

Hardware Modeling [VU] (191.011)

– WS25 –

Sequential Circuit Elements in VHDL

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Introduction

HWMod
WS25

Seq. Elem.
Introduction
Latches vs. FFs
Reset Signal
Active Signal Levels
D Latches
D Flip-Flop

- Combinational logic cannot retain any data \Rightarrow Sequential logic
- Latches and flip-flops are single-bit storage elements
- Operation principle
 - Latches: level-sensitive
 - Flip-flops: edge-triggered
- Latches can be **problematic** in synchronous designs!
- Common Types
 - Latches: RS, **D**
 - Flip-flops: JK, T, **D**
- Relevant for this course: Data (D) type

Introduction (cont'd)

HWMOD
WS25

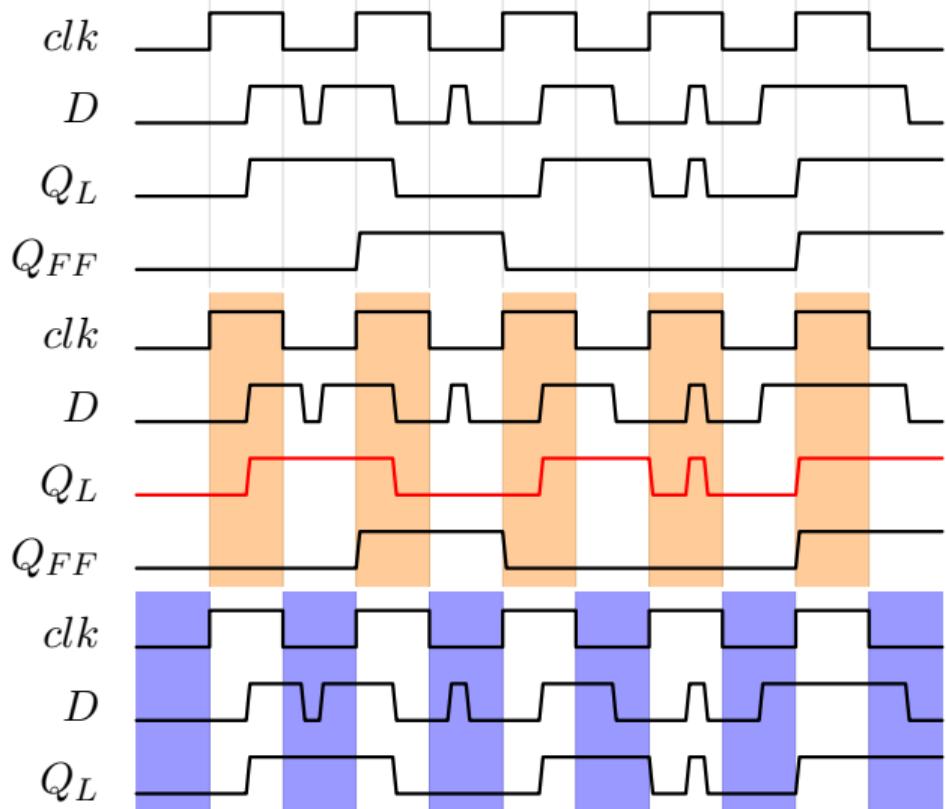
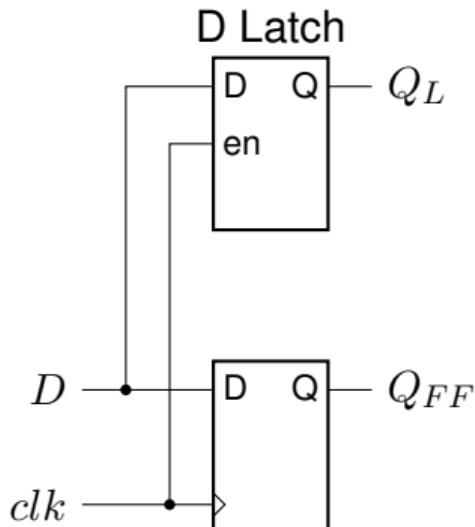
Seq. Elem.
Introduction
Latches vs. FFs
Reset Signal
Active Signal Levels
D Latches
D Flip-Flop

D Latch

D latches are level-sensitive. They transfer the data on the input (D) to the output (Q) when enabled and retain the data when disabled.

