HWMod
WS25

i Hardware Modeling [VU] (191.011)
— WS25 -

Sequential Circuit Elements in VHDL

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:04 (f8a58e9)

Introduction

HWMod
WS25

m Combinational logic cannot retain any data = Sequential logic

Introduction

Introduction

HWMod
WS25

m Combinational logic cannot retain any data = Sequential logic
m Latches and flip-flops are single-bit storage elements

Introduction

Introduction

HWMod
WS25

m Combinational logic cannot retain any data = Sequential logic
m Latches and flip-flops are single-bit storage elements
m Operation principle

m Latches: level-sensitive

m Flip-flops: edge-triggered

Introduction

Introduction

HWMod
WS25

m Combinational logic cannot retain any data = Sequential logic
m Latches and flip-flops are single-bit storage elements
m Operation principle
m Latches: level-sensitive
m Flip-flops: edge-triggered
m Latches can be problematic in synchronous designs!

Introduction

Introduction

HWMod
WS25

m Combinational logic cannot retain any data = Sequential logic

m Latches and flip-flops are single-bit storage elements
m Operation principle

m Latches: level-sensitive

m Flip-flops: edge-triggered
m Latches can be problematic in synchronous designs!
m Common Types

m Latches: RS, D
m Flip-flops: JK, T, D

Introduction

Introduction

HWMod
WS25

m Combinational logic cannot retain any data = Sequential logic
m Latches and flip-flops are single-bit storage elements
m Operation principle
m Latches: level-sensitive
m Flip-flops: edge-triggered
m Latches can be problematic in synchronous designs!
m Common Types
m Latches: RS, D
m Flip-flops: JK, T, D
m Relevant for this course: Data (D) type

Introduction

Introduction (cont’d)

HWMod

WS25
D Latch

D latches are level-sensitive. They transfer the data on the input (D) to the
output (Q) when enabled and retain the data when disabled.

Introduction

Introduction (cont’d)

HWMod

WS25
D Latch

D latches are level-sensitive. They transfer the data on the input (D) to the
output (Q) when enabled and retain the data when disabled.

Introduction

Introduction (cont’d)

HWMod
WS25

D Latch

D latches are level-sensitive. They transfer the data on the input (D) to the
output (Q) when enabled and retain the data when disabled.

D Flip-Flop

D flip-flops are edge-triggered. They capture the data on the input (D) at a
specific clock edge, transfer it to the output (Q) and hold it until the next edge.

Introduction (cont’d)

HWMod
WS25

D Latch

D latches are level-sensitive. They transfer the data on the input (D) to the
output (Q) when enabled and retain the data when disabled.

D Flip-Flop

D flip-flops are edge-triggered. They capture the data on the input (D) at a
specific clock edge, transfer it to the output (Q) and hold it until the next edge.

Introduction (cont’d)

HWMod
WS25

D Latch

Introduction

D latches are level-sensitive. They transfer the data on the input (D) to the
output (Q) when enabled and retain the data when disabled.

D Flip-Flop

D flip-flops are edge-triggered. They capture the data on the input (D) at a
specific clock edge, transfer it to the output (Q) and hold it until the next edge.

Register

Registers are collections of D flip-flops (latches) that hold data that logically
belong together.

D Latches vs. D Flip-Flop

HWMod
WS25

D Latch
D Q— QL
Latches vs. FFs —ien
D D Q— QFFr
clk

D Flip-Flop

D Latches vs. D Flip-Flop

HWMod
WS25

D Latch
D Q— QL
Latches vs. FFs —ien
cdk 1 L1 11 LI 11 1
D [U /s
Qr — [L [y
D QI
D Qrr Orr [\ —
clk

D Flip-Flop

D Latches vs. D Flip-Flop

HWMod
WS25

D Latch
D Q— QL
Latches vs. FFs —ien
cdk 1 L1 1L LI 11 1
D U /s u
Qr — [TL__ [L[
D QI
D Qrr Orr [1 [—
clk

D Flip-Flop

D Latches vs. D Flip-Flop

HWMod
WS25

D Latch
D Q—Qr
Latches vs. FFs —ien
clk
Qr | | [
D I
D Q— QrrF Orp
clk

D Flip-Flop

D Latches vs. D Flip-Flop

HWMod
WS25

D Latch
D Q— QL
Latches vs. FFs —ien
cdk 1 L1 11 LI 11 1
D [TUTL et
Qr — [T [y
D QI
D Qrr Orp [1 —
clk

