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m On-chip RAM is a fundamental building block in digital design

m Fast, low-latency, flexible data storage
m Compared to flip-flops/latches, RAM ...

B uses an address-based access scheme
m is more compact in terms of area and, hence, more power efficient
m allows for higher-capacity memory
m is slightly slower
m Where do we need RAM in a design?
m Buffers inside or in between modules (often in the form of FIFO buffers)
m Caches for frequently accessed data in some external memory

m Large look-up tables
m Program and data memory for processors to store instructions and data
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m RAM capacity (C)

m Data width (W): size of each data element stored per address
I m Depth (D): number of addressable memory locations

m usually defined by the address width A
m=D=2"

mC=WxD
m Memory access port types
m read
m write
m read/write
m Multiple independent ports are possible

m Simple dual-port RAM: one read and one write port
m True dual-port RAM: two read/write ports
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m Memory blocks are an important FPGA resource
m Logic-based memory (often) impractical
FPGA Momory m Highest speed/lowest latency memory in a design
m Highly configurable in terms of
m data width
m address width
m number and type of access ports
m control signals (e.g., read/write/byte enable)
parity bits (error detection)
m Memory in modern FPGAs is (almost) always synchronous

m Read and write operations only happen at a clock edge
m Some older FPGAs support asynchronous memory
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FPGA Memory

Intel FPGAs

Table 3. Embedded Memory Blocks in Intel FPGA Devices

Device Family

Memory Block Type

M"Ci‘:s()s‘"’ M9K (9 Kbits) | M 1"‘(‘:):‘“()1“ M10K (10 Kbits) "f(?):‘ts()m "°‘-z:_cc‘):e"

Arria®11 GX Yes Yes - - - Yes
Arria I GZ Yes Yes Yes - - Yes
Arria V Yes - - Yes - Yes
Intel Arria 10 Yes - - - Yes Yes
Cyclone®l\/ - Yes - - - Yes
Cyclone V Yes - - Yes - Yes
Intel Cyclone - Yes - - - Yes
10 LP

Intel Cyclone Yes - - - Yes Yes
10 GX

MAX®11 - - - - - Yes
Intel MAX 10 - Yes - - - Yes
Stratix IV Yes Yes Yes - - Yes
Stratix V Yes - - - Yes Yes

Source: Embedded Memory User Guide
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Simple Dual-Port RAM

HWMod

WS2s 1 entity simple_dp_ram is
2 generic (
3 ADDR_WIDTH : positive;
4 DATA_WIDTH : positive

Simple DP RAM 5 )i

6 port (
7 clk : in std_ulogic;
8 -— read port

9 rd_en : in std_ulogic;

10 rd_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
11 rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);
12 -— write port

13 wr_en : in std_ulogic;

14 wr_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
15 wr_data : in std_ulogic_vector (DATA_WIDTH - 1 downto 0)
16 )

17 end entity;
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Simple DP RAM 5 );
6 port (
7 clk : in std_ulogic;
8 read port
9 rd_en : in std_ulogic;

10 rd_addr : in std_ulogic_vector (ADDR WIDTH - 1 downto O0);
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wr_addr PC XmO X D/C Xa1 X D/C Xa2 Xa3 X D/C

Write Access

wr.data D€ X Yoo Xa X oc Xd  Xds X pic
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True Dual-Port RAM

entity true_dp_ram is

HWMod !

WS25 2 generic (
3 ADDR_WIDTH : positive;
4 DATA_WIDTH : positive
5 ) ’
6 port (
7 clk : in std_ulogic;

True DP RAM .

8 -— read/write port 0
9 rwO_rd_en : in std_ulogic;
10 rwO_wr_en : in std_ulogic;

11 rw0_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
12 rwO_wr_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);
13 rwO_rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);

14 -—- read/write port 1
15 rwl_rd_en : in std _ulogic;
16 rwl_wr_en : in std_ulogic;

17 rwl_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);

18 rwl_wr_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);
19 rwl_rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0)
20 )5

21 end entity;
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entity true_dp_ram is
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e 2 generic ({ o First read/write memory port.
3 ADDR_WIDTH : positive;
4 DATA_WIDTH : positive
5 ) 4
6 port (
7 clk : in std_ulogic;

