
HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Hardware Modeling [VU] (191.011)
– WS24 –

Numeric Standard Package

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-12, 16:24 (b25118c)

Hardware Modeling [VU] (191.011)
– WS24 –

Numeric Standard Package

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Numeric Standard Package

In the previous lecture we discussed the limits of Boolean types for describing hardware and introduced the std_ulogic

and its resolved std_logic type as a remedy. However, similar limits also exist for the types used for integer arithmetic.
This is what we will be concerned with in this lecture. After you watched this video, you can recall the types defined in the
numeric-standard package, explain how they differ from the integer type and how you can perform conversions between the
numeric-standard, IEEE 1164 and integer types.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Integer Arithmetic in Hardware

When possible use ranged integer for synthesizable code

However: integer type has some limitations

Only 32 / 64 bits guaranteed by standard (2008 / 2019)
Restricted to Boolean 0 and 1 vs. 9-valued logic
Behavior on over-/underflow undefined ⇒ wrap-around or runtime error 561

⇒ IEEE numeric_std package
Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

1

Integer Arithmetic in Hardware

When possible use ranged integer for synthesizable code

However: integer type has some limitations

Only 32 / 64 bits guaranteed by standard (2008 / 2019)
Restricted to Boolean 0 and 1 vs. 9-valued logic
Behavior on over-/underflow undefined ⇒ wrap-around or runtime error 561

⇒ IEEE numeric_std package
Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

Numeric Standard Package
Motivation

Integer Arithmetic in Hardware

When it comes to integer arithmetic, we already introduced the integer type, as well as its ranged subtypes. When you
write code for synthesis, we recommend you to use such ranged integers whenever possible, as they are concise and easily
comprehensible.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl


HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Integer Arithmetic in Hardware

When possible use ranged integer for synthesizable code
However: integer type has some limitations

Only 32 / 64 bits guaranteed by standard (2008 / 2019)
Restricted to Boolean 0 and 1 vs. 9-valued logic
Behavior on over-/underflow undefined ⇒ wrap-around or runtime error 561

⇒ IEEE numeric_std package
Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

1

Integer Arithmetic in Hardware

When possible use ranged integer for synthesizable code
However: integer type has some limitations

Only 32 / 64 bits guaranteed by standard (2008 / 2019)
Restricted to Boolean 0 and 1 vs. 9-valued logic
Behavior on over-/underflow undefined ⇒ wrap-around or runtime error 561

⇒ IEEE numeric_std package
Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

Numeric Standard Package
Motivation

Integer Arithmetic in Hardware

However, similar to the Boolean type being inadequate for describing some hardware, the integer type has some limitations
that restrict it from being used to model all integer arithmetic in hardware.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl


HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Integer Arithmetic in Hardware

When possible use ranged integer for synthesizable code
However: integer type has some limitations

Only 32 / 64 bits guaranteed by standard (2008 / 2019)

Restricted to Boolean 0 and 1 vs. 9-valued logic
Behavior on over-/underflow undefined ⇒ wrap-around or runtime error 561

⇒ IEEE numeric_std package
Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

1

Integer Arithmetic in Hardware

When possible use ranged integer for synthesizable code
However: integer type has some limitations

Only 32 / 64 bits guaranteed by standard (2008 / 2019)

Restricted to Boolean 0 and 1 vs. 9-valued logic
Behavior on over-/underflow undefined ⇒ wrap-around or runtime error 561

⇒ IEEE numeric_std package
Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

Numeric Standard Package
Motivation

Integer Arithmetic in Hardware

A major problem is the maximum range of the integer type. While the VHDL standard does not explicitly define the number of
bits of an integer, it is required to be at least 32 or 64 bit depending on the version of the standard. In practice this limits the
integer arithmetic we model to a fixed range as well, since we cannot rely upon all and platforms supporting more. However,
there is no reason why the hardware we design should be limited to this rather arbitrary range, and it is not unusual that
numbers not fitting this range are required.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl


HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Integer Arithmetic in Hardware

When possible use ranged integer for synthesizable code
However: integer type has some limitations

Only 32 / 64 bits guaranteed by standard (2008 / 2019)
Restricted to Boolean 0 and 1 vs. 9-valued logic

Behavior on over-/underflow undefined ⇒ wrap-around or runtime error 561

⇒ IEEE numeric_std package
Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

1

Integer Arithmetic in Hardware

When possible use ranged integer for synthesizable code
However: integer type has some limitations

Only 32 / 64 bits guaranteed by standard (2008 / 2019)
Restricted to Boolean 0 and 1 vs. 9-valued logic

Behavior on over-/underflow undefined ⇒ wrap-around or runtime error 561

⇒ IEEE numeric_std package
Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

Numeric Standard Package
Motivation

Integer Arithmetic in Hardware

Furthermore, the integer type is restricted to proper binary numbers. It would be beneficial for debugging though, if the
numeric types can also take the nine values of the IEEE 1164 standard.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl


HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Integer Arithmetic in Hardware

When possible use ranged integer for synthesizable code
However: integer type has some limitations

Only 32 / 64 bits guaranteed by standard (2008 / 2019)
Restricted to Boolean 0 and 1 vs. 9-valued logic
Behavior on over-/underflow undefined ⇒ wrap-around or runtime error 561

⇒ IEEE numeric_std package
Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

1

Integer Arithmetic in Hardware

When possible use ranged integer for synthesizable code
However: integer type has some limitations

Only 32 / 64 bits guaranteed by standard (2008 / 2019)
Restricted to Boolean 0 and 1 vs. 9-valued logic
Behavior on over-/underflow undefined ⇒ wrap-around or runtime error 561

⇒ IEEE numeric_std package
Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

Numeric Standard Package
Motivation

Integer Arithmetic in Hardware

Finally, the behavior of an integer over- or underflow during simulation is undefined and hence depends on the respective
simulator’s implementation. It should be pointed out though, that this is only the case for integers without user-declared
ranges. For range-constrained integer subtypes an over- or underflow will always lead to an error during the simulation. For
the unconstrained integer type some simulators will wrap-around on such an event, whereas other simulators will generate a
runtime error. Naturally, synthesized hardware cannot simply raise an error and instead values wrap-around on an over- or
underflow. As we would like our simulation to behave as similar to the modelled hardware as possible, we ideally require a
numerical type that wraps around in simulation.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl


HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Integer Arithmetic in Hardware

When possible use ranged integer for synthesizable code
However: integer type has some limitations

Only 32 / 64 bits guaranteed by standard (2008 / 2019)
Restricted to Boolean 0 and 1 vs. 9-valued logic
Behavior on over-/underflow undefined ⇒ wrap-around or runtime error 561

⇒ IEEE numeric_std package

Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

1

Integer Arithmetic in Hardware

When possible use ranged integer for synthesizable code
However: integer type has some limitations

Only 32 / 64 bits guaranteed by standard (2008 / 2019)
Restricted to Boolean 0 and 1 vs. 9-valued logic
Behavior on over-/underflow undefined ⇒ wrap-around or runtime error 561

⇒ IEEE numeric_std package

Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

Numeric Standard Package
Motivation

Integer Arithmetic in Hardware

To cope with the limitations of the integer type for describing arithmetic operations in hardware, the IEEE defines the
numeric_std package. This package provides additional types and corresponding operators, which we will discuss next.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl


HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Integer Arithmetic in Hardware

When possible use ranged integer for synthesizable code
However: integer type has some limitations

Only 32 / 64 bits guaranteed by standard (2008 / 2019)
Restricted to Boolean 0 and 1 vs. 9-valued logic
Behavior on over-/underflow undefined ⇒ wrap-around or runtime error 561

⇒ IEEE numeric_std package
Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

1

Integer Arithmetic in Hardware

When possible use ranged integer for synthesizable code
However: integer type has some limitations

Only 32 / 64 bits guaranteed by standard (2008 / 2019)
Restricted to Boolean 0 and 1 vs. 9-valued logic
Behavior on over-/underflow undefined ⇒ wrap-around or runtime error 561

⇒ IEEE numeric_std package
Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

Numeric Standard Package
Motivation

Integer Arithmetic in Hardware

Note that the numeric_std package must be imported just like the std_logic_1164 package. However, in case you want
to import multiple packages from the IEEE library, the library statement is only required once.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl


HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions

Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

2

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions

Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

Numeric Standard Package
IEEE Package

The IEEE numeric std Package

The IEEE numeric_std package provides two new types, called unsigned and signed, as well as operators on these
types. We will discuss both the types and the operators in detail on the next slide. First though, we want to illustrate the
different overflow, respectively underflow, behavior of integer and the new types.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

2

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

Numeric Standard Package
IEEE Package

The IEEE numeric std Package

Consider the code snippet shown on the slide that increments a variable by 1, reporting its value before and after increment-
ing.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

2

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

Numeric Standard Package
IEEE Package

The IEEE numeric std Package

The variable is of type integer and initialized to the highest possible value an object of this type can hold.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

2

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

Numeric Standard Package
IEEE Package

The IEEE numeric std Package

The result of the first report statement is this value, shown on the slide. This basically shows us that the used simulator
uses 32-bit for integers, since this is the greatest number a 32-bit integer can hold. What will now happen when the variable
holding this value is incremented by one?



