

Hardware Modeling [VU] (191.011)

– WS25 –

RAM in VHDL (for FPGAs)

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Introduction

HWMod
WS25

RAM

Introduction

FPGA Memory

Simple DP RAM

True DP RAM

Dual-Clocked RAM

Implementation

- On-chip RAM is a fundamental building block in digital design

Introduction

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- On-chip RAM is a fundamental building block in digital design
- Fast, low-latency, flexible data storage

Introduction

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- On-chip RAM is a fundamental building block in digital design
- Fast, low-latency, flexible data storage
- Compared to flip-flops/latches, RAM ...

Introduction

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- On-chip RAM is a fundamental building block in digital design
- Fast, low-latency, flexible data storage
- Compared to flip-flops/latches, RAM ...
 - uses an address-based access scheme

Introduction

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- On-chip RAM is a fundamental building block in digital design
- Fast, low-latency, flexible data storage
- Compared to flip-flops/latches, RAM ...
 - uses an address-based access scheme
 - is more compact in terms of area and, hence, more power efficient

Introduction

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- On-chip RAM is a fundamental building block in digital design
- Fast, low-latency, flexible data storage
- Compared to flip-flops/latches, RAM ...
 - uses an address-based access scheme
 - is more compact in terms of area and, hence, more power efficient
 - allows for higher-capacity memory
 - is slightly slower

Introduction

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- On-chip RAM is a fundamental building block in digital design
- Fast, low-latency, flexible data storage
- Compared to flip-flops/latches, RAM ...
 - uses an address-based access scheme
 - is more compact in terms of area and, hence, more power efficient
 - allows for higher-capacity memory
 - is slightly slower
- Where do we need RAM in a design?

Introduction

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- On-chip RAM is a fundamental building block in digital design
- Fast, low-latency, flexible data storage
- Compared to flip-flops/latches, RAM ...
 - uses an address-based access scheme
 - is more compact in terms of area and, hence, more power efficient
 - allows for higher-capacity memory
 - is slightly slower
- Where do we need RAM in a design?
 - Buffers inside or in between modules (often in the form of FIFO buffers)

Introduction

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- On-chip RAM is a fundamental building block in digital design
- Fast, low-latency, flexible data storage
- Compared to flip-flops/latches, RAM ...
 - uses an address-based access scheme
 - is more compact in terms of area and, hence, more power efficient
 - allows for higher-capacity memory
 - is slightly slower
- Where do we need RAM in a design?
 - Buffers inside or in between modules (often in the form of FIFO buffers)
 - Caches for frequently accessed data in some external memory

Introduction

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- On-chip RAM is a fundamental building block in digital design
- Fast, low-latency, flexible data storage
- Compared to flip-flops/latches, RAM ...
 - uses an address-based access scheme
 - is more compact in terms of area and, hence, more power efficient
 - allows for higher-capacity memory
 - is slightly slower
- Where do we need RAM in a design?
 - Buffers inside or in between modules (often in the form of FIFO buffers)
 - Caches for frequently accessed data in some external memory
 - Large look-up tables

Introduction

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- On-chip RAM is a fundamental building block in digital design
- Fast, low-latency, flexible data storage
- Compared to flip-flops/latches, RAM ...
 - uses an address-based access scheme
 - is more compact in terms of area and, hence, more power efficient
 - allows for higher-capacity memory
 - is slightly slower
- Where do we need RAM in a design?
 - Buffers inside or in between modules (often in the form of FIFO buffers)
 - Caches for frequently accessed data in some external memory
 - Large look-up tables
 - Program and data memory for processors to store instructions and data

Introduction (cont'd)

HWMod
WS25

RAM

Introduction

FPGA Memory

Simple DP RAM

True DP RAM

Dual-Clocked RAM

Implementation

■ RAM capacity (C)

Introduction (cont'd)

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- RAM capacity (C)
 - Data width (W): size of each data element stored per address

Introduction (cont'd)

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- RAM capacity (C)

- Data width (W): size of each data element stored per address
- Depth (D): number of addressable memory locations

Introduction (cont'd)

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

■ RAM capacity (C)

- Data width (W): size of each data element stored per address
- Depth (D): number of addressable memory locations
 - usually defined by the address width A
 - $\Rightarrow D = 2^A$

Introduction (cont'd)

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

■ RAM capacity (C)

- Data width (W): size of each data element stored per address
- Depth (D): number of addressable memory locations
 - usually defined by the address width A
 - $\Rightarrow D = 2^A$
- $C = W \times D$

Introduction (cont'd)

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- RAM capacity (C)
 - Data width (W): size of each data element stored per address
 - Depth (D): number of addressable memory locations
 - usually defined by the address width A
 - $\Rightarrow D = 2^A$
 - $C = W \times D$
- Memory access port types

Introduction (cont'd)

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- RAM capacity (C)
 - Data width (W): size of each data element stored per address
 - Depth (D): number of addressable memory locations
 - usually defined by the address width A
 - $\Rightarrow D = 2^A$
 - $C = W \times D$
- Memory access port types
 - read
 - write
 - read/write

Introduction (cont'd)

