HWMod
WS25

RAN Hardware Modeling [VU] (191.011)
- WS25 —

RAM in VHDL (for FPGASs)

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:03 (f8a58e9)

Introduction

HWMod
WS25

m On-chip RAM is a fundamental building block in digital design

Introduction

Introduction

HWMod
WS25

m On-chip RAM is a fundamental building block in digital design
m Fast, low-latency, flexible data storage

Introduction

HWMod
WS25

m On-chip RAM is a fundamental building block in digital design

m Fast, low-latency, flexible data storage
m Compared to flip-flops/latches, RAM ...

Introduction

HWMod
WS25

m On-chip RAM is a fundamental building block in digital design
m Fast, low-latency, flexible data storage
m Compared to flip-flops/latches, RAM ...
B uses an address-based access scheme

Introduction

HWMod
WS25

m On-chip RAM is a fundamental building block in digital design
m Fast, low-latency, flexible data storage
m Compared to flip-flops/latches, RAM ...

B uses an address-based access scheme
m is more compact in terms of area and, hence, more power efficient

Introduction

HWMod
WS25

m On-chip RAM is a fundamental building block in digital design
m Fast, low-latency, flexible data storage

m Compared to flip-flops/latches, RAM ...

B uses an address-based access scheme

m is more compact in terms of area and, hence, more power efficient
m allows for higher-capacity memory

m is slightly slower

Introduction

HWMod
WS25

m On-chip RAM is a fundamental building block in digital design
m Fast, low-latency, flexible data storage

m Compared to flip-flops/latches, RAM ...

B uses an address-based access scheme

m is more compact in terms of area and, hence, more power efficient
m allows for higher-capacity memory

m is slightly slower

m Where do we need RAM in a design?

Introduction

HWMod
WS25

m On-chip RAM is a fundamental building block in digital design
m Fast, low-latency, flexible data storage

m Compared to flip-flops/latches, RAM ...
B uses an address-based access scheme
m is more compact in terms of area and, hence, more power efficient
m allows for higher-capacity memory
m is slightly slower
m Where do we need RAM in a design?
m Buffers inside or in between modules (often in the form of FIFO buffers)

Introduction

HWMod
WS25

m On-chip RAM is a fundamental building block in digital design

m Fast, low-latency, flexible data storage
m Compared to flip-flops/latches, RAM ...

B uses an address-based access scheme

m is more compact in terms of area and, hence, more power efficient
m allows for higher-capacity memory

m is slightly slower

m Where do we need RAM in a design?

m Buffers inside or in between modules (often in the form of FIFO buffers)
m Caches for frequently accessed data in some external memory

Introduction

HWMod
WS25

m On-chip RAM is a fundamental building block in digital design

m Fast, low-latency, flexible data storage

m Compared to flip-flops/latches, RAM ...
B uses an address-based access scheme
m is more compact in terms of area and, hence, more power efficient
m allows for higher-capacity memory
m is slightly slower

m Where do we need RAM in a design?
m Buffers inside or in between modules (often in the form of FIFO buffers)
m Caches for frequently accessed data in some external memory
m Large look-up tables

Introduction

HWMod
WS25

m On-chip RAM is a fundamental building block in digital design

m Fast, low-latency, flexible data storage
m Compared to flip-flops/latches, RAM ...

B uses an address-based access scheme
m is more compact in terms of area and, hence, more power efficient
m allows for higher-capacity memory
m is slightly slower
m Where do we need RAM in a design?
m Buffers inside or in between modules (often in the form of FIFO buffers)
m Caches for frequently accessed data in some external memory

m Large look-up tables
m Program and data memory for processors to store instructions and data

Introduction (cont’d)

HWMod
WS25

m RAM capacity (C)

Introduction

Introduction (cont’d)

HWMod
WS25

m RAM capacity (C)
m Data width (W): size of each data element stored per address

Introduction

Introduction (cont’d)

