-flops are single-bit storage elements
Operation principle

Latches: level-sensitive
Flip-flops: edge-triggered

Latches can be problematic in synchronous designs!
Common Types

Latches: RS, D
Flip-flops: JK, T, D

Relevant for this course: Data (D) type

Sequential Circuit Elements in VHDL
Introduction

Introduction

In this course only the D-type versions are of importance – D standing for data.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Introduction (cont’d)

D Latch

D latches are level-sensitive. They transfer the data on the input (D) to the
output (Q) when enabled and retain the data when disabled.

D Flip-Flop

D flip-flops are edge-triggered. They capture the data on the input (D) at a
specific clock edge, transfer it to the output (Q) and hold it until the next edge.

Register

Registers are collections of D flip-flops (latches) that hold data that logically
belong together.

2

Introduction (cont’d)

D Latch

D latches are level-sensitive. They transfer the data on the input (D) to the
output (Q) when enabled and retain the data when disabled.

D Flip-Flop

D flip-flops are edge-triggered. They capture the data on the input (D) at a
specific clock edge, transfer it to the output (Q) and hold it until the next edge.

Register

Registers are collections of D flip-flops (latches) that hold data that logically
belong together.

Sequential Circuit Elements in VHDL
Introduction

Introduction (cont’d)

OK, let’s start with some definitions.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Introduction (cont’d)

D Latch

D latches are level-sensitive. They transfer the data on the input (D) to the
output (Q) when enabled and retain the data when disabled.

D Flip-Flop

D flip-flops are edge-triggered. They capture the data on the input (D) at a
specific clock edge, transfer it to the output (Q) and hold it until the next edge.

Register

Registers are collections of D flip-flops (latches) that hold data that logically
belong together.

2

Introduction (cont’d)

D Latch

D latches are level-sensitive. They transfer the data on the input (D) to the
output (Q) when enabled and retain the data when disabled.

D Flip-Flop

D flip-flops are edge-triggered. They capture the data on the input (D) at a
specific clock edge, transfer it to the output (Q) and hold it until the next edge.

Register

Registers are collections of D flip-flops (latches) that hold data that logically
belong together.

Sequential Circuit Elements in VHDL
Introduction

Introduction (cont’d)

A D latch is a level-sensitive single-bit storage device featuring an enable input. Whenever this input is active, the latch
continuously transfers the signal level on its input D to its output Q. In this state the latch is also referred to as open, enabled,
or transparent, as from the point of view of the input it appears as though the signal passes directly through to the output.
When the enable input is inactive, the latch holds the last input value. This is referred to as closed, disabled, or opaque.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Introduction (cont’d)

D Latch

D latches are level-sensitive. They transfer the data on the input (D) to the
output (Q) when enabled and retain the data when disabled.

D Flip-Flop

D flip-flops are edge-triggered. They capture the data on the input (D) at a
specific clock edge, transfer it to the output (Q) and hold it until the next edge.

Register

Registers are collections of D flip-flops (latches) that hold data that logically
belong together.

2

Introduction (cont’d)

D Latch

D latches are level-sensitive. They transfer the data on the input (D) to the
output (Q) when enabled and retain the data when disabled.

D Flip-Flop

D flip-flops are edge-triggered. They capture the data on the input (D) at a
specific clock edge, transfer it to the output (Q) and hold it until the next edge.

Register

Registers are collections of D flip-flops (latches) that hold data that logically
belong together.

Sequential Circuit Elements in VHDL
Introduction

Introduction (cont’d)

D flip-flops on the other hand only capture their input signal at single moments in time, marked by rising or falling transitions
of a clock signal. During all other times the input signals can not affect the output of a D flip-flop. The specific clock edge the
flip-flop reacts to is referred to as the active clock edge. Typically, the rising edge is used for this purpose. We will therefore
only use this variant in this course.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Introduction (cont’d)

D Latch

D latches are level-sensitive. They transfer the data on the input (D) to the
output (Q) when enabled and retain the data when disabled.

D Flip-Flop

D flip-flops are edge-triggered. They capture the data on the input (D) at a
specific clock edge, transfer it to the output (Q) and hold it until the next edge.

Register

Registers are collections of D flip-flops (latches) that hold data that logically
belong together.

2

Introduction (cont’d)

D Latch

D latches are level-sensitive. They transfer the data on the input (D) to the
output (Q) when enabled and retain the data when disabled.

D Flip-Flop

D flip-flops are edge-triggered. They capture the data on the input (D) at a
specific clock edge, transfer it to the output (Q) and hold it until the next edge.

Register

Registers are collections of D flip-flops (latches) that hold data that logically
belong together.

Sequential Circuit Elements in VHDL
Introduction

Introduction (cont’d)

Finally, let us define the term register, as it is also important in the context of storage elements. A register is a set of single-bit
storage elements – usually flip-flops – that are triggered by the same clock signal and work in unison to store multiple bits of
data that logically belong together.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

D Latches vs. D Flip-Flop

D Q

en

D Q

D Flip-Flop

D Latch

clk

D

QL

QFF

3

D Latches vs. D Flip-Flop

D Q

en

D Q

D Flip-Flop

D Latch

clk

D

QL

QFF

Sequential Circuit Elements in VHDL
Introduction

D Latches vs. D Flip-Flop

It is crucial that you really understand the difference between latches and flip-flops. Hence, consider this simple demo circuit
consisting of a D latch and a D flip-flop. Both storage elements are connected to the same input signal D. The signal used
to clock the flip-flop (clk) is used as the enable signal for the D latch.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

D Latches vs. D Flip-Flop

D Q

en

D Q

D Flip-Flop

D Latch

clk

D

QL

QFF

clk

D

QL

QFF

3

D Latches vs. D Flip-Flop

D Q

en

D Q

D Flip-Flop

D Latch

clk

D

QL

QFF

clk

D

QL

QFF

Sequential Circuit Elements in VHDL
Introduction

D Latches vs. D Flip-Flop

The timing diagram on the right side of the slide shows how the two storage elements react to the same input signals.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

D Latches vs. D Flip-Flop

D Q

en

D Q

D Flip-Flop

D Latch

clk

D

QL

QFF

clk

D

QL

QFF

3

D Latches vs. D Flip-Flop

D Q

en

D Q

D Flip-Flop

D Latch

clk

D

QL

QFF

clk

D

QL

QFF

Sequential Circuit Elements in VHDL
Introduction

D Latches vs. D Flip-Flop

Let’s first consider the D latch. As we know from the previous slide it is transparent when the enable-signal is active. In our
case this is during the high period of the clock, which is highlighted in the timing diagram. Notice that during these periods
the output signal QL directly follows the input signal D. During the low-phase, QL is kept at the last value it had during the
high period – changes of D during this phase have no effect.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