- RAM capacity (C)
 - Data width (W): size of each data element stored per address
 - Depth (D): number of addressable memory locations
 - usually defined by the address width A
 - $\Rightarrow D = 2^A$
 - $C = W \times D$
- Memory access port types
 - read
 - write
 - read/write
- Multiple independent ports are possible

Introduction (cont'd)

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- RAM capacity (C)
 - Data width (W): size of each data element stored per address
 - Depth (D): number of addressable memory locations
 - usually defined by the address width A
 - $\Rightarrow D = 2^A$
 - $C = W \times D$
- Memory access port types
 - read
 - write
 - read/write
- Multiple independent ports are possible
 - Simple dual-port RAM: one read and one write port

Introduction (cont'd)

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- RAM capacity (C)
 - Data width (W): size of each data element stored per address
 - Depth (D): number of addressable memory locations
 - usually defined by the address width A
 - $\Rightarrow D = 2^A$
 - $C = W \times D$
- Memory access port types
 - read
 - write
 - read/write
- Multiple independent ports are possible
 - Simple dual-port RAM: one read and one write port
 - True dual-port RAM: two read/write ports

Memory Blocks in FPGAs

HWMod
WS25

RAM

Introduction

FPGA Memory

Simple DP RAM

True DP RAM

Dual-Clocked RAM

Implementation

- Memory blocks are an important FPGA resource

Memory Blocks in FPGAs

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- Memory blocks are an important FPGA resource
 - Logic-based memory (often) impractical
 - Highest speed/lowest latency memory in a design

Memory Blocks in FPGAs

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- Memory blocks are an important FPGA resource
 - Logic-based memory (often) impractical
 - Highest speed/lowest latency memory in a design

Memory Blocks in FPGAs

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- Memory blocks are an important FPGA resource
 - Logic-based memory (often) impractical
 - Highest speed/lowest latency memory in a design
- Highly configurable in terms of

Memory Blocks in FPGAs

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- Memory blocks are an important FPGA resource
 - Logic-based memory (often) impractical
 - Highest speed/lowest latency memory in a design
- Highly configurable in terms of
 - data width
 - address width

Memory Blocks in FPGAs

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- Memory blocks are an important FPGA resource
 - Logic-based memory (often) impractical
 - Highest speed/lowest latency memory in a design
- Highly configurable in terms of
 - data width
 - address width
 - number and type of access ports
 - control signals (e.g., read/write/byte enable)

Memory Blocks in FPGAs

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- Memory blocks are an important FPGA resource
 - Logic-based memory (often) impractical
 - Highest speed/lowest latency memory in a design
- Highly configurable in terms of
 - data width
 - address width
 - number and type of access ports
 - control signals (e.g., read/write/byte enable)
 - parity bits (error detection)

Memory Blocks in FPGAs

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- Memory blocks are an important FPGA resource
 - Logic-based memory (often) impractical
 - Highest speed/lowest latency memory in a design
- Highly configurable in terms of
 - data width
 - address width
 - number and type of access ports
 - control signals (e.g., read/write/byte enable)
 - parity bits (error detection)
- Memory in modern FPGAs is (almost) always synchronous

Memory Blocks in FPGAs

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- Memory blocks are an important FPGA resource
 - Logic-based memory (often) impractical
 - Highest speed/lowest latency memory in a design
- Highly configurable in terms of
 - data width
 - address width
 - number and type of access ports
 - control signals (e.g., read/write/byte enable)
 - parity bits (error detection)
- Memory in modern FPGAs is (almost) always synchronous
 - Read and write operations only happen at a clock edge

Memory Blocks in FPGAs

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- Memory blocks are an important FPGA resource
 - Logic-based memory (often) impractical
 - Highest speed/lowest latency memory in a design
- Highly configurable in terms of
 - data width
 - address width
 - number and type of access ports
 - control signals (e.g., read/write/byte enable)
 - parity bits (error detection)
- Memory in modern FPGAs is (almost) always synchronous
 - Read and write operations only happen at a clock edge
 - Some older FPGAs support asynchronous memory

Intel FPGAs

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

Table 3. Embedded Memory Blocks in Intel FPGA Devices

Device Family	Memory Block Type					
	MLAB (640 bits)	M9K (9 Kbits)	M144K (144 Kbits)	M10K (10 Kbits)	M20K (20 Kbits)	Logic Cell (LC)
Arria® II GX	Yes	Yes	-	-	-	Yes
Arria II GZ	Yes	Yes	Yes	-	-	Yes
Arria V	Yes	-	-	Yes	-	Yes
Intel Arria 10	Yes	-	-	-	Yes	Yes
Cyclone® IV	-	Yes	-	-	-	Yes
Cyclone V	Yes	-	-	Yes	-	Yes
Intel Cyclone 10 LP	-	Yes	-	-	-	Yes
Intel Cyclone 10 GX	Yes	-	-	-	Yes	Yes
MAX® II	-	-	-	-	-	Yes
Intel MAX 10	-	Yes	-	-	-	Yes
Stratix IV	Yes	Yes	Yes	-	-	Yes
Stratix V	Yes	-	-	-	Yes	Yes