HWMod
WS25 .
m RAM capacity (C)
m Data width (W): size of each data element stored per address
I m Depth (D): number of addressable memory locations

Introduction (cont’d)

HWMod
WS25 .
m RAM capacity (C)
m Data width (W): size of each data element stored per address
IRiihEET m Depth (D): number of addressable memory locations
m usually defined by the address width A
m=D=2"

Introduction (cont’d)

HWMod
WS25

m RAM capacity (C)

m Data width (W): size of each data element stored per address
IRiihEET m Depth (D): number of addressable memory locations
m usually defined by the address width A
m=D=2"
mC=WxD

Introduction (cont’d)

HWMod
WS25

m RAM capacity (C)

m Data width (W): size of each data element stored per address
I m Depth (D): number of addressable memory locations

m usually defined by the address width A
m=D=2"

mC=WxD
m Memory access port types

Introduction (cont’d)

HWMod
WS25

m RAM capacity (C)
m Data width (W): size of each data element stored per address
I m Depth (D): number of addressable memory locations
m usually defined by the address width A
m=D=2"
mC=WxD
m Memory access port types
m read
m write
m read/write

Introduction (cont’d)

HWMod
WS25

m RAM capacity (C)

m Data width (W): size of each data element stored per address
I m Depth (D): number of addressable memory locations

m usually defined by the address width A
m=D=2"

mC=WxD
m Memory access port types

m read
m write
H read/write

m Multiple independent ports are possible

Introduction (cont’d)

HWMod
WS25

m RAM capacity (C)

m Data width (W): size of each data element stored per address
I m Depth (D): number of addressable memory locations

m usually defined by the address width A
m=D=2"

mC=WxD
m Memory access port types
m read
m write
m read/write
m Multiple independent ports are possible
m Simple dual-port RAM: one read and one write port

Introduction (cont’d)

HWMod
WS25

m RAM capacity (C)

m Data width (W): size of each data element stored per address
I m Depth (D): number of addressable memory locations

m usually defined by the address width A
m=D=2"

mC=WxD
m Memory access port types
m read
m write
m read/write
m Multiple independent ports are possible

m Simple dual-port RAM: one read and one write port
m True dual-port RAM: two read/write ports

Memory Blocks in FPGAs

HWMod
WS25

m Memory blocks are an important FPGA resource

FPGA Memory

Memory Blocks in FPGAs

HWMod
WS25

m Memory blocks are an important FPGA resource

m Logic-based memory (often) impractical
FPGA Memory m Highest speed/lowest latency memory in a design

Memory Blocks in FPGAs

HWMod
WS25

m Memory blocks are an important FPGA resource

m Logic-based memory (often) impractical
FPGA Memory m Highest speed/lowest latency memory in a design

Memory Blocks in FPGAs

HWMod
WS25

m Memory blocks are an important FPGA resource
m Logic-based memory (often) impractical
FPGA Memory m Highest speed/lowest latency memory in a design

m Highly configurable in terms of

Memory Blocks in FPGAs

HWMod
WS25

m Memory blocks are an important FPGA resource
m Logic-based memory (often) impractical
FPGA Memory m Highest speed/lowest latency memory in a design
m Highly configurable in terms of

m data width
B address width

Memory Blocks in FPGAs

HWMod
WS25

m Memory blocks are an important FPGA resource
m Logic-based memory (often) impractical
FPGA Momory m Highest speed/lowest latency memory in a design
m Highly configurable in terms of
m data width
m address width
m number and type of access ports
m control signals (e.g., read/write/byte enable)

Memory Blocks in FPGAs

HWMod
WS25

m Memory blocks are an important FPGA resource
m Logic-based memory (often) impractical
FPGA Memory m Highest speed/lowest latency memory in a design
m Highly configurable in terms of

data width

m address width

m number and type of access ports
]

]

control signals (e.g., read/write/byte enable)
parity bits (error detection)