D Latches vs. D Flip-Flop

D Q

en

D Q

D Flip-Flop

D Latch

clk

D

QL

QFF

clk

D

QL

QFF

3

D Latches vs. D Flip-Flop

D Q

en

D Q

D Flip-Flop

D Latch

clk

D

QL

QFF

clk

D

QL

QFF

Sequential Circuit Elements in VHDL
Introduction

D Latches vs. D Flip-Flop

For the D flip-flop only the rising clock edges are relevant. Only at these points in time D is captured and transferred to QFF .
For the rest of the time the value of D is completely irrelevant.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

D Latches vs. D Flip-Flop

D Q

en

D Q

D Flip-Flop

D Latch

clk

D

QL

QFF

clk

D

QL

QFF

3

D Latches vs. D Flip-Flop

D Q

en

D Q

D Flip-Flop

D Latch

clk

D

QL

QFF

clk

D

QL

QFF

Sequential Circuit Elements in VHDL
Introduction

D Latches vs. D Flip-Flop

Please, do not continue watching this lecture if this paramount difference is not clear to you at this point! If necessary, pause
the video to really understand the shown timing diagram.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Reset Signal

Purpose: Bring a circuit into a defined state
after power-up
in case of a fault

Global signal
Connects to the reset inputs of all registers in design or module
Often connected to an external button

Prevents power-up to an arbitrary state
Include reset for all registers!
Typical reset value is zero/low (sometimes different values are necessary)
Testbenches should always activate the UUT’s reset upon startup

D Q

RST

D Q

RST

D Q

SET

... ...

clk
reset

4

Reset Signal

Purpose: Bring a circuit into a defined state
after power-up
in case of a fault

Global signal
Connects to the reset inputs of all registers in design or module
Often connected to an external button

Prevents power-up to an arbitrary state
Include reset for all registers!
Typical reset value is zero/low (sometimes different values are necessary)
Testbenches should always activate the UUT’s reset upon startup

D Q

RST

D Q

RST

D Q

SET

... ...

clk
reset

Sequential Circuit Elements in VHDL
Introduction

Reset Signal

Most of the time in digital circuit design we want the storage elements to be initialized with a specific value upon power-up
or when the circuit entered a faulty state from which we cannot recover by other means. This is the purpose of the reset
signal.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Reset Signal

Purpose: Bring a circuit into a defined state
after power-up
in case of a fault

Global signal
Connects to the reset inputs of all registers in design or module
Often connected to an external button

Prevents power-up to an arbitrary state
Include reset for all registers!
Typical reset value is zero/low (sometimes different values are necessary)
Testbenches should always activate the UUT’s reset upon startup

D Q

RST

D Q

RST

D Q

SET

... ...

clk
reset

4

Reset Signal

Purpose: Bring a circuit into a defined state
after power-up
in case of a fault

Global signal
Connects to the reset inputs of all registers in design or module
Often connected to an external button

Prevents power-up to an arbitrary state
Include reset for all registers!
Typical reset value is zero/low (sometimes different values are necessary)
Testbenches should always activate the UUT’s reset upon startup

D Q

RST

D Q

RST

D Q

SET

... ...

clk
reset

Sequential Circuit Elements in VHDL
Introduction

Reset Signal

Like the clock, the reset is also a global signal that is usually connected to all storage elements in a design or module. On
many chips the reset is a physical external pin that can, for example, be connected to a push button.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Reset Signal

Purpose: Bring a circuit into a defined state
after power-up
in case of a fault

Global signal
Connects to the reset inputs of all registers in design or module
Often connected to an external button

Prevents power-up to an arbitrary state
Include reset for all registers!

Typical reset value is zero/low (sometimes different values are necessary)
Testbenches should always activate the UUT’s reset upon startup

D Q

RST

D Q

RST

D Q

SET

... ...

clk
reset

4

Reset Signal

Purpose: Bring a circuit into a defined state
after power-up
in case of a fault

Global signal
Connects to the reset inputs of all registers in design or module
Often connected to an external button

Prevents power-up to an arbitrary state
Include reset for all registers!

Typical reset value is zero/low (sometimes different values are necessary)
Testbenches should always activate the UUT’s reset upon startup

D Q

RST

D Q

RST

D Q

SET

... ...

clk
reset

Sequential Circuit Elements in VHDL
Introduction

Reset Signal

The reset signal ensures that all storage elements are set to a predefined value, allowing the system to start from a known,
stable state. A latch or flip-flop without a reset can power-up to an arbitrary value. Usually this is undesired, which is why it
is good practice to reset all sequential elements, even if you consider it unnecessary. This also minimizes the potential for
divergence between the behavior of the simulation and hardware.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Reset Signal

Purpose: Bring a circuit into a defined state
after power-up
in case of a fault

Global signal
Connects to the reset inputs of all registers in design or module
Often connected to an external button

Prevents power-up to an arbitrary state
Include reset for all registers!
Typical reset value is zero/low (sometimes different values are necessary)

Testbenches should always activate the UUT’s reset upon startup

D Q

RST

D Q

RST

D Q

SET

... ...

clk
reset

4

Reset Signal

Purpose: Bring a circuit into a defined state
after power-up
in case of a fault

Global signal
Connects to the reset inputs of all registers in design or module
Often connected to an external button

Prevents power-up to an arbitrary state
Include reset for all registers!
Typical reset value is zero/low (sometimes different values are necessary)

Testbenches should always activate the UUT’s reset upon startup

D Q

RST

D Q

RST

D Q

SET

... ...

clk
reset

Sequential Circuit Elements in VHDL
Introduction

Reset Signal

The typical reset value for storage elements is zero. However, this is not a strict rule, as sometimes it is also necessary
to initialize storage elements to one. As shown by the right-most flip-flop in the drawing, we will mark flip-flops and latches
whose reset value is one by labelling their reset inputs with SET instead of RST.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Reset Signal

Purpose: Bring a circuit into a defined state
after power-up
in case of a fault

Global signal
Connects to the reset inputs of all registers in design or module
Often connected to an external button

Prevents power-up to an arbitrary state
Include reset for all registers!
Typical reset value is zero/low (sometimes different values are necessary)
Testbenches should always activate the UUT’s reset upon startup

D Q

RST

D Q

RST

D Q

SET

... ...

clk
reset

4

Reset Signal

Purpose: Bring a circuit into a defined state
after power-up
in case of a fault

Global signal
Connects to the reset inputs of all registers in design or module
Often connected to an external button

Prevents power-up to an arbitrary state
Include reset for all registers!
Typical reset value is zero/low (sometimes different values are necessary)
Testbenches should always activate the UUT’s reset upon startup

D Q

RST

D Q

RST

D Q

SET

... ...

clk
reset

Sequential Circuit Elements in VHDL
Introduction

Reset Signal

Note that testbenches must always start by activating the reset, bringing the UUT into a defined state before applying test
stimuli. While the reset is active all input signals to the UUT should also be set to defined values such that when the reset
signal is released the design only sees valid input values.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Active Signal Levels

Active Signal Levels

A signal is considered active-high (low) when a high (low) logic level activates
the signal or causes the intended action to occur.