Source: Embedded Memory User Guide

Intel FPGAs

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

Table 3. Embedded Memory Blocks in Intel FPGA Devices

Device Family	Memory Block Type					
	MLAB (640 bits)	M9K (9 Kbits)	M144K (144 Kbits)	M10K (10 Kbits)	M20K (20 Kbits)	Logic Cell (LC)
Arria® II GX	Yes	Yes	–	–	–	Yes
Arria II GZ	Yes	Yes	Yes	–	–	Yes
Arria V	Yes	–	–	Yes	–	Yes
Intel Arria 10	Yes	–	–	–	Yes	Yes
Cyclone® IV	–	Yes	–	–	–	Yes
Cyclone V	Yes	–	–	Yes	–	Yes
Intel Cyclone 10 LP	–	Yes	–	–	–	Yes
Intel Cyclone 10 GX	Yes	–	–	–	Yes	Yes
MAX® II	–	–	–	–	–	Yes
Intel MAX 10	–	Yes	–	–	–	Yes
Stratix IV	Yes	Yes	Yes	–	–	Yes
Stratix V	Yes	–	–	–	Yes	Yes

Source: Embedded Memory User Guide

Intel FPGAs

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

Table 3. Embedded Memory Blocks in Intel FPGA Devices

Device Family	Memory Block Type					
	MLAB (640 bits)	M9K (9 Kbits)	M144K (144 Kbits)	M10K (10 Kbits)	M20K (20 Kbits)	Logic Cell (LC)
Arria® II GX	Yes	Yes	–	–	–	Yes
Arria II GZ	Yes	Yes	Yes	–	–	Yes
Arria V	Yes	–	–	Yes	–	Yes
Intel Arria 10	Yes	–	–	–	Yes	Yes
Cyclone® IV	–	Yes	–	–	–	Yes
Cyclone V	Yes	–	–	Yes	–	Yes
Intel Cyclone 10 LP	–	Yes	–	–	–	Yes
Intel Cyclone 10 GX	Yes	–	–	–	Yes	Yes
MAX® II	–	–	–	–	–	Yes
Intel MAX 10	–	Yes	–	–	–	Yes
Stratix IV	Yes	Yes	Yes	–	–	Yes
Stratix V	Yes	–	–	–	Yes	Yes

Source: Embedded Memory User Guide

Simple Dual-Port RAM

HWMod
WS25

RAM

Introduction

FPGA Memory

Simple DP RAM

Read Access

Write Access

True DP RAM

Dual-Clocked RAM

Implementation

```
1 entity simple_dp_ram is
2 generic (
3   ADDR_WIDTH : positive;
4   DATA_WIDTH : positive
5 );
6 port (
7   clk : in std_ulogic;
8   -- read port
9   rd_en : in std_ulogic;
10  rd_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
11  rd_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0);
12   -- write port
13  wr_en : in std_ulogic;
14  wr_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
15  wr_data : in std_ulogic_vector(DATA_WIDTH - 1 downto 0)
16 );
17 end entity;
```

Simple Dual-Port RAM

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
Read Access
Write Access
True DP RAM
Dual-Clocked RAM
Implementation

```
1 entity simple_dp_ram is
2 generic (
3     ADDR_WIDTH : positive;
4     DATA_WIDTH : positive
5 );
6 port (
7     clk : in std_ulogic;
8     -- read port
9     rd_en : in std_ulogic;
10    rd_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
11    rd_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0);
12     -- write port
13    wr_en : in std_ulogic;
14    wr_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
15    wr_data : in std_ulogic_vector(DATA_WIDTH - 1 downto 0)
16 );
17 end entity;
```

Generics to set the data and address width of the memory.

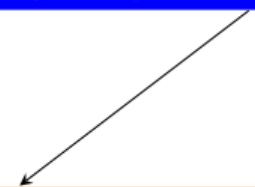
Simple Dual-Port RAM

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
Read Access
Write Access
True DP RAM
Dual-Clocked RAM
Implementation

```
1 entity simple_dp_ram is
2 generic (
3   ADDR_WIDTH : positive;
4   DATA_WIDTH : positive
5 );
6 port (
7   clk : in std_ulogic;           ←
8   -- read port
9   rd_en : in std_ulogic;
10  rd_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
11  rd_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0);
12  -- write port
13  wr_en : in std_ulogic;
14  wr_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
15  wr_data : in std_ulogic_vector(DATA_WIDTH - 1 downto 0)
16 );
17 end entity;
```

The clock signal that controls all operations on both the read and the write port.


Simple Dual-Port RAM

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
Read Access
Write Access
True DP RAM
Dual-Clocked RAM
Implementation

```
1 entity simple_dp_ram is
2 generic (
3   ADDR_WIDTH : positive;
4   DATA_WIDTH : positive
5 );
6 port (
7   clk : in std_ulogic;
8   -- read port
9   rd_en : in std_ulogic;
10  rd_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
11  rd_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0);
12   -- write port
13  wr_en : in std_ulogic;
14  wr_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
15  wr_data : in std_ulogic_vector(DATA_WIDTH - 1 downto 0)
16 );
17 end entity;
```

Memory read port.