D Flip-Flop

D Latches vs. D Flip-Flop

HWMod
WS25

D Latch
D Q— QL
Latches vs. FFs —ien
cdk 1 L1 11 LI 11 1
D [U /s
Qr — [L [y
D QI
D Qrr Orr [\ —
clk

D Flip-Flop

Reset Signal

HWMod
WS25

m Purpose: Bring a circuit into a defined state

m after power-up
m in case of a fault clk { { (

Reset Signal

Reset Signal

RST

SET

HWMod
WS25 15
m Purpose: Bring a circuit into a defined state
m after power-up o
S m in case of a fault el {
: m Global signal reset

m Connects to the reset inputs of all registers in design or module

Reset Signal

HWMod

WS25

RST

SET

m Purpose: Bring a circuit into a defined state °
m after power-up o
S m in case of a fault clk {
s m Global signal reset

m Connects to the reset inputs of all registers in design or module

m Often connected to an external button

Reset Signal

HWMod

WS25

RST

SET

m Purpose: Bring a circuit into a defined state °
m after power-up o
S m in case of a fault clk {
s m Global signal reset

m Connects to the reset inputs of all registers in design or module

m Often connected to an external button
m Prevents power-up to an arbitrary state

HWMod
WS25

Reset Signal

Reset Signal

m Purpose: Bring a circuit into a defined state

m after power-up
m in case of a fault

m Global signal

RST

RST

SET

clk {

reset

m Connects to the reset inputs of all registers in design or module

m Often connected to an external button
m Prevents power-up to an arbitrary state
m Include reset for all registers!

HWMod
WS25

Reset Signal

Reset Signal

_ . _ do o} o o} p a}
m Purpose: Bring a circuit into a defined state

m after power-up RST RST SET

m in case of a fault clk { { (
m Global signal reset

m Connects to the reset inputs of all registers in design or module
m Often connected to an external button

m Prevents power-up to an arbitrary state
m Include reset for all registers!
m Typical reset value is zero/low (sometimes different values are necessary)

Reset Signal

HWMod
WS25

_ . _ do o} o o} p a}
m Purpose: Bring a circuit into a defined state
m after power-up RST RST SET
} m in case of a fault clk { { (
m Global signal reset

m Connects to the reset inputs of all registers in design or module
m Often connected to an external button

m Prevents power-up to an arbitrary state

m Include reset for all registers!

m Typical reset value is zero/low (sometimes different values are necessary)
m Testbenches must always activate the UUT’s reset upon startup

Active Signal Levels

HWMod
WS25

Active Signal Levels

Active Signal Levels

HWMod
WS25

Active Signal Levels

A signal is considered active-high (low) when a high (low) logic level activates
the signal or causes the intended action to occur.

Active Signal Levels

Active Signal Levels

HWMod
WS25

Active Signal Levels

A signal is considered active-high (low) when a high (low) logic level activates
the signal or causes the intended action to occur.

Active Signal Levels

m Notation for active-low signals:

m Circuit diagrams: a bar above the signal name (e.g., en)
m Code: the suffix _n (e.g., en_n)

Active Signal Levels

HWMod
WS25

Active Signal Levels

A signal is considered active-high (low) when a high (low) logic level activates
the signal or causes the intended action to occur.

Active Signal Levels

m Notation for active-low signals:

m Circuit diagrams: a bar above the signal name (e.g., en)
m Code: the suffix _n (e.g., en_n)

m Active-low resets

Active Signal Levels

HWMod
WS25

Active Signal Levels

A signal is considered active-high (low) when a high (low) logic level activates
the signal or causes the intended action to occur.

Active Signal Levels

m Notation for active-low signals:

m Circuit diagrams: a bar above the signal name (e.g., en)
m Code: the suffix _n (e.g., en_n)

m Active-low resets
m Power-up default often ground

Active Signal Levels

HWMod
WS25

Active Signal Levels

A signal is considered active-high (low) when a high (low) logic level activates
the signal or causes the intended action to occur.

Active Signal Levels

m Notation for active-low signals:
m Circuit diagrams: a bar above the signal name (e.g., en)
m Code: the suffix _n (e.g., en_n)

m Active-low resets

m Power-up default often ground
m Noise immunity

Active Signal Levels

HWMod
WS25

Active Signal Levels

A signal is considered active-high (low) when a high (low) logic level activates
the signal or causes the intended action to occur.