Memory Blocks in FPGAs

HWMod
WS25

m Memory blocks are an important FPGA resource
m Logic-based memory (often) impractical
FPGA Momory m Highest speed/lowest latency memory in a design
m Highly configurable in terms of
m data width
m address width
m number and type of access ports
m control signals (e.g., read/write/byte enable)
parity bits (error detection)

m Memory in modern FPGAs is (almost) always synchronous

Memory Blocks in FPGAs

HWMod
WS25

m Memory blocks are an important FPGA resource
m Logic-based memory (often) impractical
FPGA Momory m Highest speed/lowest latency memory in a design
m Highly configurable in terms of
m data width
m address width
m number and type of access ports
m control signals (e.g., read/write/byte enable)
parity bits (error detection)
m Memory in modern FPGAs is (almost) always synchronous
m Read and write operations only happen at a clock edge

Memory Blocks in FPGAs

HWMod
WS25

m Memory blocks are an important FPGA resource
m Logic-based memory (often) impractical
FPGA Momory m Highest speed/lowest latency memory in a design
m Highly configurable in terms of
m data width
m address width
m number and type of access ports
m control signals (e.g., read/write/byte enable)
parity bits (error detection)
m Memory in modern FPGAs is (almost) always synchronous

m Read and write operations only happen at a clock edge
m Some older FPGAs support asynchronous memory

HWMod
WS25

FPGA Memory

Intel FPGAs

Table 3. Embedded Memory Blocks in Intel FPGA Devices

Device Family

Memory Block Type

M"Ci‘:s()s‘"’ M9K (9 Kbits) | M 1"‘(‘:):‘“()1“ M10K (10 Kbits) "f(?):‘ts()m "°‘-z:_cc‘):e"

Arria®11 GX Yes Yes - - - Yes
Arria I GZ Yes Yes Yes - - Yes
Arria V Yes - - Yes - Yes
Intel Arria 10 Yes - - - Yes Yes
Cyclone®l\/ - Yes - - - Yes
Cyclone V Yes - - Yes - Yes
Intel Cyclone - Yes - - - Yes
10 LP

Intel Cyclone Yes - - - Yes Yes
10 GX

MAX®11 - - - - - Yes
Intel MAX 10 - Yes - - - Yes
Stratix IV Yes Yes Yes - - Yes
Stratix V Yes - - - Yes Yes

Source: Embedded Memory User Guide

https://www.intel.com/content/www/us/en/docs/programmable/683240/

HWMod
WS25

FPGA Memory

Intel FPGAs

Table 3. Embedded Memory Blocks in Intel FPGA Devices

Device Family

Memory Block Type

M"Ci‘:s()s‘"’ M9K (9 Kbits) | M 1;‘(‘:):15()“" M10K (10 Kbits) "'z(?)'i‘ts()m "°‘-z:_cc‘):e"

Arria®11 GX Yes Yes - - - Yes
Arria I GZ Yes Yes Yes - - Yes
Arria V Yes - - Yes - Yes
Intel Arria 10 Yes - - - Yes Yes
Cyclone® v - Yes - - - Yes
Cyclone V Yes - - Yes - Yes
Intel Cyclone - Yes - - - Yes
10 LP

Intel Cyclone Yes - - - Yes Yes
10 GX

MAX®11 - - - - - Yes
Intel MAX 10 - Yes - - - Yes
Stratix IV Yes Yes Yes - - Yes
Stratix V Yes - - - Yes Yes

Source: Embedded Memory User Guide

https://www.intel.com/content/www/us/en/docs/programmable/683240/

HWMod
WS25

FPGA Memory

Intel FPGAs

Table 3. Embedded Memory Blocks in Intel FPGA Devices

Device Family

Memory Block Type

M"Ci‘:s()s‘"’ M9K (9 Kbits) | M 1"‘(‘:):‘“()1“ M10K (10 Kbits) "f(?):‘ts()m "°‘-z:_cc‘):e"