Simple Dual-Port RAM

HWMod
WS25

RAM

Introduction
FPGA Memory
Simple DP RAM
Read Access
Write Access
True DP RAM
Dual-Clocked RAM
Implementation

```
1 entity simple_dp_ram is
2 generic (
3   ADDR_WIDTH : positive;
4   DATA_WIDTH : positive
5 );
6 port (
7   clk : in std_ulogic;
8   -- read port
9   rd_en : in std_ulogic;
10  rd_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
11  rd_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0);
12   -- write port
13  wr_en : in std_ulogic;
14  wr_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
15  wr_data : in std_ulogic_vector(DATA_WIDTH - 1 downto 0)
16 );
17 end entity;
```

Memory write port.

Read Access

HWMod
WS25

RAM

Introduction

FPGA Memory

Simple DP RAM

Read Access

Write Access

True DP RAM

Dual-Clocked RAM

Implementation

Read Access

HWMod
WS25

RAM

Introduction

FPGA Memory

Simple DP RAM

Read Access

Write Access

True DP RAM

Dual-Clocked RAM

Implementation

Read Access

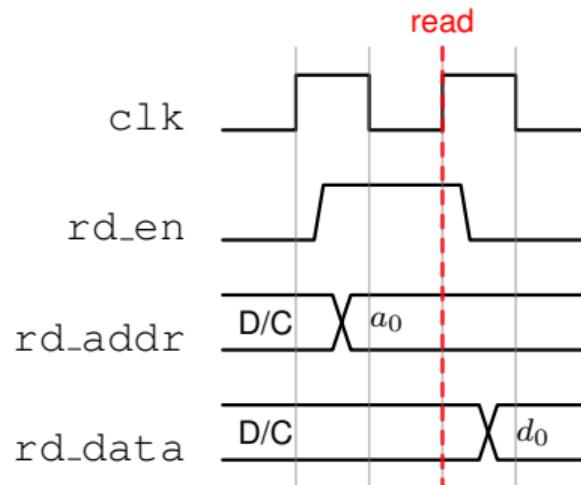
HWMod
WS25

RAM

Introduction

FPGA Memory

Simple DP RAM

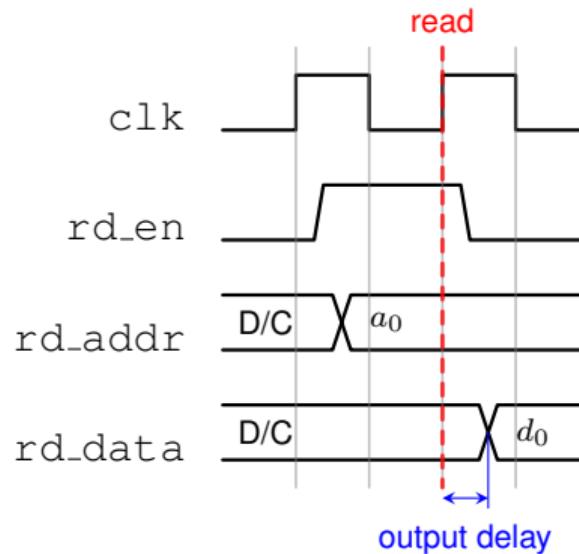

Read Access

Write Access

True DP RAM

Dual-Clocked RAM

Implementation

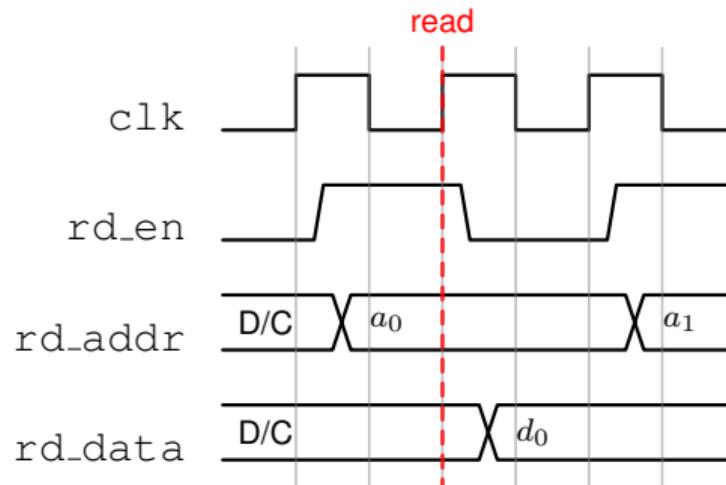


Read Access

HWMod
WS25

RAM

Introduction
FPGA Memory
Simple DP RAM
Read Access
Write Access
True DP RAM
Dual-Clocked RAM
Implementation