Active Signal Levels

m Notation for active-low signals:
m Circuit diagrams: a bar above the signal name (e.g., en)
m Code: the suffix _n (e.g., en_n)

m Active-low resets

m Power-up default often ground
m Noise immunity
m Widely adopted in industry for reliability and compatibility

Active Signal Levels

HWMod
WS25

Active Signal Levels

A signal is considered active-high (low) when a high (low) logic level activates
the signal or causes the intended action to occur.

Active Signal Levels

m Notation for active-low signals:
m Circuit diagrams: a bar above the signal name (e.g., en)
m Code: the suffix _n (e.g., en_n)

m Active-low resets
m Power-up default often ground
m Noise immunity
m Widely adopted in industry for reliability and compatibility
m Our naming convention: res_n.

Active Signal Levels

HWMod
WS25

Active Signal Levels

A signal is considered active-high (low) when a high (low) logic level activates
the signal or causes the intended action to occur.

Active Signal Levels

m Notation for active-low signals:
m Circuit diagrams: a bar above the signal name (e.g., en)
m Code: the suffix _n (e.g., en_n)

m Active-low resets
m Power-up default often ground
m Noise immunity
m Widely adopted in industry for reliability and compatibility
m Our naming convention: res_n.

HWMod
WS25

D Latches

D Latches

en —|

D Q
en

0 N O A W N =

N o b wWwN = O O

entity dlatch is

port (
d : in std_ulogic;
en : in std_ulogic;

g : out std_ulogic
)i
end entity;

architecture arch of dlatch is
begin

end architecture;

HWMod
WS25

D Latches

D Latches

en —|

D Q
en

0 N O A W N =

N o b wWwN = O O

entity dlatch is

port (
d : in std_ulogic;
en : in std_ulogic;

g : out std_ulogic
)i
end entity;

architecture arch of dlatch is
begin

process (en, d)

begin

end process;
end architecture;

HWMod
WS25

D Latches

D Latches

en —|

D Q
en

0 N O A W N =

N o b wWwN = O O

entity dlatch is

port (
d : in std_ulogic;
en : in std_ulogic;

g : out std_ulogic
)i
end entity;

architecture arch of dlatch is
begin

process (en, d)

begin

end process;
end architecture;

D Latches

HWMod
WS25
d—D Q—4gd
D Latches en —en

Operation Principle

While en is high, g is assigned
the value of d, otherwise g is not
updated and simply holds its last
value.

0o N o A WD =

entity dlatch is

port (
d : in std_ulogic;
en : in std_ulogic;
g : out std_ulogic
)i
end entity;
architecture arch of dlatch
begin
process (en, d)
begin

end process;
end architecture;

is

D Latches

HWMod
WS25
1 entity dlatch is
2 port (
d—Db Q—4«a 3 d : in std_ulogic;
D Latches en —{en 4 en : in std_ulogic;
5 g : out std_ulogic
6)i
7 end entity;
8
9 architecture arch of dlatch is
10 begin
i inel 11
Operation Principle process (en, d)
12 begin
. f . : . 13 if en = ’1’ then
While en is high, g is assigned . q <= d;

the value of 4, otherwise gisnot 1 end if;

updated and simply holds its last ~ '® end process;
|ue 17 end architecture;
value.

D Latch - R

eset

HWMod
Ws25
d—D Q
en —en
Reset ﬁ
reL_n

entity dlatch_r is

1
2 port (

3 res_n : in std_ulogic;

4 d : in std_ulogic;

5 en : in std_ulogic;

6 g : out std_ulogic

7)i

8 end entity;

9

10 architecture arch of dlatch_r is
11 begin

12 process (en, d, res_n)

13 begin

14

15

16

17

18

19 end process;
20 end architecture;

D Latch - R

eset

HWMod
Ws25
d—D Q
en —en
Roset RST
reL,n

entity dlatch_r is

1
2 port (

3 res_n : in std_ulogic;

4 d : in std_ulogic;

5 en : in std_ulogic;

6 g : out std_ulogic

7)i

8 end entity;

9

10 architecture arch of dlatch_r is
11 begin

12 process(en, d, res_n)

13 begin

14

15

16

17

18

19 end process;
20 end architecture;