Arria®11 GX Yes Yes - - - Yes
Arria I GZ Yes Yes Yes - - Yes
Arria V Yes - - Yes - Yes
Intel Arria 10 Yes - - - Yes Yes
Cyclone®l\/ - Yes - - - Yes
Cyclone V Yes - - Yes - Yes
Intel Cyclone - Yes - - - Yes
10 LP

Intel Cyclone Yes - - - Yes Yes
10 GX

MAX®11 - - - - - Yes
Intel MAX 10 - Yes - - - Yes
Stratix IV Yes Yes Yes - - Yes
Stratix V Yes - - - Yes Yes

Source: Embedded Memory User Guide

https://www.intel.com/content/www/us/en/docs/programmable/683240/

Simple Dual-Port RAM

HWMod

WS2s 1 entity simple_dp_ram is
2 generic (
3 ADDR_WIDTH : positive;
4 DATA_WIDTH : positive

Simple DP RAM 5)i

6 port (
7 clk : in std_ulogic;
8 -— read port

9 rd_en : in std_ulogic;

10 rd_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
11 rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);
12 -— write port

13 wr_en : in std_ulogic;

14 wr_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
15 wr_data : in std_ulogic_vector (DATA_WIDTH - 1 downto 0)
16)

17 end entity;

Simple Dual-Port RAM

HWMod

WS2s 1 entity simple_dp_ram is
2 generic (
3 ADDR _WIDTH : positive; Generics to set the data and address width of
4 DATA_WIDTH : positive the ry.

Simple DP RAM 5)i

6 port (
7 clk : in std_ulogic;
8 read port
9 rd_en : in std_ulogic;

10 rd_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
11 rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);
12 —— wrilte port

13 wr_en : in std_ulogic;

14 wr_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
15 wr_data : in std ulogic vector (DATA_WIDTH - 1 downto 0)
16)

17 end entity;

Simple Dual-Port RAM

HWMod

WS2s 1 entity simple_dp_ram is
2 generic (
8 ADDR_WIDTH : positive; The clock signal that controls all operations on
4 DATA_WIDTH : positive both the read and the write port.

Simple DP RAM 5)i

6 port (
7 clk : in std_ulogic;
8 read port
9 rd_en : in std_ulogic;

10 rd_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
11 rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);
12 —— wrilte port

13 wr_en : in std_ulogic;

14 wr_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
15 wr_data : in std ulogic vector (DATA_WIDTH - 1 downto 0)
16)

17 end entity;

Simple Dual-Port RAM

HWMod
WS2s 1 entity simple_dp_ram is
2 generic (
3 ADDR_WIDTH : positive;
4 DATA_WIDTH : positive
Simple DP RAM 5);
6 port (
7 clk : in std_ulogic;
8 read port
9 rd_en : in std_ulogic;

10 rd_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
11 rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0);
12 —— wrilte port

13 wr_en : in std_ulogic;

14 wr_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
15 wr_data : in std ulogic vector (DATA_WIDTH - 1 downto 0)
16)

17 end entity;

Simple Dual-Port RAM

HWMod
WS2s 1 entity simple_dp_ram is
2 generic (
3 ADDR_WIDTH : positive;
4 DATA_WIDTH : positive
Simple DP RAM 5);
6 port (
7 clk : in std_ulogic;
8 read port
9 rd_en : in std_ulogic;

10 rd_addr : in std_ulogic_vector (ADDR WIDTH - 1 downto O0);
11 rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);
12 —— wrilte port

13 wr_en : in std_ulogic;

14 wr_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
15 wr_data : in std ulogic vector (DATA_WIDTH - 1 downto 0)
16)

17 end entity;