Read Access

HWMOD
WS25

RAM

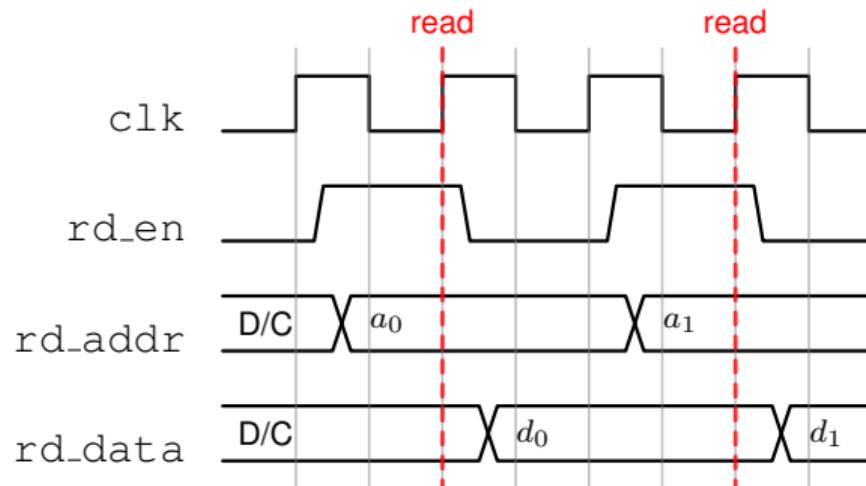
Introduction
FPGA Memory
Simple DP RAM
Read Access
Write Access
True DP RAM
Dual-Clocked RAM
Implementation

Read Access

HWMod
WS25

RAM

Introduction
FPGA Memory
Simple DP RAM

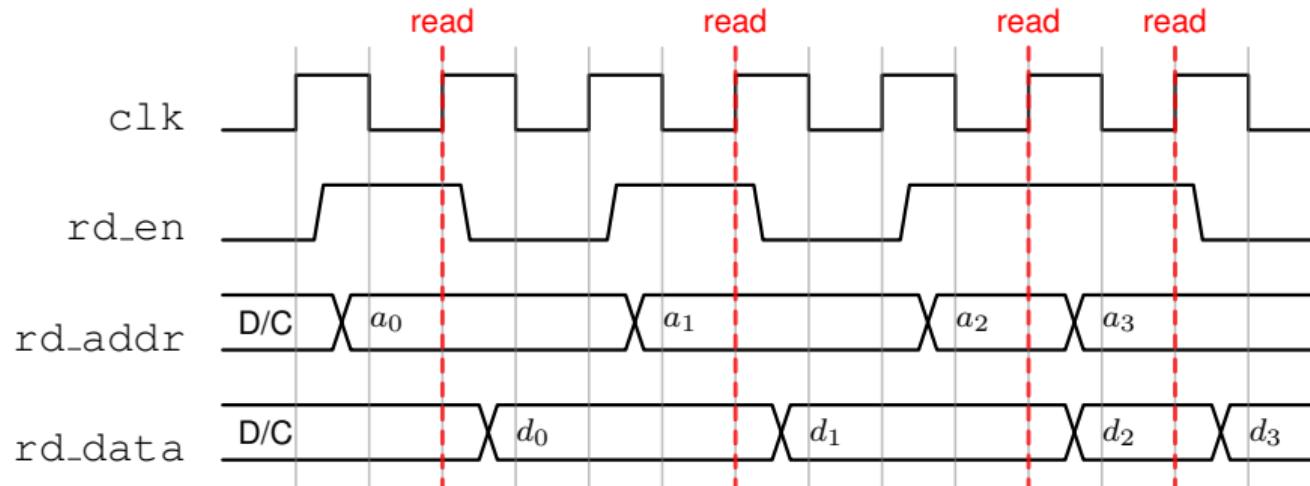

Read Access

Write Access

True DP RAM

Dual-Clocked RAM

Implementation



Read Access

HWMod
WS25

RAM

Introduction
FPGA Memory
Simple DP RAM
Read Access
Write Access
True DP RAM
Dual-Clocked RAM
Implementation