D Latch - R

eset

HWMod
Ws25
d—D Q—4gd
en —en
Reset ﬁ
reL_n

entity dlatch_r is

1
2 port (

3 res_n : in std_ulogic;

4 d : in std_ulogic;

5 en : in std_ulogic;

6 g : out std_ulogic

7)i

8 end entity;

9

10 architecture arch of dlatch_r is
11 begin

12 process (en, d, res_n)

13 begin

14 if res_n = '0’ then

15 g <= "'0";

16

17

18 end if;

19 end process;
20 end architecture;

D Latch - R

eset

HWMod
Ws25
d—D Q—4gd
en —en
Reset ﬁ
reL_n

entity dlatch_r is

1
2 port (

3 res_n : in std_ulogic;

4 d : in std_ulogic;

5 en : in std_ulogic;

6 g : out std_ulogic

7)i

8 end entity;

9

10 architecture arch of dlatch_r is
11 begin

12 process (en, d, res_n)

13 begin

14 if res_n = '0’ then

15 g <= "'0";

16 elsif en = "1’ then

17 g <= d;

18 end if;

19 end process;
20 end architecture;

D Latch - Reset

HWMod
WS25 1 entity dlatch_r is
2 port (
d—Db Qf—4a 3 res_n : in std_ulogic;
en —{en 4 d : in std_ulogic;
5 en : in std_ulogic;
Feset RST 6 q : out std_ulogic
\ 7)i
res.n 8 end entity;

10 architecture arch of dlatch_r is

11 begin
Operation Principle 12 process(en, d, res_n)
13 begin
The reset has the highest " HE resn T U then
P 0 q <= ;
priority. If res_n is low the 1 olsif en = 1’ then
values of d and en are irrelevant. 7 q <= d;
18 end if;

19 end process;
20 end architecture;

D Latch - Reset

HWMod
WS25 1 entity dlatch_r is
2 port (
d—Db Qf—4a 3 res_n : in std_ulogic;
en —{en 4 d : in std_ulogic;
5 en : in std_ulogic;
Feset RST 6 q : out std_ulogic
\ 7)i
res.n 8 end entity;

10 architecture arch of dlatch_r is

11 begin
Operation Principle 12 process(en, d, res_n)
13 begin
The reset has the highest " HE resn T U then
P 0 q <= ;
priority. If res_n is low the 1 olsif en = 1’ then
values of d and en are irrelevant. 7 q <= d;
18 end if;

19 end process;
20 end architecture;

D Flip-Flop

HWMod
WS25

1
d—Db Qf—4a 2 entity dff is

D Flip-Flop 3 port (

4 clk : in std_ulogic;
clk — 5 d : in std_ulogic;

6 q : out std_ulogic
7)i
8 end entity;

D Flip-Flop

HWMod
WS25

1
d—Db Qf—4a 2 entity dff is

D Flip-Flop 3 port (

4 clk : in std_ulogic;
clk — 5 d : in std_ulogic;

6 q : out std_ulogic
7)i
8 end entity;

D Flip-Flop

HWMod
WS25

1
d—b Q—a 2 entity dff is

D Flip-Flop 3 port (

4 clk : in std_ulogic;
clk — 5 d : in std_ulogic;

6 q : out std_ulogic
7)i
8 end entity;

How can we detect the event of a signal transition?

D Flip-Flop

HWMod

Ws25 m Helper function
i function rising_edge(signal s : std_ulogic) return boolean is
2 begin
3 return [...];
D Fiip-Flop 4 end function;

D Flip-Flop

HWMod H
ws2s m Helper function
1 function rising_edge(signal s : std_ulogic) return boolean is
2 begin
3 return [...];
4 end function;

D Flip-Flop

m D flip-flop architecture

9 architecture arch of dff is

10 begin

11 process (clk)

12 begin

13 if rising_edge (clk) then
14 q <= d;

15 end if;

16 end process;
17 end architecture;

D Flip-Flop

HWMod H
ws2s m Helper function
1 function rising_edge(signal s : std_ulogic) return boolean is
2 begin
3 return [...];
4 end function;

D Flip-Flop

m D flip-flop architecture

9 architecture arch of dff is
10 begin

11

12

13

14

15

16

17 end architecture;

D Flip-Flop

HWMod H
ws2s m Helper function
1 function rising_edge(signal s : std_ulogic) return boolean is
2 begin
3 return [...];
4 end function;