True DP RAM , N

8 -— read/write port O
9 rw0_rd_en : in std_ulogic;
10 rwO_wr_en : in std_ulogic;

11 rw0_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
12 rwO_wr_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);
13 rw0_rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0);

14 read/write port 1
15 rwl_rd_en : in std _ulogic;
16 rwl_wr_en : in std_ulogic;

17 rwl_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);

18 rwl_wr_data : out std_ulogic_vector (DATA_WIDTH - 1 downto 0);
19 rwl_rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0)
20 ) ;

21 end entity;



True Dual-Port RAM

entity true_dp_ram is

HWMod ! ‘

pi=2S 2 generic ( o Second read/write memory port.
3 ADDR_WIDTH : positive;
4 DATA_WIDTH : positive
5 ) 4
6 port (
7 clk : in std_ulogic;

True DP RAM , .

8 -— read/write port O
9 rwO_rd_en : in std_ulogic;
10 rwO_wr_en : in std_ulogic;

11 rw0_addr : in std_ulogic_vector (ADDF_WIDTH - 1 downto 0);
12 rwO_wr_data : out std_ulogic_vector/(DATA_WIDTH - 1 downto 0);

13 rwO_rd_data : out std_ulogic_vectof (DATA_WIDTH - 1 downto 0);
14 read/write port 1

15 rwl_rd _en : in std_ulogic;

16 rwl_wr_en : in std_ulogic;

17 rwl_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);

18 rwl_wr_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0);
19 rwl_rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0)
20 ) ;

21 end entity;
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m Separate/independent clock for each port of a dual-port memory =
dual-clock memory

m Use case: clock-domain-crossing interfaces
m Usually supported by FPGA block RAM

m Simultaneous read and write to the same location must be handled
carefully

m = dual-clocked/bisynchronous FIFOs

Dual-Clocked RAM



Dual-Clocked RAM - Example

HWMod
Ws25 entity dualclock_dp_ram is
generic (

ADDR_WIDTH : positive;

DATA_WIDTH : positive

port (

—-— read port

rd_clk : in std_ulogic;

9 rd_en : in std_ulogic;

10 rd_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
11 rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0)

Dual-Clocked RAM

12 -— write port
13 wr_clk : in std_ulogic;
14 wr_en : in std_ulogic;

15 wr_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
16 wr_data : in std_ulogic_vector (DATA_WIDTH - 1 downto 0)
17 0);

18 end entity;



Dual-Clocked RAM - Example

HWMod
Ws25 entity dualclock_dp_ram is
generic (

ADDR_WIDTH : positive;

DATA_WIDTH : positive

port (

—-— read port

rd_clk : in std_ulogic;

9 rd_en : in std_ulogic;

10 rd_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
11 rd_data : out std_ulogic_vector (DATA_WIDTH - 1 downto O0)

Dual-Clocked RAM

12 -— write port
13 wr_clk : in std_ulogic;
14 wr_en : in std_ulogic;

15 wr_addr : in std_ulogic_vector (ADDR_WIDTH - 1 downto 0);
16 wr_data : in std_ulogic_vector (DATA_WIDTH - 1 downto 0)
17 0);

18 end entity;



RAM Implementation

HWMod
WS25

Vendor-Library Instantiation Synthesis Inference

Implementation



RAM Implementation

HWMod
WS25

Vendor-Library Instantiation

Synthesis Inference

Portability/Flexibility

Implementation

Limited to vendor/device, requires
vendor-specific knowledge

Generic and portable, simpler to
work with and maintain




RAM Implementation

HWMod
WS25

Vendor-Library Instantiation

Synthesis Inference

Portability/Flexibility

Implementation

Limited to vendor/device, requires
vendor-specific knowledge

Generic and portable, simpler to
work with and maintain

Performance

Optimized for target hardware

May be suboptimal




RAM Implementation

HWMod
WS25

Vendor-Library Instantiation

Synthesis Inference

Portability/Flexibility

Implementation

Limited to vendor/device, requires
vendor-specific knowledge

Generic and portable, simpler to
work with and maintain

Performance

Optimized for target hardware

May be suboptimal

Special Features

Fully supported (e.g., ECC)

May be unavailable




RAM Implementation
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Vendor-Library Instantiation Synthesis Inference