Write Access

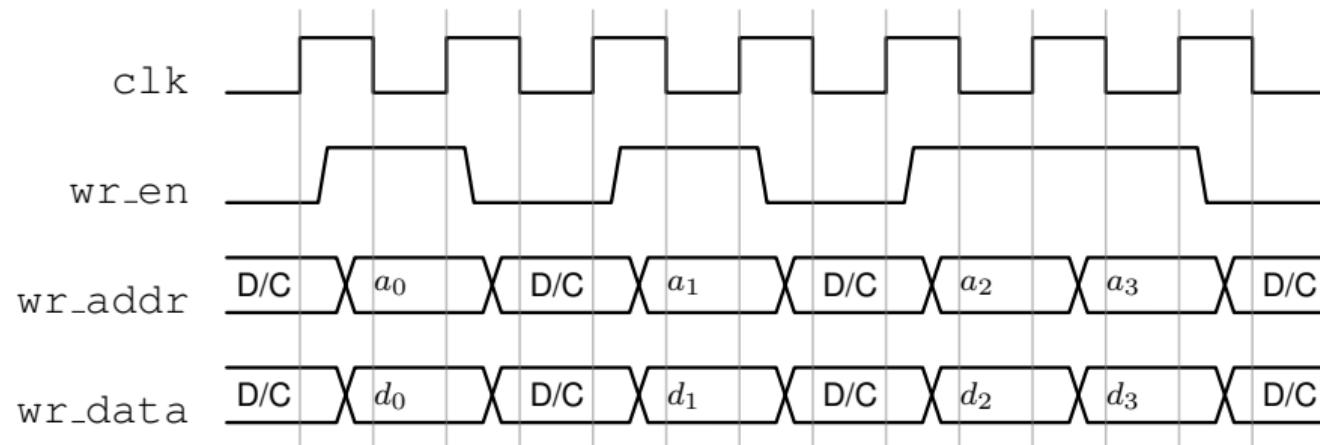
HWMod
WS25

RAM

Introduction

FPGA Memory

Simple DP RAM

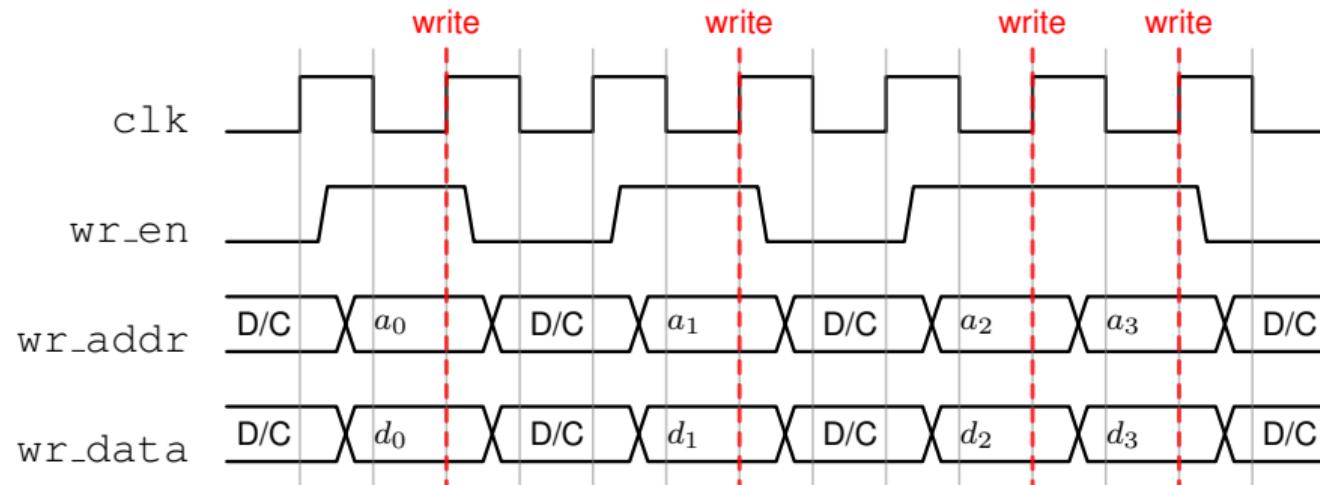

Read Access

Write Access

True DP RAM

Dual-Clocked RAM

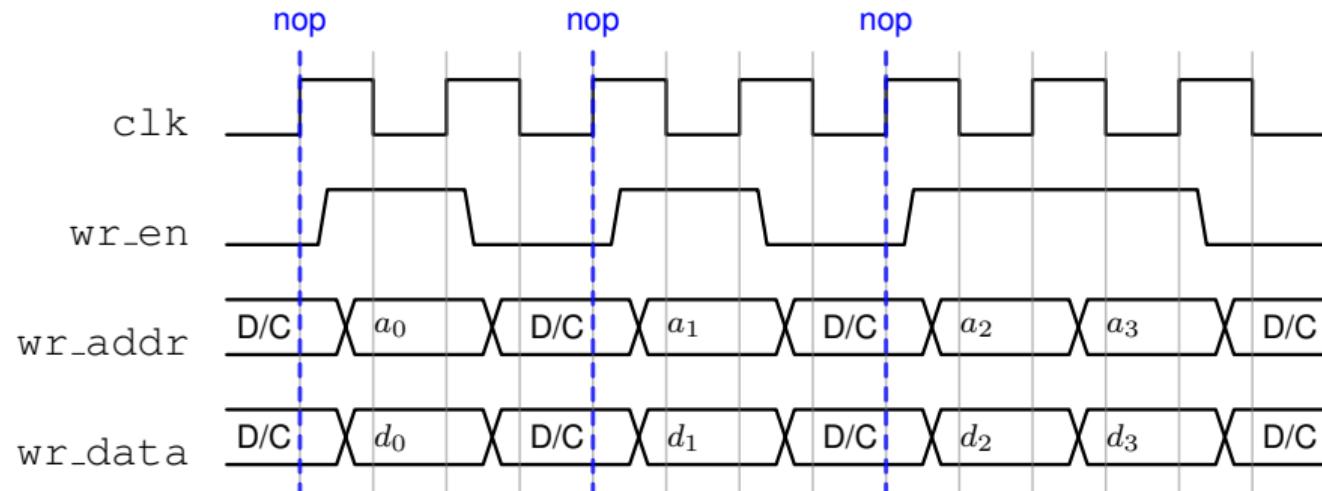
Implementation



Write Access

HWMod
WS25

RAM


Introduction
FPGA Memory
Simple DP RAM
Read Access
Write Access
True DP RAM
Dual-Clocked RAM
Implementation