D Flip-Flop

m D flip-flop architecture

9 architecture arch of dff is

10 begin

11 process (clk)

12 begin

13 if rising_edge (clk) then
14 q <= d;

15 end if;

16 end process;
17 end architecture;

D Flip-Flop

HWMod H
ws2s m Helper function
1 function rising_edge(signal s : std_ulogic) return boolean is
2 begin
3 return [...];
4 end function;

D Flip-Flop

m D flip-flop architecture

9 architecture arch of dff is

10 begin

11 process (clk)

12 begin

13 if rising_edge (clk) then
14 q <= d;

15 end if;

16 end process;
17 end architecture;

D Flip-Flop

HWMod H
ws2s m Helper function
1 function rising_edge(signal s : std_ulogic) return boolean is
2 begin
3 return [...];
4 end function;

D Flip-Flop

m D flip-flop architecture

9 architecture arch of dff is

10 begin

11 process (clk)

12 begin

13 if rising_edge (clk) then
14 q <= d;

15 end if;

16 end process;
17 end architecture;

D Flip-Flop

HWMod H
ws2s m Helper function
1 function rising_edge(signal s : std_ulogic) return boolean is
2 begin
3 return [...];?
4 end function;

D Flip-Flop

m D flip-flop architecture

9 architecture arch of dff is

10 begin

11 process (clk)

12 begin

13 if rising_edge (clk) then
14 q <= d;

15 end if;

16 end process;
17 end architecture;

Signal Edges — event Attribute

HWMod
WS25

m Special predefined signal attribute: s’ event

Signal Edges

HWMod
WS25

Signal Edges

Signal Edges — event Attribute

m Special predefined signal attribute: s’ event
m VHDL standard

“s’”event returns the value t rue if an event has occurred on s during the
current simulation cycle; otherwise, it returns the value false.”

Signal Edges — event Attribute

HWMod
WS25

m Special predefined signal attribute: s’ event
Signa Edgos m VHDL standard

“s’”event returns the value t rue if an event has occurred on s during the
current simulation cycle; otherwise, it returns the value false.”

m Possible edge detection expression
s’"event and s = "1’

Signal Edges — event Attribute

HWMod
WS25

m Special predefined signal attribute: s’ event
Signa Edgos m VHDL standard

“s’”event returns the value t rue if an event has occurred on s during the
current simulation cycle; otherwise, it returns the value false.”

m Possible edge detection expression
s’"event and s = "1’

m What if c1k changes from, e.g., "U’ to 71" ?

Signal Edges — 1ast_value Attribute

HWMod
WS25

m VHDL standard

Sion! Edges “For a signal s, if an event has occurred on s in any simulation cycle,
s’ last_value returns the value of s prior to the update of s in the last
simulation cycle in which an event occurred; otherwise, s’ last_value

returns the current value of s.”

Signal Edges — 1ast_value Attribute

HWMod
WS25

m VHDL standard

Sion! Edges “For a signal s, if an event has occurred on s in any simulation cycle,
s’ last_value returns the value of s prior to the update of s in the last
simulation cycle in which an event occurred; otherwise, s’ last_value

returns the current value of s.”

m Improved edge detection expression
s’event and (s = ’1’) and (s’last_value = ’0’)

Signal Edges — 1ast_value Attribute

HWMod
WS25

m VHDL standard

Sion! Edges “For a signal s, if an event has occurred on s in any simulation cycle,
s’ last_value returns the value of s prior to the update of s in the last
simulation cycle in which an event occurred; otherwise, s’ last_value

returns the current value of s.”

m Improved edge detection expression
s’event and (s = ’1’) and (s’last_value = ’0’)

m What if c1kx changes from " 1.7 to "H" ?

Signal Edges

HWMod
WS25

m First convert the signal valuesto " 07 or * 17 (or * x’ if not possible)

Signal Edges

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L872
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L982

Signal Edges

HWMod
WS25

m First convert the signal valuesto " 07 or * 17 (or * x’ if not possible)
B to_X01 function &=
.IUI,IXI’IZI,IWI,I_I_>IXI
Signal Edges] ’O', r1’ — IOI
. 14 1/ , 14 HI _) 14 1!