D Flip-Flop

D flip-flops are edge-triggered. They capture the data on the input (D) at a specific clock edge, transfer it to the output (Q) and hold it until the next edge.

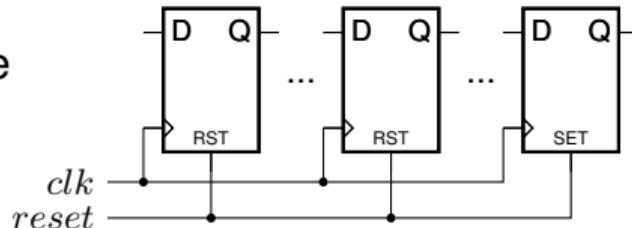


Register

Registers are collections of D flip-flops (latches) that hold data that logically belong together.

D Latches vs. D Flip-Flop

HWMod
WS25

Seq. Elem.
Introduction
Latches vs. FFs
Reset Signal
Active Signal Levels
D Latches
D Flip-Flop



Reset Signal

HWMod
WS25

Seq. Elem.
Introduction
Latches vs. FFs
Reset Signal
Active Signal Levels
D Latches
D Flip-Flop

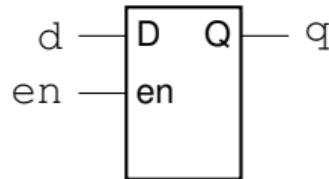
- Purpose: Bring a circuit into a defined state
 - after power-up
 - in case of a fault
- Global signal
 - Connects to the reset inputs of all registers in design or module
 - Often connected to an external button
- Prevents power-up to an arbitrary state
- Include reset for all registers!
- Typical reset value is zero/low (sometimes different values are necessary)
- Testbenches must **always** activate the UUT's reset upon startup

Active Signal Levels

HWMod
WS25

Seq. Elem.
Introduction
Latches vs. FFs
Reset Signal
Active Signal Levels
D Latches
D Flip-Flop

Active Signal Levels


A signal is considered active-high (low) when a high (low) logic level activates the signal or causes the intended action to occur.

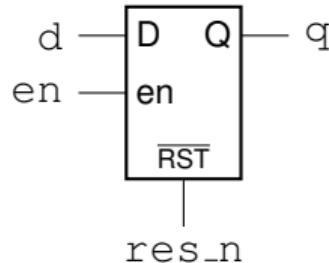
- Notation for active-low signals:
 - Circuit diagrams: a bar above the signal name (e.g., $\overline{\text{en}}$)
 - Code: the suffix $_n$ (e.g., en_n)
- Active-low resets
 - Power-up default often *ground*
 - Noise immunity
 - Widely adopted in industry for reliability and compatibility
 - Our naming convention: `res_n`.

D Latches

HWMod
WS25

Seq. Elem.
Introduction
D Latches
Reset
D Flip-Flop

Operation Principle


While `en` is high, `q` is assigned the value of `d`, otherwise `q` is not updated and simply holds its last value.

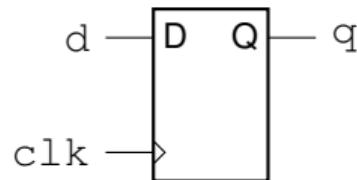
```
1 entity dlatch is
2   port (
3     d : in std_ulogic;
4     en : in std_ulogic;
5     q : out std_ulogic
6   );
7 end entity;
8
9 architecture arch of dlatch is
10 begin
11
12
13
14
15
16
17 end architecture;
```

D Latch - Reset

HWMod
WS25

Seq. Elem.
Introduction
D Latches
Reset
D Flip-Flop

Operation Principle


The reset has the highest priority. If `res_n` is low the values of `d` and `en` are irrelevant.

```
1 entity dlatch_r is
2   port (
3     res_n : in std_ulogic;
4     d : in std_ulogic;
5     en : in std_ulogic;
6     q : out std_ulogic
7   );
8 end entity;
9
10 architecture arch of dlatch_r is
11 begin
12   process(en, d, res_n)
13   begin
14
15
16
17
18
19   end process;
20 end architecture;
```

D Flip-Flop

HWMod
WS25

Seq. Elem.
Introduction
D Latches
D Flip-Flop
Signal Edges
Reset
Enable


```
1
2 entity dff is
3   port (
4     clk : in  std_ulogic;
5     d   : in  std_ulogic;
6     q   : out std_ulogic
7   );
8 end entity;
```

Problem

How can we detect the event of a signal transition?