Notation for active-low signals:
Circuit diagrams: a bar above the signal name (e.g., en)
Code: the suffix n (e.g., en n)

Active-low resets
Noise immunity
Power-up default
Widely adopted in industry for reliability and compatibility
Our naming convention: res n.

5

Active Signal Levels

Active Signal Levels

A signal is considered active-high (low) when a high (low) logic level activates
the signal or causes the intended action to occur.

Notation for active-low signals:
Circuit diagrams: a bar above the signal name (e.g., en)
Code: the suffix n (e.g., en n)

Active-low resets
Noise immunity
Power-up default
Widely adopted in industry for reliability and compatibility
Our naming convention: res n.

Sequential Circuit Elements in VHDL
Introduction

Active Signal Levels

Before we look at some VHDL code examples we have to introduce the important concept of active signal levels, referring
to the specific logic level at which a signal is considered ”active” or ”asserted”. In binary digital systems, signals can either
be active-high or active-low. An active-high signal is active when it is at a logical one, typically represented by a high voltage
level. Conversely, an active-low signal is considered active when its logical value is zero.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Active Signal Levels

Active Signal Levels

A signal is considered active-high (low) when a high (low) logic level activates
the signal or causes the intended action to occur.

Notation for active-low signals:
Circuit diagrams: a bar above the signal name (e.g., en)
Code: the suffix n (e.g., en n)

Active-low resets
Noise immunity
Power-up default
Widely adopted in industry for reliability and compatibility
Our naming convention: res n.

5

Active Signal Levels

Active Signal Levels

A signal is considered active-high (low) when a high (low) logic level activates
the signal or causes the intended action to occur.

Notation for active-low signals:
Circuit diagrams: a bar above the signal name (e.g., en)
Code: the suffix n (e.g., en n)

Active-low resets
Noise immunity
Power-up default
Widely adopted in industry for reliability and compatibility
Our naming convention: res n.

Sequential Circuit Elements in VHDL
Introduction

Active Signal Levels

To clearly distinguish active-low from active-high signals, we mark signals in circuit diagrams with a horizontal bar above the
signal name and identifiers in source code with the suffix n.

HWMod
WS24

Seq. Elem.
Introduction

Latches vs. FFs

Reset Signal

Active Signal Levels

D Latches

D Flip-Flop

LFSR

Active Signal Levels

Active Signal Levels

A signal is considered active-high (low) when a high (low) logic level activates
the signal or causes the intended action to occur.

Notation for active-low signals:
Circuit diagrams: a bar above the signal name (e.g., en)
Code: the suffix n (e.g., en n)

Active-low resets
Noise immunity
Power-up default
Widely adopted in industry for reliability and compatibility
Our naming convention: res n.

5

Active Signal Levels

Active Signal Levels

A signal is considered active-high (low) when a high (low) logic level activates
the signal or causes the intended action to occur.

Notation for active-low signals:
Circuit diagrams: a bar above the signal name (e.g., en)
Code: the suffix n (e.g., en n)

Active-low resets
Noise immunity
Power-up default
Widely adopted in industry for reliability and compatibility
Our naming convention: res n.

Sequential Circuit Elements in VHDL
Introduction

Active Signal Levels

The first time you will come into touch with an active-low signal is the reset signal. In digital designs the reset is often
implemented in an active-low way, as this comes with several benefits. This design choice ensures that the system starts in
a predictable state during power-up, as logic lines tend to default to low voltage, often called ground. Additionally, active-low
resets are more robust in noisy environments, because electrical interference is less likely to falsely trigger a low signal
than a high one. These characteristics, combined with the historical adoption of active-low conventions in TTL and CMOS
technologies, make it a reliable practice and industry-standard. We will therefore exclusively use active-low resets, referring
to this signal as res n. With that being said, we have everything we need to implement our first D latch in VHDL. We start
with the latch as it is arguably the simpler state holding element.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

Reset

D Flip-Flop

LFSR

D Latches

en

D Qd
en

q

Operation Principle

While en is high, q is assigned
the value of d, otherwise q is
not updated and simply holds
its last value.

 entity dlatch is
 port (
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch is
 begin
 process(en, d)
 begin
 if en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

6

D Latches

en

D Qd
en

q

Operation Principle

While en is high, q is assigned
the value of d, otherwise q is
not updated and simply holds
its last value.

 entity dlatch is
 port (
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch is
 begin
 process(en, d)
 begin
 if en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

Sequential Circuit Elements in VHDL
D Latches

D Latches

The entity declaration of a D latch is quite straight-forward. We need two inputs d and en as well as a single output q .

HWMod
WS24

Seq. Elem.
Introduction

D Latches

Reset

D Flip-Flop

LFSR

D Latches

en

D Qd
en

q

Operation Principle

While en is high, q is assigned
the value of d, otherwise q is
not updated and simply holds
its last value.

 entity dlatch is
 port (
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch is
 begin
 process(en, d)

 begin
 if en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

6

D Latches

en

D Qd
en

q

Operation Principle

While en is high, q is assigned
the value of d, otherwise q is
not updated and simply holds
its last value.

 entity dlatch is
 port (
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch is
 begin
 process(en, d)

 begin
 if en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

Sequential Circuit Elements in VHDL
D Latches

D Latches

In the architecture we use a process that is sensitive to both inputs.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

Reset

D Flip-Flop

LFSR

D Latches

en

D Qd
en

q

Operation Principle

While en is high, q is assigned
the value of d, otherwise q is
not updated and simply holds
its last value.

 entity dlatch is
 port (
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch is
 begin
 process(en, d)
 begin
 if en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

6

D Latches

en

D Qd
en

q

Operation Principle

While en is high, q is assigned
the value of d, otherwise q is
not updated and simply holds
its last value.

 entity dlatch is
 port (
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch is
 begin
 process(en, d)
 begin
 if en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

Sequential Circuit Elements in VHDL
D Latches

D Latches

In the process body we need a single if-condition, that checks whether the enable signal is asserted and assigns the signal
d to q if that’s the case. Should this condition be false, the signal value of q is not updated, meaning that it will retain its
previous value. Notice that this exactly captures the behavioral specification of the D latch from the introduction.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

Reset

D Flip-Flop

LFSR

D Latch - Reset

en

D Q

RST

d
en

q

res n

Operation Principle

The reset has the highest
priority. If res n is low the
values of d and en are
irrelevant.

 entity dlatch_r is
 port (
 res_n : in std_ulogic;
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch_r is
 begin
 process(en, d, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’;
 elsif en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

7

D Latch - Reset

en

D Q

RST

d
en

q

res n

Operation Principle

The reset has the highest
priority. If res n is low the
values of d and en are
irrelevant.