Read Access

HWMod
WS25

clk

Read Access

rd_en

rd_addr DAY

rd_data _PC

Read Access

HWMod
WS25

clk

Read Access

I

rd_en
rd_addr P

rd_data _PC

Read Access

HWMod
WS25

clk ’_| !_|
rd_en __/_—i_

rd_addr P Xa0

Read Access

rd_data _PC

Read Access

HWMod
WS25

read
|

clk ’_| I_|

rd_en

Read Access

p

rd_addr P Xa0

rd_data _PC

jdo

output delay

Read Access

HWMod
WS25

clk l I
rd_en] Y

rd_addr P Xa0

rd_data _PC

Read Access

HWMod
WS25

clk l I
rd_en __/—__/—_

rd_addr P Xa0

rd_data _PC

Read Access

HWMod
WS25

clk l I
rd_en _/—\—/—\—/

rd_addr P Xa0

rd_data _PC

Write Access

HWMod
WS25

S I S S B o
wr,en_/—\—/—\—/ \—

wr_addr PC XmO X D/C Xa1 X D/C Xa2 Xa3 X D/C

Write Access

wr.data D€ X Yoo Xa X oc Xd Xds X pic

Write Access

HWMod
WS25

write write write write
| |

ST I s I B

wr_addr X D/C

e

wr_data X D/C

Write Access

HWMod
WS25

clk

wr_en

wr_addr

wr_data

Y A W Y A W |

True Dual-Port RAM

entity true_dp_ram is

HWMod !

WS25 2 generic (
3 ADDR_WIDTH : positive;
4 DATA_WIDTH : positive
5) ’
6 port (
7 clk : in std_ulogic;

True DP RAM .

8 -— read/write port 0
9 rwO_rd_en : in std_ulogic;
10 rwO_wr_en : in std_ulogic;

11 rw0_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
12 rwO_wr_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);
13 rwO_rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);

14 -—- read/write port 1
15 rwl_rd_en : in std _ulogic;
16 rwl_wr_en : in std_ulogic;

17 rwl_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);

18 rwl_wr_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);
19 rwl_rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0)
20)5

21 end entity;

True Dual-Port RAM

entity true_dp_ram is

HWMod ! ‘

e 2 generic ({ o First read/write memory port.
3 ADDR_WIDTH : positive;
4 DATA_WIDTH : positive
5) 4
6 port (
7 clk : in std_ulogic;

True DP RAM , N

8 -— read/write port O
9 rw0_rd_en : in std_ulogic;
10 rwO_wr_en : in std_ulogic;

11 rw0_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
12 rwO_wr_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);
13 rw0_rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0);

14 read/write port 1
15 rwl_rd_en : in std _ulogic;
16 rwl_wr_en : in std_ulogic;

17 rwl_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);

18 rwl_wr_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);
19 rwl_rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0)
20) ;

21 end entity;

True Dual-Port RAM

entity true_dp_ram is

HWMod ! ‘

pi=2S 2 generic (o Second read/write memory port.
3 ADDR_WIDTH : positive;
4 DATA_WIDTH : positive
5) 4
6 port (
7 clk : in std_ulogic;

True DP RAM , .

8 -— read/write port O
9 rwO_rd_en : in std_ulogic;
10 rwO_wr_en : in std_ulogic;

11 rw0_addr : in std_ulogic_vector (ADDF_WIDTH - 1 downto 0);
12 rwO_wr_data : out std_ulogic_vector/(DATA_WIDTH - 1 downto 0);

13 rwO_rd_data : out std_ulogic_vectof (DATA_WIDTH - 1 downto 0);
14 read/write port 1

15 rwl_rd _en : in std_ulogic;

16 rwl_wr_en : in std_ulogic;

17 rwl_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);

18 rwl_wr_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0);
19 rwl_rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0)
20) ;

21 end entity;

Dual-Clock RAM

HWMod
WS25

m Separate/independent clock for each port of a dual-port memory =
dual-clock memory

m Use case: clock-domain-crossing interfaces

Dual-Clocked RAM

Dual-Clock RAM

HWMod
WS25

m Separate/independent clock for each port of a dual-port memory =
dual-clock memory

m Use case: clock-domain-crossing interfaces
m Usually supported by FPGA block RAM