D Flip-Flop

HWMod
WS25

Seq. Elem.
Introduction
D Latches
D Flip-Flop
Signal Edges
Reset
Enable

■ Helper function

```
1 function rising_edge(signal s : std_ulogic) return boolean is
2 begin
3     return [...];?
4 end function;
```

■ D flip-flop architecture

```
9 architecture arch of dff is
10 begin
11
12
13
14
15
16
17 end architecture;
```

Signal Edges – event Attribute

HWMOD
WS25

Seq. Elem.
Introduction
D Latches
D Flip-Flop
Signal Edges
Reset
Enable

- Special predefined `signal` attribute: `s' event`
- VHDL standard

“`s' event` returns the value `true` if an event has occurred on `s` during the current simulation cycle; otherwise, it returns the value `false`.”

- Possible edge detection expression
`s' event and s = '1'`
- What if `clk` changes from, e.g., `'U'` to `'1'`?

Signal Edges – last_value Attribute

- VHDL standard

“For a signal s, if an event has occurred on s in any simulation cycle, s' last_value returns the value of s prior to the update of s in the last simulation cycle in which an event occurred; otherwise, s' last_value returns the current value of s.”

- Improved edge detection expression

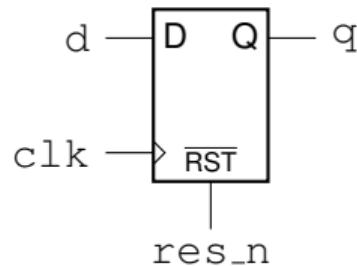
`s' event and (s = '1') and (s'last_value = '0')`

- What if clk changes from 'L' to 'H'?

Signal Edges

HWMod
WS25

Seq. Elem.
Introduction
D Latches
D Flip-Flop
Signal Edges
Reset
Enable


- First convert the signal values to '0' or '1' (or 'X' if not possible)
- **to_X01 function** IEEE SA
OPEN
 - 'U', 'X', 'Z', 'W', '-' → 'X'
 - '0', 'L' → '0'
 - '1', 'H' → '1'
- Final edge detection expression

```
s'event and (to_X01(s) = '1') and  
           (to_X01(s'last_value) = '0')
```
- **rising/falling_edge as defined in std_logic_1164 package** IEEE SA
OPEN
- **The standard package defines rising/falling_edge for the types**
 - **bit**
 - **boolean**

Reset

HWMod
WS25

Seq. Elemt.
Introduction
D Latches
D Flip-Flop
Signal Edges
Reset
Enable


```
1 entity dff_r is
2   port (
3     clk    : in  std_ulogic;
4     res_n : in  std_ulogic;
5     d      : in  std_ulogic;
6     q      : out std_ulogic
7   );
8 end entity;
```

Reset Condition

When is the reset evaluated?

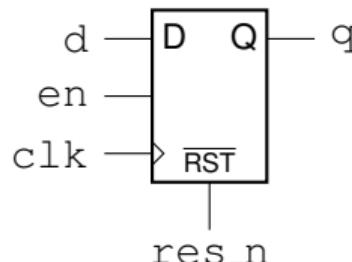
Synchronous Reset

- Reset signal is only evaluated at the active clock edge
- **res_n** **not** in sensitivity list

```
9 architecture sync ofdff_r is
10 begin
11
12
13
14
15
16
17
18
19
20
21 end architecture;
```

Asynchronous Reset

- Reset signal is level-sensitive
- **res_n** in sensitivity list


```
9 architecture async ofdff_r is
10 begin
11
12
13
14
15
16
17
18
19 end architecture;
```

Enable Input

HWMod
WS25

Seq. Elem.
Introduction
D Latches
D Flip-Flop
Signal Edges
Reset
Enable

- What if a flip-flop should not be updated each clock cycle?
 - ⇒ Use a dedicated enable signal
- Structure matters!
 - **Always** use the patterns shown in this lecture
 - Synthesis tools expect certain structures


```
11  process(clk, res_n)
12  begin
13  if res_n = '0' then
14      q <= '0';
15  elsif rising_edge(clk) then
16      if en = '1' then
17          q <= d;
18      end if;
19  end if;
20  end process;
```

Lecture Complete!