 entity dlatch_r is
 port (
 res_n : in std_ulogic;
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch_r is
 begin
 process(en, d, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’;
 elsif en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

Sequential Circuit Elements in VHDL
D Latches

D Latch - Reset

To implement a reset mechanism for our D latch, we first extend its interface by a reset input. Naturally, we use an active-low
reset.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

Reset

D Flip-Flop

LFSR

D Latch - Reset

en

D Q

RST

d
en

q

res n

Operation Principle

The reset has the highest
priority. If res n is low the
values of d and en are
irrelevant.

 entity dlatch_r is
 port (
 res_n : in std_ulogic;
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch_r is
 begin
 process(en, d, res_n)

 begin
 if res_n = ’0’ then
 q <= ’0’;
 elsif en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

7

D Latch - Reset

en

D Q

RST

d
en

q

res n

Operation Principle

The reset has the highest
priority. If res n is low the
values of d and en are
irrelevant.

 entity dlatch_r is
 port (
 res_n : in std_ulogic;
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch_r is
 begin
 process(en, d, res_n)

 begin
 if res_n = ’0’ then
 q <= ’0’;
 elsif en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

Sequential Circuit Elements in VHDL
D Latches

D Latch - Reset

In our latch process we first have to extend the sensitivity list to also include the reset input.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

Reset

D Flip-Flop

LFSR

D Latch - Reset

en

D Q

RST

d
en

q

res n

Operation Principle

The reset has the highest
priority. If res n is low the
values of d and en are
irrelevant.

 entity dlatch_r is
 port (
 res_n : in std_ulogic;
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch_r is
 begin
 process(en, d, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’;

 elsif en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

7

D Latch - Reset

en

D Q

RST

d
en

q

res n

Operation Principle

The reset has the highest
priority. If res n is low the
values of d and en are
irrelevant.

 entity dlatch_r is
 port (
 res_n : in std_ulogic;
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch_r is
 begin
 process(en, d, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’;

 elsif en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

Sequential Circuit Elements in VHDL
D Latches

D Latch - Reset

Then we introduce the reset condition. Since the reset signal is active-low, we need to test it for the value zero. If this
condition is true, the output q is simply set to zero.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

Reset

D Flip-Flop

LFSR

D Latch - Reset

en

D Q

RST

d
en

q

res n

Operation Principle

The reset has the highest
priority. If res n is low the
values of d and en are
irrelevant.

 entity dlatch_r is
 port (
 res_n : in std_ulogic;
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch_r is
 begin
 process(en, d, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’;
 elsif en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

7

D Latch - Reset

en

D Q

RST

d
en

q

res n

Operation Principle

The reset has the highest
priority. If res n is low the
values of d and en are
irrelevant.

 entity dlatch_r is
 port (
 res_n : in std_ulogic;
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch_r is
 begin
 process(en, d, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’;
 elsif en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

Sequential Circuit Elements in VHDL
D Latches

D Latch - Reset

The code that tests the enable signal goes in the else-if-branch. This means that the enable signal is only evaluated, if the
reset is not active. Hence, the reset always overrides the internal state of the latch.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

Reset

D Flip-Flop

LFSR

D Latch - Reset

en

D Q

RST

d
en

q

res n

Operation Principle

The reset has the highest
priority. If res n is low the
values of d and en are
irrelevant.

 entity dlatch_r is
 port (
 res_n : in std_ulogic;
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch_r is
 begin
 process(en, d, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’;
 elsif en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

7

D Latch - Reset

en

D Q

RST

d
en

q

res n

Operation Principle

The reset has the highest
priority. If res n is low the
values of d and en are
irrelevant.

 entity dlatch_r is
 port (
 res_n : in std_ulogic;
 d : in std_ulogic;
 en : in std_ulogic;
 q : out std_ulogic
);
 end entity;

 architecture arch of dlatch_r is
 begin
 process(en, d, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’;
 elsif en = ’1’ then
 q <= d;
 end if;
 end process;
 end architecture;

Sequential Circuit Elements in VHDL
D Latches

D Latch - Reset

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

D Flip-Flop

D Qd

clk

q entity dff is
 port (
 clk : in std_ulogic;
 d : in std_ulogic;
 q : out std_ulogic
);
 end entity;

Problem

How can we detect the event of a signal transition?

8

D Flip-Flop

D Qd

clk

q entity dff is
 port (
 clk : in std_ulogic;
 d : in std_ulogic;
 q : out std_ulogic
);
 end entity;

Problem

How can we detect the event of a signal transition?

Sequential Circuit Elements in VHDL
D Flip-Flop

D Flip-Flop

Let us now turn our attention to the D flip-flop. Like with the D latch, we need the input d as well as the output q . However,
instead of the enable signal the D flip-flop needs a clock input to trigger its operation.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

D Flip-Flop

D Qd

clk

q entity dff is
 port (
 clk : in std_ulogic;
 d : in std_ulogic;
 q : out std_ulogic
);
 end entity;

Problem

How can we detect the event of a signal transition?

8

D Flip-Flop

D Qd

clk

q entity dff is
 port (
 clk : in std_ulogic;
 d : in std_ulogic;
 q : out std_ulogic
);
 end entity;

Problem

How can we detect the event of a signal transition?

Sequential Circuit Elements in VHDL
D Flip-Flop

D Flip-Flop

Furthermore, we need to react to signal events, that is transitions, rather than the state of a signal. This requires the
introduction of a new VHDL language feature.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

D Flip-Flop

Helper function
 function rising_edge(signal s : std_ulogic) return boolean is
 begin
 return [...];
 end function;

D flip-flop architecture
 architecture arch of dff is
 begin
 process (clk)

 begin
 if rising_edge(clk) then
 q <= d;
 end if;
 end process;
 end architecture;

9

D Flip-Flop

Helper function
 function rising_edge(signal s : std_ulogic) return boolean is
 begin
 return [...];
 end function;

D flip-flop architecture
 architecture arch of dff is
 begin
 process (clk)

 begin
 if rising_edge(clk) then
 q <= d;
 end if;
 end process;
 end architecture;

Sequential Circuit Elements in VHDL
D Flip-Flop

D Flip-Flop

Let’s say we have a helper function rising edge that takes a signal of type std_ulogic and returns a Boolean. The
function shall only return true when a rising edge has just occurred on signal S and false otherwise. On the following slides
we will investigate how we can implement such a function in VHDL.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

D Flip-Flop

Helper function
 function rising_edge(signal s : std_ulogic) return boolean is
 begin
 return [...];
 end function;

D flip-flop architecture
 architecture arch of dff is
 begin
 process (clk)
 begin
 if rising_edge(clk) then
 q <= d;
 end if;
 end process;
 end architecture;

9

D Flip-Flop

Helper function
 function rising_edge(signal s : std_ulogic) return boolean is
 begin
 return [...];
 end function;

D flip-flop architecture
 architecture arch of dff is
 begin
 process (clk)
 begin
 if rising_edge(clk) then
 q <= d;
 end if;
 end process;
 end architecture;

Sequential Circuit Elements in VHDL
D Flip-Flop

D Flip-Flop

Using this helper function we can then implement the architecture of the D flip-flop in a quite straight-forward way. As with
the D latch we first create a process. However, now, we only need the clock signal in the sensitivity list as the process only
needs to be evaluated when an event happens on the clock signal. Then we use an if-condition and our helper function to
check if a rising clock edge occurred. If this is the case we assign d to q . Now the only question that remains is how the
body of the rising edge function can be implemented. In other words: What expression must be inserted instead of the
place-holder in the function body?