Portability/Flexibility | Limited to vendor/device, requires | Generic and portable, simpler to

ementaton vendor-specific knowledge work with and maintain
Performance Optimized for target hardware May be suboptimal
Special Features Fully supported (e.g., ECC) May be unavailable
Predictability Deterministic May cause mismatch in synthe-

sis/simulation tool
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architecture beh of simple_dp_ram is

1
2 subtype ram_entry_t is std_ulogic_vector (DATA_WIDTH - 1 downto 0);
3 type ram_t is array(0 to (2 xx ADDR_WIDTH) - 1) of ram_entry_t;

4 signal ram : ram_t := (others => (others => ’'0"));

5 begin

6 process (clk)

.

8

Implementation begin
if rising_edge (clk) then

9 if wr_en = ’'1’ then

10 ram(to_integer (unsigned(wr_addr))) <= wr_data;
11 end if;

12 if rd_en = "1’ then

13 rd_data <= ram(to_integer (unsigned(rd_addr)));
14 end if;

15 end if;
16 end process;
17 end architecture;
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architecture beh of simple_dp_ram is

1
2 subtype ram_entry_t is std_ulogic_vector (DATA_WIDTH - 1 downto O0);
3 type ram_t is array(0 to (2 xx ADDR WIDTH) - 1) of ram_entry_t;

4 signal ram : ram_t := (others => (others => ’'0"));

5 begin

6 process (clk)

7

8

Implementation begin
if rising_edge (clk) then

9 if wr_en = ’'1’ then

10 ram(to_integer (unsigned (wr_addr))) <= wr_data;
11 end if;

12 if rd_en = "1’ then

13 rd_data <= ram(to_integer (unsigned(rd_aaddr)));
14 end if;

15 end if;
16 end process;
17 end architecture;

Type definitions and signal declaration for the signal

that actually represents the memory array.
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architecture beh of simple_dp_ram is

1
2 subtype ram_entry_t is std_ulogic_vector (DATA_WIDTH - 1 downto 0);
3 type ram_t is array(0 to (2 xx ADDR_WIDTH) - 1) of ram_entry_t;

4 signal ram : ram_t := (others => (others => ’'0"));

5 begin

6 process(clk)

7

8

Implementation begin
if rising_edge (clk) then
9 if wr_en = "1’ ths
10 ram(to_integer (unsidwed (wr_addr))) <= wr_data;
11 end if;
12 if rd_en = "1’ then
13 rd_data <= ram(to_integer (unsyped(rd_addr)));
14 end if;

15 end if;
16 end process;
17 end architecture;

Synchronous process similar to what is used in the

description of flip-flops.
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architecture beh of simple_dp_ram is

1
2 subtype ram_entry_t is std_ulogic_vector (DATA_WIDTH - 1 downto 0);
3 type ram_t is array(0 to (2 xx ADDR_WIDTH) - 1) of ram_entry_t;

4 signal ram : ram_t := (others => (others => ’'0"));

5 begin

6 process (clk)

7

8

Implementation begin
if rising_edge (clk) then

9 if wr_en = ’1’ then

10 ram(to_integer (unsigned (wr_addr))) <= wr_data;
11 end if;

12 if rd_en = "1’ then

13 rd_data <= ram(to_integer (unsignsd(rd_addr)));
14 end if;

15 end if;
16 end process;
17 end architecture;

Implementation of the write port.
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architecture beh of simple_dp_ram is

1
2 subtype ram_entry_t is std_ulogic_vector (DATA_WIDTH - 1 downto 0);
3 type ram_t is array(0 to (2 xx ADDR_WIDTH) - 1) of ram_entry_t;

4 signal ram : ram_t := (others => (others => ’'0"));

5 begin

6 process (clk)

7

8

Implementation begin
if rising_edge (clk) then

9 if wr_en = ’'1’ then

10 ram(to_integer (unsigned(wr_addr))) <= wr_data;
11 end if;

12 if rd_en = "1’ then

13 rd_data <= ram(to_integer (unsigned(rd_addr)));
14 end if;

15 end if;
16 end process;
17 end architecture;

Implementation of the read port.
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Implementation

Lecture Complete!

Modified: 2025-12-16, 16:03 (f8a58e9)
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