Dual-Clocked RAM

Dual-Clock RAM

HWMod
WS25

m Separate/independent clock for each port of a dual-port memory =
dual-clock memory

m Use case: clock-domain-crossing interfaces
m Usually supported by FPGA block RAM

m Simultaneous read and write to the same location must be handled
carefully

Dual-Clocked RAM

Dual-Clock RAM

HWMod
WS25

m Separate/independent clock for each port of a dual-port memory =
dual-clock memory

m Use case: clock-domain-crossing interfaces
m Usually supported by FPGA block RAM

m Simultaneous read and write to the same location must be handled
carefully

m = dual-clocked/bisynchronous FIFOs

Dual-Clocked RAM

Dual-Clocked RAM - Example

HWMod
Ws25 entity dualclock_dp_ram is
generic (

ADDR_WIDTH : positive;

DATA_WIDTH : positive

port (

—-— read port

rd_clk : in std_ulogic;

9 rd_en : in std_ulogic;

10 rd_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
11 rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0)

Dual-Clocked RAM

12 -— write port
13 wr_clk : in std_ulogic;
14 wr_en : in std_ulogic;

15 wr_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
16 wr_data : in std_ulogic_vector (DATA_WIDTH - 1 downto 0)
17 0);

18 end entity;

Dual-Clocked RAM - Example

HWMod
Ws25 entity dualclock_dp_ram is
generic (

ADDR_WIDTH : positive;

DATA_WIDTH : positive

port (

—-— read port

rd_clk : in std_ulogic;

9 rd_en : in std_ulogic;

10 rd_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
11 rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0)

Dual-Clocked RAM

12 -— write port
13 wr_clk : in std_ulogic;
14 wr_en : in std_ulogic;

15 wr_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
16 wr_data : in std_ulogic_vector (DATA_WIDTH - 1 downto 0)
17 0);

18 end entity;

RAM Implementation

HWMod
WS25

Vendor-Library Instantiation Synthesis Inference

Implementation

RAM Implementation

HWMod
WS25

Vendor-Library Instantiation

Synthesis Inference

Portability/Flexibility

Implementation

Limited to vendor/device, requires
vendor-specific knowledge

Generic and portable, simpler to
work with and maintain

RAM Implementation

HWMod
WS25

Vendor-Library Instantiation

Synthesis Inference

Portability/Flexibility

Implementation

Limited to vendor/device, requires
vendor-specific knowledge

Generic and portable, simpler to
work with and maintain

Performance

Optimized for target hardware

May be suboptimal

RAM Implementation

HWMod
WS25

Vendor-Library Instantiation

Synthesis Inference

Portability/Flexibility

Implementation

Limited to vendor/device, requires
vendor-specific knowledge

Generic and portable, simpler to
work with and maintain

Performance

Optimized for target hardware

May be suboptimal

Special Features

Fully supported (e.g., ECC)

May be unavailable

RAM Implementation

HWMod
WS25

Vendor-Library Instantiation Synthesis Inference

Portability/Flexibility | Limited to vendor/device, requires | Generic and portable, simpler to

ementaton vendor-specific knowledge work with and maintain
Performance Optimized for target hardware May be suboptimal
Special Features Fully supported (e.g., ECC) May be unavailable
Predictability Deterministic May cause mismatch in synthe-

sis/simulation tool

Inferred RAM

HWMod

WS25 . . .
architecture beh of simple_dp_ram is

1
2 subtype ram_entry_t is std_ulogic_vector (DATA_WIDTH - 1 downto 0);
3 type ram_t is array(0 to (2 xx ADDR_WIDTH) - 1) of ram_entry_t;

4 signal ram : ram_t := (others => (others => ’'0"));

5 begin

6 process (clk)

.