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Signal Edges – event Attribute 278

Special predefined signal attribute: s’event 278

VHDL standard

“s’event returns the value true if an event has occurred on s during the
current simulation cycle; otherwise, it returns the value false.”

Possible edge detection expression
s’event and s = ’1’

What if clk changes from ’U’ to ’1’?

10

Signal Edges – event Attribute 278

Special predefined signal attribute: s’event 278

VHDL standard

“s’event returns the value true if an event has occurred on s during the
current simulation cycle; otherwise, it returns the value false.”

Possible edge detection expression
s’event and s = ’1’

What if clk changes from ’U’ to ’1’?

Sequential Circuit Elements in VHDL
D Flip-Flop

Signal Edges – event Attribute

Luckily the VHDL standard defines the ”event” attribute for signals which we can use for our purpose.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Signal Edges – event Attribute 278

Special predefined signal attribute: s’event 278

VHDL standard

“s’event returns the value true if an event has occurred on s during the
current simulation cycle; otherwise, it returns the value false.”

Possible edge detection expression
s’event and s = ’1’

What if clk changes from ’U’ to ’1’?

10

Signal Edges – event Attribute 278

Special predefined signal attribute: s’event 278

VHDL standard

“s’event returns the value true if an event has occurred on s during the
current simulation cycle; otherwise, it returns the value false.”

Possible edge detection expression
s’event and s = ’1’

What if clk changes from ’U’ to ’1’?

Sequential Circuit Elements in VHDL
D Flip-Flop

Signal Edges – event Attribute

As stated by the short excerpt from the VHDL standard shown on the slide, the event attribute returns the Boolean value true
whenever there occurred an event during the current simulation cycle. If no event occurred, the attribute will return false.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Signal Edges – event Attribute 278

Special predefined signal attribute: s’event 278

VHDL standard

“s’event returns the value true if an event has occurred on s during the
current simulation cycle; otherwise, it returns the value false.”

Possible edge detection expression
s’event and s = ’1’

What if clk changes from ’U’ to ’1’?

10

Signal Edges – event Attribute 278

Special predefined signal attribute: s’event 278

VHDL standard

“s’event returns the value true if an event has occurred on s during the
current simulation cycle; otherwise, it returns the value false.”

Possible edge detection expression
s’event and s = ’1’

What if clk changes from ’U’ to ’1’?

Sequential Circuit Elements in VHDL
D Flip-Flop

Signal Edges – event Attribute

We can harness this attribute to express a simple condition for detecting rising edges, as shown on the slide. This Boolean
expression will evaluate to true whenever the signal s transitioned to one in the current cycle. You might want to pause the
video at this point and think about whether this expression leads to undesired behavior.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Signal Edges – event Attribute 278

Special predefined signal attribute: s’event 278

VHDL standard

“s’event returns the value true if an event has occurred on s during the
current simulation cycle; otherwise, it returns the value false.”

Possible edge detection expression
s’event and s = ’1’

What if clk changes from ’U’ to ’1’?

10

Signal Edges – event Attribute 278

Special predefined signal attribute: s’event 278

VHDL standard

“s’event returns the value true if an event has occurred on s during the
current simulation cycle; otherwise, it returns the value false.”

Possible edge detection expression
s’event and s = ’1’

What if clk changes from ’U’ to ’1’?

Sequential Circuit Elements in VHDL
D Flip-Flop

Signal Edges – event Attribute

As you probably detected yourself, a potential issue of this expression is that it detects arbitrary changes to the value one. For
example, it will also evaluate to true when the clock signal changes from uninitialized to 1. Naturally, this does not correspond
to a rising clock edge. How can we deal with this issue?

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Signal Edges – last value Attribute 279

VHDL standard

“For a signal s, if an event has occurred on s in any simulation cycle,
s’last value returns the value of s prior to the update of s in the last
simulation cycle in which an event occurred; otherwise, s’last value

returns the current value of S.”

Improved edge detection expression
s’event and (s = ’1’) and (s’last_value = ’0’)

What if clk changes from ’L’ to ’H’?

11

Signal Edges – last value Attribute 279

VHDL standard

“For a signal s, if an event has occurred on s in any simulation cycle,
s’last value returns the value of s prior to the update of s in the last
simulation cycle in which an event occurred; otherwise, s’last value

returns the current value of S.”

Improved edge detection expression
s’event and (s = ’1’) and (s’last_value = ’0’)

What if clk changes from ’L’ to ’H’?

Sequential Circuit Elements in VHDL
D Flip-Flop

Signal Edges – last value Attribute

Again, the VHDL standard comes to the rescue with an attribute. In case an event already occured on a signal s, the
last value attribute returns the value of the signal before the most recent event.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Signal Edges – last value Attribute 279

VHDL standard

“For a signal s, if an event has occurred on s in any simulation cycle,
s’last value returns the value of s prior to the update of s in the last
simulation cycle in which an event occurred; otherwise, s’last value

returns the current value of S.”

Improved edge detection expression
s’event and (s = ’1’) and (s’last_value = ’0’)

What if clk changes from ’L’ to ’H’?

11

Signal Edges – last value Attribute 279

VHDL standard

“For a signal s, if an event has occurred on s in any simulation cycle,
s’last value returns the value of s prior to the update of s in the last
simulation cycle in which an event occurred; otherwise, s’last value

returns the current value of S.”

Improved edge detection expression
s’event and (s = ’1’) and (s’last_value = ’0’)

What if clk changes from ’L’ to ’H’?

Sequential Circuit Elements in VHDL
D Flip-Flop

Signal Edges – last value Attribute

We can use this attribute to refine our edge detection expression such that it only evaluates to true whenever an event
occurred on the respective signal and this event led to a transition from the value zero to one. So, are we done? Is this
expression valid for our purpose?

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Signal Edges – last value Attribute 279

VHDL standard

“For a signal s, if an event has occurred on s in any simulation cycle,
s’last value returns the value of s prior to the update of s in the last
simulation cycle in which an event occurred; otherwise, s’last value

returns the current value of S.”

Improved edge detection expression
s’event and (s = ’1’) and (s’last_value = ’0’)

What if clk changes from ’L’ to ’H’?