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

2

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

Numeric Standard Package
IEEE Package

The IEEE numeric std Package

As hinted at before, the simulator will detect the overflow and produce an error output as the one shown on the slide.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

2

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

Numeric Standard Package
IEEE Package

The IEEE numeric std Package

Let us now consider the code snippet shown to the right of the first one.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

2

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

Numeric Standard Package
IEEE Package

The IEEE numeric std Package

It basically does the same as the previous code with the main difference being that the variable is now of type signed

rather than integer. Since we determined the integer type in our simulator being 32-bits wide, we also use 32-bits
now. Furthermore, we again initialize this variable to the maximum possible integer value. However, note that this time we
use a conversion function for that. We will elaborate on this shortly, but let us now continue our discussion of the overflow
behavior.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

2

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

Numeric Standard Package
IEEE Package

The IEEE numeric std Package

The first report statement yields the exact same result as the one in the previous code. This should not be much of a
surprise. But what about the second one? What will be the result of incrementing a?



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

2

The IEEE numeric std Package 331

unsigned and signed with respective operator definitions
Wrap-around on over-/underflow behavior

1 process is
2 variable a : integer
3 := integer’high;
4 begin
5 report to_string(a);
6 a := a + 1;
7 report to_string(a);
8 wait;
9 end process;

[...]: 2147483647

[...]: error: overflow detected

1 process is
2 variable a : signed(31 downto 0)
3 := to_signed(integer’high, 32);
4 begin
5 report to_string(to_integer(a));
6 a := a + 1;
7 report to_string(to_integer(a));
8 wait;
9 end process;

[...]: 2147483647

[...]: -2147483648

Numeric Standard Package
IEEE Package

The IEEE numeric std Package

As already mentioned, for the signed type the overflow will wrap around. As a result, we can observe the smallest possible
decimal one can store in 32-bits.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The unsigned and signed Types

Resolved array types of std_ulogic

Can be interpreted as std_logic_vector for arithmetic
Represent unsigned / two’s complement binary integers
Bit string literal initialization possible
Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware
Examples

signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

3

The unsigned and signed Types

Resolved array types of std_ulogic

Can be interpreted as std_logic_vector for arithmetic
Represent unsigned / two’s complement binary integers
Bit string literal initialization possible
Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware
Examples

signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

Numeric Standard Package
Types

The unsigned and signed Types

Alright, let us now properly introduce the two types provided by the numeric_std package. In essence, both new types are
just resolved std_ulogic arrays.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The unsigned and signed Types

Resolved array types of std_ulogic
Can be interpreted as std_logic_vector for arithmetic

Represent unsigned / two’s complement binary integers
Bit string literal initialization possible
Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware
Examples

signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

3

The unsigned and signed Types

Resolved array types of std_ulogic
Can be interpreted as std_logic_vector for arithmetic

Represent unsigned / two’s complement binary integers
Bit string literal initialization possible
Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware
Examples

signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

Numeric Standard Package
Types

The unsigned and signed Types

We can thus simply interpret them as dedicated std_logic_vector for arithmetic. At this point you might ask yourself
why we even need new types if they are essentially just the ones we already discussed before. However, when carrying
out arithmetic operations, the basic std_ulogic_vector and std_logic_vector types lack something paramount: An
interpretation of their elements. To elaborate on what we mean by that, try to answer the following question: What numerical
number does a certain binary string represent? The thins is, depending on the used encoding, it could be signed,
unsigned, encoded in two’s complement or unary et cetera. There really is no way of simple disambiguating between
different interpretations just given a binary string alone.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The unsigned and signed Types

Resolved array types of std_ulogic
Can be interpreted as std_logic_vector for arithmetic
Represent unsigned / two’s complement binary integers

Bit string literal initialization possible
Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware
Examples

signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

3

The unsigned and signed Types

Resolved array types of std_ulogic
Can be interpreted as std_logic_vector for arithmetic
Represent unsigned / two’s complement binary integers

Bit string literal initialization possible
Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware
Examples

signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

Numeric Standard Package
Types

The unsigned and signed Types

This is where the unsigned and signed types come in, as their purpose is to define how the data contained in an array
of std_ulogic or std_logic must be interpreted. In particular, the unsigned type is simply interpreted as an unsigned,
binary-encoded number.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The unsigned and signed Types

Resolved array types of std_ulogic
Can be interpreted as std_logic_vector for arithmetic
Represent unsigned / two’s complement binary integers

Bit string literal initialization possible
Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware

Examples
signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

3

The unsigned and signed Types

Resolved array types of std_ulogic
Can be interpreted as std_logic_vector for arithmetic
Represent unsigned / two’s complement binary integers

Bit string literal initialization possible
Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware

Examples
signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

Numeric Standard Package
Types

The unsigned and signed Types

For illustration, consider the first example on the slide where the binary number 1111 is assigned to a signal of type
unsigned. This results in the value being interpreted as decimal 15.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The unsigned and signed Types

Resolved array types of std_ulogic
Can be interpreted as std_logic_vector for arithmetic
Represent unsigned / two’s complement binary integers