Write Access

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
Read Access
Write Access
True DP RAM
Dual-Clocked RAM
Implementation

True Dual-Port RAM

HWMod
WS25

RAM

Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

```
1 entity true_dp_ram is
2 generic (
3   ADDR_WIDTH : positive;
4   DATA_WIDTH : positive
5 );
6 port (
7   clk : in std_ulogic;
8   -- read/write port 0
9   rw0_rd_en : in std_ulogic;
10  rw0_wr_en : in std_ulogic;
11  rw0_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
12  rw0_wr_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0);
13  rw0_rd_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0);
14  -- read/write port 1
15  rw1_rd_en : in std_ulogic;
16  rw1_wr_en : in std_ulogic;
17  rw1_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
18  rw1_wr_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0);
19  rw1_rd_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0)
20 );
21 end entity;
```

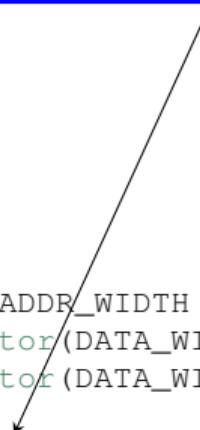
True Dual-Port RAM

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

```
1 entity true_dp_ram is
2 generic (
3   ADDR_WIDTH : positive;
4   DATA_WIDTH : positive
5 );
6 port (
7   clk : in std_ulogic;
8   -- read/write port 0
9   rw0_rd_en : in std_ulogic;
10  rw0_wr_en : in std_ulogic;
11  rw0_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
12  rw0_wr_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0);
13  rw0_rd_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0);
14  -- read/write port 1
15  rw1_rd_en : in std_ulogic;
16  rw1_wr_en : in std_ulogic;
17  rw1_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
18  rw1_wr_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0);
19  rw1_rd_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0)
20 );
21 end entity;
```

First read/write memory port.


True Dual-Port RAM

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

```
1 entity true_dp_ram is
2 generic (
3   ADDR_WIDTH : positive;
4   DATA_WIDTH : positive
5 );
6 port (
7   clk : in std_ulogic;
8   -- read/write port 0
9   rw0_rd_en : in std_ulogic;
10  rw0_wr_en : in std_ulogic;
11  rw0_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
12  rw0_wr_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0);
13  rw0_rd_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0);
14  -- read/write port 1
15  rw1_rd_en : in std_ulogic;
16  rw1_wr_en : in std_ulogic;
17  rw1_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
18  rw1_wr_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0);
19  rw1_rd_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0)
20 );
21 end entity;
```

Second read/write memory port.

Dual-Clock RAM

HWMod
WS25

RAM

Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- Separate/independent clock for each port of a dual-port memory ⇒ dual-clock memory
- Use case: clock-domain-crossing interfaces

Dual-Clock RAM

HWMod
WS25

RAM

Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- Separate/independent clock for each port of a dual-port memory ⇒ dual-clock memory
- Use case: clock-domain-crossing interfaces
- Usually supported by FPGA block RAM

Dual-Clock RAM

HWMod
WS25

RAM

Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- Separate/independent clock for each port of a dual-port memory ⇒ dual-clock memory
- Use case: clock-domain-crossing interfaces
- Usually supported by FPGA block RAM
- Simultaneous read and write to the same location must be handled carefully

Dual-Clock RAM

HWMod
WS25

RAM

Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

- Separate/independent clock for each port of a dual-port memory ⇒ dual-clock memory
- Use case: clock-domain-crossing interfaces
- Usually supported by FPGA block RAM
- Simultaneous read and write to the same location must be handled carefully
- ⇒ dual-clocked/bisynchronous FIFOs

Dual-Clocked RAM - Example

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

```
1 entity dualclock_dp_ram is
2 generic (
3     ADDR_WIDTH : positive;
4     DATA_WIDTH : positive
5 );
6 port (
7     -- read port
8     rd_clk : in std_ulogic;
9     rd_en : in std_ulogic;
10    rd_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
11    rd_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0)
12    -- write port
13    wr_clk : in std_ulogic;
14    wr_en : in std_ulogic;
15    wr_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
16    wr_data : in std_ulogic_vector(DATA_WIDTH - 1 downto 0)
17 );
18 end entity;
```

Dual-Clocked RAM - Example

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

```
1 entity dualclock_dp_ram is
2 generic (
3     ADDR_WIDTH : positive;
4     DATA_WIDTH : positive
5 );
6 port (
7     -- read port
8     rd_clk : in std_ulogic;
9     rd_en : in std_ulogic;
10    rd_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
11    rd_data : out std_ulogic_vector(DATA_WIDTH - 1 downto 0)
12    -- write port
13    wr_clk : in std_ulogic;
14    wr_en : in std_ulogic;
15    wr_addr : in std_ulogic_vector(ADDR_WIDTH - 1 downto 0);
16    wr_data : in std_ulogic_vector(DATA_WIDTH - 1 downto 0)
17 );
18 end entity;
```