11

Signal Edges – last value Attribute 279

VHDL standard

“For a signal s, if an event has occurred on s in any simulation cycle,
s’last value returns the value of s prior to the update of s in the last
simulation cycle in which an event occurred; otherwise, s’last value

returns the current value of S.”

Improved edge detection expression
s’event and (s = ’1’) and (s’last_value = ’0’)

What if clk changes from ’L’ to ’H’?

Sequential Circuit Elements in VHDL
D Flip-Flop

Signal Edges – last value Attribute

Unfortunately not. The improved edge detection expression still comes with potential issues. Recall that our signals are in
most cases actually not binary, but rather can take nine distinct values in the case of std ulogic. Within these nine values,
the transition from zero to one is not the only valid rising edge. For example, a transition from weak low to weak high should
also be detected.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Signal Edges

First convert the signal values to ’0’ or ’1’ (or ’X’ if not possible)
to X01 function

’U’, ’X’, ’Z’, ’W’, ’-’ → ’X’
’0’, ’L’ → ’0’
’1’, ’H’ → ’1’

Final edge detection expression
s’event and (to_X01(s) = ’1’) and

(to_X01(s’last_value) = ’0’)

Exact expression used in the rising/falling_edge function of the
std_logic_1164 package
The standard package defines rising/falling_edge for the types

bit
boolean

12

Signal Edges

First convert the signal values to ’0’ or ’1’ (or ’X’ if not possible)
to X01 function

’U’, ’X’, ’Z’, ’W’, ’-’ → ’X’
’0’, ’L’ → ’0’
’1’, ’H’ → ’1’

Final edge detection expression
s’event and (to_X01(s) = ’1’) and

(to_X01(s’last_value) = ’0’)

Exact expression used in the rising/falling_edge function of the
std_logic_1164 package
The standard package defines rising/falling_edge for the types

bit
boolean

Sequential Circuit Elements in VHDL
D Flip-Flop

Signal Edges

A simple way to handle this problem is by reducing the set of values we consider in our rising edge function by mapping
the nine values to their binary equivalents if possible, and otherwise to ”X”. For that purpose the std_logic_1164 package
contains the to X01 function, performing the mapping shown on the slide.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L872
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L982
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L872
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L982

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Signal Edges

First convert the signal values to ’0’ or ’1’ (or ’X’ if not possible)
to X01 function

’U’, ’X’, ’Z’, ’W’, ’-’ → ’X’
’0’, ’L’ → ’0’
’1’, ’H’ → ’1’

Final edge detection expression
s’event and (to_X01(s) = ’1’) and

(to_X01(s’last_value) = ’0’)

Exact expression used in the rising/falling_edge function of the
std_logic_1164 package
The standard package defines rising/falling_edge for the types

bit
boolean

12

Signal Edges

First convert the signal values to ’0’ or ’1’ (or ’X’ if not possible)
to X01 function

’U’, ’X’, ’Z’, ’W’, ’-’ → ’X’
’0’, ’L’ → ’0’
’1’, ’H’ → ’1’

Final edge detection expression
s’event and (to_X01(s) = ’1’) and

(to_X01(s’last_value) = ’0’)

Exact expression used in the rising/falling_edge function of the
std_logic_1164 package
The standard package defines rising/falling_edge for the types

bit
boolean

Sequential Circuit Elements in VHDL
D Flip-Flop

Signal Edges

Using this function and previously introduced attributes we can now finally write down an expression to detect rising edges of
a signal. This expression is simply the one from the previous slide with the current and previous signal values being mapped
to ’0’,’1’,’X’.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L872
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L982
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L872
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L982

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Signal Edges

First convert the signal values to ’0’ or ’1’ (or ’X’ if not possible)
to X01 function

’U’, ’X’, ’Z’, ’W’, ’-’ → ’X’
’0’, ’L’ → ’0’
’1’, ’H’ → ’1’

Final edge detection expression
s’event and (to_X01(s) = ’1’) and

(to_X01(s’last_value) = ’0’)

Exact expression used in the rising/falling_edge function of the
std_logic_1164 package

The standard package defines rising/falling_edge for the types
bit
boolean

12

Signal Edges

First convert the signal values to ’0’ or ’1’ (or ’X’ if not possible)
to X01 function

’U’, ’X’, ’Z’, ’W’, ’-’ → ’X’
’0’, ’L’ → ’0’
’1’, ’H’ → ’1’

Final edge detection expression
s’event and (to_X01(s) = ’1’) and

(to_X01(s’last_value) = ’0’)

Exact expression used in the rising/falling_edge function of the
std_logic_1164 package

The standard package defines rising/falling_edge for the types
bit
boolean

Sequential Circuit Elements in VHDL
D Flip-Flop

Signal Edges

This expression is the exact same one as used in the IEEE implementation and is not subject to the issues we mentioned
before. For the sake of completeness, note that the IEEE also defines a similar function for detecting falling edges.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L872
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L982
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L872
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L982

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Signal Edges

First convert the signal values to ’0’ or ’1’ (or ’X’ if not possible)
to X01 function

’U’, ’X’, ’Z’, ’W’, ’-’ → ’X’
’0’, ’L’ → ’0’
’1’, ’H’ → ’1’

Final edge detection expression
s’event and (to_X01(s) = ’1’) and

(to_X01(s’last_value) = ’0’)

Exact expression used in the rising/falling_edge function of the
std_logic_1164 package
The standard package defines rising/falling_edge for the types

bit
boolean

12

Signal Edges

First convert the signal values to ’0’ or ’1’ (or ’X’ if not possible)
to X01 function

’U’, ’X’, ’Z’, ’W’, ’-’ → ’X’
’0’, ’L’ → ’0’
’1’, ’H’ → ’1’

Final edge detection expression
s’event and (to_X01(s) = ’1’) and

(to_X01(s’last_value) = ’0’)

Exact expression used in the rising/falling_edge function of the
std_logic_1164 package
The standard package defines rising/falling_edge for the types

bit
boolean

Sequential Circuit Elements in VHDL
D Flip-Flop

Signal Edges

Finally, we want to mention that the rising and falling edge functions are not only defined for signals of the type std_ulogic,
but also for the bit and boolean types in the standard package.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L872
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L982
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L872
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L982

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Reset

D Q

RST

d

clk

q

res n

 entity dff_r is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 d : in std_ulogic;
 q : out std_ulogic
);
 end entity;

Reset Condition

When is the reset evaluated?

13

Reset

D Q

RST

d

clk

q

res n

 entity dff_r is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 d : in std_ulogic;
 q : out std_ulogic
);
 end entity;

Reset Condition

When is the reset evaluated?

Sequential Circuit Elements in VHDL
D Flip-Flop

Reset

Just as for the latch, it must be possible to reset a flip-flop. Again, we use a dedicated reset input for that. The slide shows
the respective symbol and entity declaration. However, whereas the semantics of the reset are rather obvious for a latch,
they are less clear for a flip-flop.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Reset

D Q

RST

d

clk

q

res n

 entity dff_r is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 d : in std_ulogic;
 q : out std_ulogic
);
 end entity;

Reset Condition

When is the reset evaluated?