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L872
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L982

Signal Edges

HWMod
WS25

m First convert the signal valuesto " 07 or * 17 (or * x’ if not possible)
B to_X01 function &=
.IUI,IXI,IZI’ WI,I_I_>IXI
Signal Edges | ’O” I’ _)’O’
. 14 1/, 14 HI _) 14 1’
m Final edge detection expression
s’event and (to_X01l(s) = '1") and
(to_X01 (s’ last_value) =

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L872
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L982

Signal Edges

HWMod
WS25

m First convert the signal valuesto " 07 or * 17 (or * x’ if not possible)
B to_X01 function &=

.IUI,IXI,IZI’ WI,I_I_>IXI

Signal Edges | ’O” I’ _)’O’

. 14 1/, 14 HI _) 14 1’

m Final edge detection expression
s’event and (to_X01l(s) = '1") and
(to_X01(s’last_value) = "0")

B rising/falling_edge as definedin std_logic_1164 package &=

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L872
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L982

Signal Edges

HWMod
WS25

m First convert the signal valuesto " 07 or * 17 (or * x’ if not possible)
B to_X01 function &=
.IUI,IXI,IZI, WI,I_I_>IXI
Signal Edges] 'O', ' 10’
. 14 1/ , 14 HI _) 14 1!
m Final edge detection expression
s’event and (to_X01l(s) = '1") and
(to_X01(s’last_value) = "0")
B rising/falling_edge as definedin std_logic_1164 package &=
m The standard package defines rising/falling_edge for the types
mDbit
B boolean

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L872
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L982

HWMod

WS25
d—b al—¢g 1 entity dff_r is
2 port (
3 clk : in std_ulogic;
Reset 4 res_n : in std_ulogic;
clk RST 5 d : in std_ulogic;
‘ 6 q : out std_ulogic
res.n 7)i
8 end entity;

HWMod

WS25
a—p al—g 1 entity dff_r is
2 port (
3 clk : in std_ulogic;
Reset 4 res_n : in std_ulogic;
clk RST 5 d : in std_ulogic;
‘ 6 q : out std_ulogic
res.n 7)i
8 end entity;

Reset Condition

When is the reset evaluated?

Reset (Cont'd)

L Synchronous Reset Asynchronous Reset

WS25

Reset

Reset (Cont'd)

L Synchronous Reset Asynchronous Reset

WS25
m Reset signal is only evaluated at
the active clock edge

9 architecture sync of dff_r is
10 begin

11

12

13

14

15

16

17

18

19

20

21 end architecture;

Reset (Cont'd)

L Synchronous Reset Asynchronous Reset

WS25
m Reset signal is only evaluated at m Reset signal is level-sensitive
the active clock edge

Reset

9 architecture sync of dff_r is 9 architecture async of dff_r is
10 begin 10 begin

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19 end architecture;

20
21 end architecture;

Reset (Cont'd)

L Synchronous Reset Asynchronous Reset

WS25
m Reset signal is only evaluated at m Reset signal is level-sensitive
the active clock edge

Reset

9 architecture sync of dff_r is 9 architecture async of dff_r is
10 begin 10 begin

11 process (clk) 11

12 begin 12

13 if rising_edge(clk) then 13

14 if res_n = 0’ then 14

15 g <="'0"; 15

16 else 16

17 q <= d; 17

18 end if; 18

19 end if; 19 end architecture;
20 end process;

21 end architecture;

Reset (Cont'd)

L Synchronous Reset Asynchronous Reset

WS25
m Reset signal is only evaluated at m Reset signal is level-sensitive
the active clock edge

B res_n hot in sensitivity list

Reset

9 architecture sync of dff_r is 9 architecture async of dff_r is
10 begin 10 begin

11 process (clk) 11

12 begin 12

13 if rising_edge(clk) then 13

14 if res_n = 0’ then 14

15 g <="'0"; 15

16 else 16

17 q <= d; 17

18 end if; 18

19 end if; 19 end architecture;
20 end process;

21 end architecture;

Reset (Cont'd)

L Synchronous Reset Asynchronous Reset

WS25
m Reset signal is only evaluated at m Reset signal is level-sensitive
the active clock edge

B res_n hot in sensitivity list

Reset

9 architecture sync of dff_r is 9 architecture async of dff_r is
10 begin 10 begin

11 process (clk) 11

12 begin 12

13 if rising_edge(clk) then 13

14 if res_n = 0’ then 14

15 g <="'0"; 15

16 else 16

17 q <= d; 17

18 end if; 18

19 end if; 19 end architecture;
20 end process;