RAM Implementation

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

Vendor-Library Instantiation

Synthesis Inference

RAM Implementation

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

	Vendor-Library Instantiation	Synthesis Inference
Portability/Flexibility	Limited to vendor/device, requires vendor-specific knowledge	Generic and portable, simpler to work with and maintain

RAM Implementation

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

	Vendor-Library Instantiation	Synthesis Inference
Portability/Flexibility	Limited to vendor/device, requires vendor-specific knowledge	Generic and portable, simpler to work with and maintain
Performance	Optimized for target hardware	May be suboptimal

RAM Implementation

	Vendor-Library Instantiation	Synthesis Inference
Portability/Flexibility	Limited to vendor/device, requires vendor-specific knowledge	Generic and portable, simpler to work with and maintain
Performance	Optimized for target hardware	May be suboptimal
Special Features	Fully supported (e.g., ECC)	May be unavailable

RAM Implementation

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

	Vendor-Library Instantiation	Synthesis Inference
Portability/Flexibility	Limited to vendor/device, requires vendor-specific knowledge	Generic and portable, simpler to work with and maintain
Performance	Optimized for target hardware	May be suboptimal
Special Features	Fully supported (e.g., ECC)	May be unavailable
Predictability	Deterministic	May cause mismatch in synthesis/simulation tool

Inferred RAM

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

```
1 architecture beh of simple_dp_ram is
2 subtype ram_entry_t is std_ulegic_vector(DATA_WIDTH - 1 downto 0);
3 type ram_t is array(0 to (2 ** ADDR_WIDTH) - 1) of ram_entry_t;
4 signal ram : ram_t := (others => (others => '0'));
5 begin
6 process(clk)
7 begin
8 if rising_edge(clk) then
9 if wr_en = '1' then
10 ram(to_integer(unsigned(wr_addr))) <= wr_data;
11 end if;
12 if rd_en = '1' then
13 rd_data <= ram(to_integer(unsigned(rd_addr)));
14 end if;
15 end if;
16 end process;
17 end architecture;
```

Inferred RAM

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

```
1 architecture beh of simple_dp_ram is
2   subtype ram_entry_t is std_ulegic_vector(DATA_WIDTH - 1 downto 0);
3   type ram_t is array(0 to (2 ** ADDR_WIDTH) - 1) of ram_entry_t;
4   signal ram : ram_t := (others => (others => '0'));
5 begin
6   process(clk)
7   begin
8     if rising_edge(clk) then
9       if wr_en = '1' then
10         ram(to_integer(unsigned(wr_addr))) <= wr_data;
11       end if;
12       if rd_en = '1' then
13         rd_data <= ram(to_integer(unsigned(rd_addr)));
14       end if;
15     end if;
16   end process;
17 end architecture;
```

Type definitions and signal declaration for the signal that actually represents the memory array.

Inferred RAM

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

```
1 architecture beh of simple_dp_ram is
2 subtype ram_entry_t is std_ulogic_vector(DATA_WIDTH - 1 downto 0);
3 type ram_t is array(0 to (2 ** ADDR_WIDTH) - 1) of ram_entry_t;
4 signal ram : ram_t := (others => (others => '0'));
5 begin
6 process(clk)
7 begin
8 if rising_edge(clk) then
9 if wr_en = '1' then
10 ram(to_integer(unsigned(wr_addr))) <= wr_data;
11 end if;
12 if rd_en = '1' then
13 rd_data <= ram(to_integer(unsigned(rd_addr)));
14 end if;
15 end if;
16 end process;
17 end architecture;
```

Synchronous process similar to what is used in the description of flip-flops.

Inferred RAM

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

```
1 architecture beh of simple_dp_ram is
2 subtype ram_entry_t is std_ulogic_vector(DATA_WIDTH - 1 downto 0);
3 type ram_t is array(0 to (2 ** ADDR_WIDTH) - 1) of ram_entry_t;
4 signal ram : ram_t := (others => (others => '0'));
5 begin
6 process(clk)
7 begin
8 if rising_edge(clk) then
9 if wr_en = '1' then
10 ram(to_integer(unsigned(wr_addr))) <= wr_data;
11 end if;
12 if rd_en = '1' then
13 rd_data <= ram(to_integer(unsigned(rd_addr)));
14 end if;
15 end if;
16 end process;
17 end architecture;
```

Implementation of the write port.

Inferred RAM

HWMod
WS25

RAM
Introduction
FPGA Memory
Simple DP RAM
True DP RAM
Dual-Clocked RAM
Implementation

```
1 architecture beh of simple_dp_ram is
2 subtype ram_entry_t is std_ulogic_vector(DATA_WIDTH - 1 downto 0);
3 type ram_t is array(0 to (2 ** ADDR_WIDTH) - 1) of ram_entry_t;
4 signal ram : ram_t := (others => (others => '0'));
5 begin
6 process(clk)
7 begin
8 if rising_edge(clk) then
9 if wr_en = '1' then
10 ram(to_integer(unsigned(wr_addr))) <= wr_data;
11 end if;
12 if rd_en = '1' then
13 rd_data <= ram(to_integer(unsigned(rd_addr)));
14 end if;
15 end if;
16 end process;
17 end architecture;
```

Implementation of the read port.

Lecture Complete!