13

Reset

D Q

RST

d

clk

q

res n

 entity dff_r is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 d : in std_ulogic;
 q : out std_ulogic
);
 end entity;

Reset Condition

When is the reset evaluated?

Sequential Circuit Elements in VHDL
D Flip-Flop

Reset

In particular: Is the reset evaluated only at the active clock edges of the flip-flop, or is it level-sensitive and resets the flip-flop
independent of the clock?

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Reset (Cont’d)

Synchronous Reset
Reset signal is only evaluated at
the active clock edge
res_n not part of the sensitivity
list

 process(clk)
 begin
 if rising_edge(clk) then
 if res_n = ’0’ then
 q <= ’0’;
 else
 q <= d;
 end if;
 end if;

 end process;

Asynchronous Reset
Reset signal is level-sensitive
res_n part of the sensitivity list

 process(clk, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’;
 elsif rising_edge(clk) then
 q <= d;
 end if;
 end process;

14

Reset (Cont’d)

Synchronous Reset
Reset signal is only evaluated at
the active clock edge
res_n not part of the sensitivity
list

 process(clk)
 begin
 if rising_edge(clk) then
 if res_n = ’0’ then
 q <= ’0’;
 else
 q <= d;
 end if;
 end if;

 end process;

Asynchronous Reset
Reset signal is level-sensitive
res_n part of the sensitivity list

 process(clk, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’;
 elsif rising_edge(clk) then
 q <= d;
 end if;
 end process;

Sequential Circuit Elements in VHDL
D Flip-Flop

Reset (Cont’d)

The answer is that both interpretations of the reset are possible. Depending on the desired behavior, a flip-flop can in general
be equipped with either reset type. A reset that is only evaluated at the active clock edge is called a synchronous reset for
obvious reasons. When describing this in VHDL it is important to omit the reset from the respective sensitivity list, as we only
want clock edges to trigger the process. The code snippet on the slide shows this. Also note that the reset condition check
is nested within the condition for the rising clock edge.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Reset (Cont’d)

Synchronous Reset
Reset signal is only evaluated at
the active clock edge
res_n not part of the sensitivity
list

 process(clk)
 begin
 if rising_edge(clk) then
 if res_n = ’0’ then
 q <= ’0’;
 else
 q <= d;
 end if;
 end if;

 end process;

Asynchronous Reset
Reset signal is level-sensitive
res_n part of the sensitivity list

 process(clk, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’;
 elsif rising_edge(clk) then
 q <= d;
 end if;
 end process;

14

Reset (Cont’d)

Synchronous Reset
Reset signal is only evaluated at
the active clock edge
res_n not part of the sensitivity
list

 process(clk)
 begin
 if rising_edge(clk) then
 if res_n = ’0’ then
 q <= ’0’;
 else
 q <= d;
 end if;
 end if;

 end process;

Asynchronous Reset
Reset signal is level-sensitive
res_n part of the sensitivity list

 process(clk, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’;
 elsif rising_edge(clk) then
 q <= d;
 end if;
 end process;

Sequential Circuit Elements in VHDL
D Flip-Flop

Reset (Cont’d)

The other flavor of reset is the asynchronous one, which will reset the flip-flop whenever the reset is active, independently of
the clock. In the respective VHDL code this is reflected by the reset being included in the sensitivity list. Furthermore, the
condition for the reset precedes, and thus dominates, the one for the rising clock edge.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Enable Input

What if a flip-flop should not be updated each clock cycle?

⇒ Use a dedicated enable signal
Structure matters!

Always use the patterns shown in this lecture

D Q

RST

d

clk

en

q

res n

 process(clk, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’
 elsif rising_edge(clk) then
 if en = ’1’ then
 q <= d;
 end if;
 end if;

 end process;

15

Enable Input

What if a flip-flop should not be updated each clock cycle?

⇒ Use a dedicated enable signal
Structure matters!

Always use the patterns shown in this lecture

D Q

RST

d

clk

en

q

res n

 process(clk, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’
 elsif rising_edge(clk) then
 if en = ’1’ then
 q <= d;
 end if;
 end if;

 end process;

Sequential Circuit Elements in VHDL
D Flip-Flop

Enable Input

What if we want a flip-flop that does not update its value in each clock cycle? For example, a design might be in an overall
state where certain flip-flops or registers must hold their values, although their inputs might change.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Enable Input

What if a flip-flop should not be updated each clock cycle?
⇒ Use a dedicated enable signal

Structure matters!
Always use the patterns shown in this lecture

D Q

RST

d

clk

en

q

res n

 process(clk, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’
 elsif rising_edge(clk) then
 if en = ’1’ then
 q <= d;
 end if;
 end if;

 end process;

15

Enable Input

What if a flip-flop should not be updated each clock cycle?
⇒ Use a dedicated enable signal

Structure matters!
Always use the patterns shown in this lecture

D Q

RST

d

clk

en

q

res n

 process(clk, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’
 elsif rising_edge(clk) then
 if en = ’1’ then
 q <= d;
 end if;
 end if;

 end process;

Sequential Circuit Elements in VHDL
D Flip-Flop

Enable Input

We can achieve this by using a dedicated enable input in addition to the clock, reset and data inputs. A respective flip-flop
symbol and VHDL code modeling an asynchronous reset and a synchronous enable are shown on the slide. Note how the
condition for the enable signal is contained within the body of the elsif branch. Thus, the enable can only take effect at
rising clock edges.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

Signal Edges

Reset

Enable

LFSR

Enable Input

What if a flip-flop should not be updated each clock cycle?
⇒ Use a dedicated enable signal

Structure matters!
Always use the patterns shown in this lecture

D Q

RST

d

clk

en

q

res n

 process(clk, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’
 elsif rising_edge(clk) then
 if en = ’1’ then
 q <= d;
 end if;
 end if;

 end process;

15

Enable Input

What if a flip-flop should not be updated each clock cycle?
⇒ Use a dedicated enable signal

Structure matters!
Always use the patterns shown in this lecture

D Q

RST

d

clk

en

q

res n

 process(clk, res_n)
 begin
 if res_n = ’0’ then
 q <= ’0’
 elsif rising_edge(clk) then
 if en = ’1’ then
 q <= d;
 end if;
 end if;

 end process;

Sequential Circuit Elements in VHDL
D Flip-Flop

Enable Input

Before we close this lecture with a simple design example, we really want to stress an important point. It is vital that you
strictly stick to the code patterns for latches and flip-flops presented in this lecture. Do not experiment with custom flip-flop
descriptions! It might be the case that such structures work in simulation but fail to synthesize or, even worse, result in a
circuit that does not match the intended design. Synthesis tools look for the code patterns presented here and will – if you
stick to them – generate correct circuits! Please always keep that in mind when writing VHDL code!