21 end architecture;

Reset (Cont'd)

W Synchronous Reset Asynchronous Reset
m Reset signal is only evaluated at m Reset signal is level-sensitive
the active clock edge
B res_n hot in sensitivity list B res_n in sensitivity list
Aeset 9 architecture sync of dff_r is 9 architecture async of dff_r is
10 begin 10 begin
11 process (clk) 11 process (clk, res_n)
12 begin 12 begin
13 if rising_edge(clk) then 13 if res_n = ’'0’ then
14 if res_n = 0’ then 14 q <= "'0";
15 g <="'0"; 15 elsif rising_edge(clk) then
16 else 16 q <= d;
17 q <= d; 17 end if;
18 end if; 18 end process;
19 end if; 19 end architecture;
20 end process;

21 end architecture;

Reset (Cont'd)

W Synchronous Reset Asynchronous Reset
m Reset signal is only evaluated at m Reset signal is level-sensitive
the active clock edge
B res_n hot in sensitivity list B res_n in sensitivity list
Aeset 9 architecture sync of dff_r is 9 architecture async of dff_r is
10 begin 10 begin
11 process (clk) 11 process (clk, res_n)
12 begin 12 begin
13 if rising_edge(clk) then 13 if res_n = '0’ then
14 if res_n = 0’ then 14 q <= "'0";
15 g <="'0"; 15 elsif rising_edge(clk) then
16 else 16 q <= d;
17 q <= d; 17 end if;
18 end if; 18 end process;
19 end if; 19 end architecture;
20 end process;

21 end architecture;

Enable Input

HWMod
i m What if a flip-flop should not be updated each clock cycle?

Enable Input

HWMod

i m What if a flip-flop should not be updated each clock cycle?
= Use a dedicated enable signal

Enable

d—D Q
en —
clk —P RsT
res.n

entity dff_en is

1
2 port (

3 clk : in std_ulogic;
4 res_n : in std_ulogic;
5 en : in std_ulogic;
6 d : in std_ulogic;
7 a : out std_ulogic
8)i

Enable Input

HWMod
i m What if a flip-flop should not be updated each clock cycle?

= Use a dedicated enable signal

Enable

11 process (clk, res_n)

12 begin
: —- N0’
d—p aql—a 13 if res_n 0" then
14 g <= "'0";
en —j 15 elsif rising_edge (clk) then
__ 16 if en = "1’ then
clk —
RST 17 q <= d;
‘ 18 end if;
res._n 19 end if;
20 end process;

Enable Input

HWMod
i m What if a flip-flop should not be updated each clock cycle?

= Use a dedicated enable signal

Enable

11 process (clk, res_n)

12 begin
: — rnrs
d—p aql—a 13 if res_n 0" then
14 g <= "'0";
en —j 15 elsif rising_edge (clk) then
I 16 if en = 1’ then
clk —
RST 17 q <= d;
‘ 18 end if;
res.n 19 end if;
20 end process;

Enable Input

HWMod
i m What if a flip-flop should not be updated each clock cycle?

= Use a dedicated enable signal
m Structure matters!
m Always use the patterns shown in this lecture

Enable

11 process (clk, res_n)

12 begin
: —- rNnr

d—p aql—a 13 if res_n 0" then

14 g <= "'0";

en —j 15 elsif rising_edge (clk) then

__ 16 if en = 1’ then

clk RST 17 q <= d;

‘ 18 end if;
res.n 19 end if;
20 end process;

Enable Input

HWMod
i m What if a flip-flop should not be updated each clock cycle?

= Use a dedicated enable signal
m Structure matters!

m Always use the patterns shown in this lecture
m Synthesis tools expect certain structures

Enable

11 process (clk, res_n)

12 begin
: —- rNnr

d—p aql—a 13 if res_n 0" then

14 g <= "'0";

en —j 15 elsif rising_edge (clk) then

__ 16 if en = 1’ then

clk RST 17 q <= d;

‘ 18 end if;
res.n 19 end if;
20 end process;

HWMod
WS25

EEEEEE

Lecture Complete!

Modified: 2025-12-16, 16:04 (f8a58e9)

	Sequential Circuit Elements in VHDL
	Introduction
	D Latches
	D Flip-Flop