8

Implementation begin
if rising_edge (clk) then

9 if wr_en = ’'1’ then

10 ram(to_integer (unsigned(wr_addr))) <= wr_data;
11 end if;

12 if rd_en = "1’ then

13 rd_data <= ram(to_integer (unsigned(rd_addr)));
14 end if;

15 end if;
16 end process;
17 end architecture;

Inferred RAM

HWMod

WS25 . . .
architecture beh of simple_dp_ram is

1
2 subtype ram_entry_t is std_ulogic_vector (DATA_WIDTH - 1 downto O0);
3 type ram_t is array(0 to (2 xx ADDR WIDTH) - 1) of ram_entry_t;

4 signal ram : ram_t := (others => (others => ’'0"));

5 begin

6 process (clk)

7

8

Implementation begin
if rising_edge (clk) then

9 if wr_en = ’'1’ then

10 ram(to_integer (unsigned (wr_addr))) <= wr_data;
11 end if;

12 if rd_en = "1’ then

13 rd_data <= ram(to_integer (unsigned(rd_aaddr)));
14 end if;

15 end if;
16 end process;
17 end architecture;

Type definitions and signal declaration for the signal

that actually represents the memory array.

Inferred RAM

HWMod

WS25 . . .
architecture beh of simple_dp_ram is

1
2 subtype ram_entry_t is std_ulogic_vector (DATA_WIDTH - 1 downto 0);
3 type ram_t is array(0 to (2 xx ADDR_WIDTH) - 1) of ram_entry_t;

4 signal ram : ram_t := (others => (others => ’'0"));

5 begin

6 process(clk)

7

8

Implementation begin
if rising_edge (clk) then
9 if wr_en = "1’ ths
10 ram(to_integer (unsidwed (wr_addr))) <= wr_data;
11 end if;
12 if rd_en = "1’ then
13 rd_data <= ram(to_integer (unsyped(rd_addr)));
14 end if;

15 end if;
16 end process;
17 end architecture;

Synchronous process similar to what is used in the

description of flip-flops.

Inferred RAM

HWMod

WS25 . . .
architecture beh of simple_dp_ram is

1
2 subtype ram_entry_t is std_ulogic_vector (DATA_WIDTH - 1 downto 0);
3 type ram_t is array(0 to (2 xx ADDR_WIDTH) - 1) of ram_entry_t;

4 signal ram : ram_t := (others => (others => ’'0"));

5 begin

6 process (clk)

7

8

Implementation begin
if rising_edge (clk) then

9 if wr_en = ’1’ then

10 ram(to_integer (unsigned (wr_addr))) <= wr_data;
11 end if;

12 if rd_en = "1’ then

13 rd_data <= ram(to_integer (unsignsd(rd_addr)));
14 end if;

15 end if;
16 end process;
17 end architecture;

Implementation of the write port.

Inferred RAM

HWMod

WS25 . . .
architecture beh of simple_dp_ram is

1
2 subtype ram_entry_t is std_ulogic_vector (DATA_WIDTH - 1 downto 0);
3 type ram_t is array(0 to (2 xx ADDR_WIDTH) - 1) of ram_entry_t;

4 signal ram : ram_t := (others => (others => ’'0"));

5 begin

6 process (clk)

7

8

Implementation begin
if rising_edge (clk) then

9 if wr_en = ’'1’ then

10 ram(to_integer (unsigned(wr_addr))) <= wr_data;
11 end if;

12 if rd_en = "1’ then

13 rd_data <= ram(to_integer (unsigned(rd_addr)));
14 end if;

15 end if;
16 end process;
17 end architecture;

Implementation of the read port.

HWMod
WS25

Implementation

Lecture Complete!

Modified: 2025-12-16, 16:03 (f8a58e9)

	RAM in VHDL (for FPGAs)
	Introduction
	Memory Blocks in FPGAs
	Simple Dual-Port RAM
	True Dual-Port RAM
	Dual-Clock RAM
	Implementation