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register

Chain of FFs (shift-register) fed by linear combination of its current state
Pseudo-random sequence of bits

16

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register

Chain of FFs (shift-register) fed by linear combination of its current state
Pseudo-random sequence of bits

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

Example: 4-bit LFSR

Finally, let us look at a more elaborate example design using the synchronous design style and flip-flops. The slide shows
the schematic of a circuit called a linear-feedback-shift-register, abbreviated as ”LFSR”.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register
Chain of FFs (shift-register) fed by linear combination of its current state

Pseudo-random sequence of bits

16

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register
Chain of FFs (shift-register) fed by linear combination of its current state

Pseudo-random sequence of bits

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

Example: 4-bit LFSR

As the name suggests, such circuits revolve around a so-called shift register fed by a linear combination of its current state.
A shift register is a chain of flip-flops where each flip-flop samples the output of its predecessor, thus essentially shifting the
currently stored bits by one flip-flop per clock period.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register
Chain of FFs (shift-register) fed by linear combination of its current state
Pseudo-random sequence of bits

16

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register
Chain of FFs (shift-register) fed by linear combination of its current state
Pseudo-random sequence of bits

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

Example: 4-bit LFSR

Such circuits are often used as pseudo-random number generators, which means that they can generate a sequence of bits
that looks like it is random while it actually is not. We will now briefly demonstrate its operation without getting into details
about the involved mathematics.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 0 0

res n

clk

o
17

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 0 0

res n

clk

o

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

LFSR - Circuit Operation Principle

In this illustration of the ”LFSR” the data wires of the circuit are highlighted in blue when propagating a logical zero, and in
red for logical ones. We also show the logical value currently held by each flip-flop and a timing diagram of the inputs and
outputs. As you already heard, an initial reset is paramount for every state-holding element. Therefore, this is done first
leading to almost all flip-flops being set to zero. The first flip-flop, featuring an active-low set signal rather than a reset, is set
to 1. This is vital, as all flip-flops being zero would result in the output being constantly zero as well. That’s not very random.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 1 0 0

res n

clk

o
17

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 1 0 0

res n

clk

o

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

LFSR - Circuit Operation Principle

At the first rising clock edge, all flip-flops sample their inputs, leading to the stored one being shifted to the right and the
left-most flip-flop to store zero now.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 0 1 0

res n

clk

o
17

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 0 1 0

res n

clk

o

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

LFSR - Circuit Operation Principle

At the next clock edge, the current register bits are shifted again, making the feedback path high.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 0 1

res n

clk

o
17

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 0 1

res n

clk

o

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

LFSR - Circuit Operation Principle

The first flip-flop now sampled the one from the feedback path, while the already stored one shifted into the last flip-flop,
asserting the output signal.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 1 0 0

res n

clk

o
17

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 1 0 0

res n

clk

o

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

LFSR - Circuit Operation Principle

The shifting of bits continues, making the output low again.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 1 1 0

res n

clk

o
17

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 1 1 0

res n

clk

o

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

LFSR - Circuit Operation Principle

The ”LFSR” continues in this fashion of sampling the feedback and shifting its internal state, producing a sequence of zeros
and ones at its output.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 1 1

res n

clk

o
17

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 1 1

res n

clk

o

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

LFSR - Circuit Operation Principle

The shifting now leads to the output being set for two consecutive clock cycles. However, by now you have likely gotten the
hang of it, and we can continue by discussing how such a circuit can be described in VHDL.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
);
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);

 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

18

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
);
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);

 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

LFSR - VHDL Design

The slide shows an entity declaration for the ”LFSR” circuit. Naturally, it contains a clock, reset and output port. Let us now
look at the accompanying architecture.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
);
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);

 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

18

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
);
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);

 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

LFSR - VHDL Design

The architecture declares a single vector signal for the register ”x”. To model this register, we create a process that asyn-
chronously resets this signal and updates it at rising clock edges. During the reset, all bits of ”x”, except for the one at index
zero, are reset to zero via an aggregate expression. The first bit is set to one to model the asynchronous set of the left-most
flip-flop. At rising clock edges, the register is updated such that it implements the introduced ”LFSR”. In particular, this
means that we connect the distinct bits of the register to form a chain of flip-flops, where each flip-flop samples the output of
its predecessor at a rising clock edge. The left-most flip-flop samples the XOR of the bits two and three. Finally, we use a
concurrent signal assignment to connect the output of the right-most flip-flop to the output port o.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;

 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin

 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
);

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;

 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

19

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;

 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin

 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
);

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;

 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

LFSR - Testbench

To conclude this example, let us discuss how a testbench can be written for the ”LFSR”. In particular, a synchronous design
like this one obviously requires a clock during simulation. But where does this clock signal come from? Well, as for all inputs
of the unit-under-test, the testbench has to generate and apply it. We will now show you how this can be done.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;

 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin

 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
);

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;

 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

19

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;

 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin

 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
);

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;

 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

LFSR - Testbench

First, we declare an additional constant and signal. The constant holds the desired clock period, in this case we choose ten
nanoseconds. However, in general, a design is specified to work within a range or with a particular clock frequency which
should then also be generated by the testbench. The purpose of the stop clk signal will become clear in a moment.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;

 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin

 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
);

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;

 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

19

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;

 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin

 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
);

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;

 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

LFSR - Testbench

However, first we create a dedicated clock generation process. This non-synthesizable code periodically toggles the clock
signal. The desired clock period is achieved by waiting for half the respective constant after each assignment. If we want
the simulation to terminate automatically, we must ensure that all signals become stable eventually. This includes the clock
signal. Therefore, we wrap the assignments to the clock signal in a while-loop that runs until the stop clk signal becomes
true. After that, the clock remains stable, and the clock generation process will wait indefinitely. This stop signal will be set
by the stimulus process once it is done with testing the unit-under-test. We will now look at this process.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;

 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin

 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
);

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;

 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

19

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;

 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin

 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
);

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;

 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Elements in VHDL
Linear Feedback Shift Register

LFSR - Testbench

The first task of the stimulus process is to reset the ”UUT”, which is also done by the shown code. As already mentioned,
otherwise the design might be in an arbitrary state which prohibits proper testing. Note that the reset should be applied for
some time, ideally more than a clock cycle to ensure that everything is properly reset. In this case we set the active-low reset
to low for two clock cycles. Afterwards, we let the ”LFSR” run for six clock periods and then stop the clock. The simulation
will then be able to automatically terminate because all signals are stable.

HWMod
WS24

Seq. Elem.
Introduction

D Latches

D Flip-Flop

LFSR

Operation

VHDL Design

Testbench Lecture Complete!

Modified: 2025-03-12, 16:32 (21636bb)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

	Sequential Circuit Elements in VHDL
	Introduction
	D Latches
	D Flip-Flop
	Linear Feedback Shift Register