Bit string literal initialization possible
Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware

Examples
signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

3

The unsigned and signed Types

Resolved array types of std_ulogic
Can be interpreted as std_logic_vector for arithmetic
Represent unsigned / two’s complement binary integers

Bit string literal initialization possible
Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware

Examples
signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

Numeric Standard Package
Types

The unsigned and signed Types

The signed type on the other hand is interpreted as binary integer in two’s complement encoding. Therefore, assigning the
same binary number 1111 to the signal b, as shown on the slide, will result in an interpretation of the bit string as the value
-1.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The unsigned and signed Types

Resolved array types of std_ulogic
Can be interpreted as std_logic_vector for arithmetic
Represent unsigned / two’s complement binary integers
Bit string literal initialization possible

Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware

Examples
signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

3

The unsigned and signed Types

Resolved array types of std_ulogic
Can be interpreted as std_logic_vector for arithmetic
Represent unsigned / two’s complement binary integers
Bit string literal initialization possible

Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware

Examples
signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

Numeric Standard Package
Types

The unsigned and signed Types

Note that as a consequence of the two types being merely arrays of std_ulogic, it is possible to assign them bit string
literals.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The unsigned and signed Types

Resolved array types of std_ulogic
Can be interpreted as std_logic_vector for arithmetic
Represent unsigned / two’s complement binary integers
Bit string literal initialization possible
Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware

Examples
signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

3

The unsigned and signed Types

Resolved array types of std_ulogic
Can be interpreted as std_logic_vector for arithmetic
Represent unsigned / two’s complement binary integers
Bit string literal initialization possible
Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware

Examples
signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

Numeric Standard Package
Types

The unsigned and signed Types

A further noteworthy consequence is that their elements can be any of the nine values of the IEEE 1164 standard. This is
useful for debugging our designs.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

The unsigned and signed Types

Resolved array types of std_ulogic
Can be interpreted as std_logic_vector for arithmetic
Represent unsigned / two’s complement binary integers
Bit string literal initialization possible
Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware
Examples

signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

3

The unsigned and signed Types

Resolved array types of std_ulogic
Can be interpreted as std_logic_vector for arithmetic
Represent unsigned / two’s complement binary integers
Bit string literal initialization possible
Elements are nine-valued ⇒ useful for debugging

Wrap around on over- / underflow ⇒ behavior of “real” hardware
Examples

signal a : unsigned(3 downto 0) := "1111"; -- 15
signal b : signed(3 downto 0) := "1111"; -- -1

Numeric Standard Package
Types

The unsigned and signed Types

However, probably the most important difference between the integer type and the numeric-standard types, is what we
saw in the example of the previous slide. As you might know from other lectures, an adder circuit that overflows simply wraps
around. This is what signals and variables of the unsigned and signed types do, thus allowing a more faithful description
of arithmetic hardware.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Arithmetic Operators

Most common operators are defined and implemented

Arithmetic: +, -, * , /, rem, mod, abs
Relational: >, <, <=, >=, =, /=
Logical: Same as for std_ulogic_vector
Shift / rotate: sll, srl, rol, ror, sla, sra
resize function

Useful overloads for integer / natural operand

4

Arithmetic Operators

Most common operators are defined and implemented

Arithmetic: +, -, * , /, rem, mod, abs
Relational: >, <, <=, >=, =, /=
Logical: Same as for std_ulogic_vector
Shift / rotate: sll, srl, rol, ror, sla, sra
resize function

Useful overloads for integer / natural operand

Numeric Standard Package
Operators

Arithmetic Operators

Obviously, numerical data types are no good without operations defined on them. Therefore, the numeric_std package
comes with a plethora of operations.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl


HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Arithmetic Operators

Most common operators are defined and implemented
Arithmetic: +, -, * , /, rem, mod, abs

Relational: >, <, <=, >=, =, /=
Logical: Same as for std_ulogic_vector
Shift / rotate: sll, srl, rol, ror, sla, sra
resize function

Useful overloads for integer / natural operand

4

Arithmetic Operators

Most common operators are defined and implemented
Arithmetic: +, -, * , /, rem, mod, abs

Relational: >, <, <=, >=, =, /=
Logical: Same as for std_ulogic_vector
Shift / rotate: sll, srl, rol, ror, sla, sra
resize function

Useful overloads for integer / natural operand

Numeric Standard Package
Operators

Arithmetic Operators

First and foremost, common arithmetic operations, listed on the slide, are defined for the numeric_std types. However, be
aware that the division operator performs an integer division! To obtain the division remainder, the remainder operator, rem,
can be used.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl


HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Arithmetic Operators

Most common operators are defined and implemented
Arithmetic: +, -, * , /, rem, mod, abs
Relational: >, <, <=, >=, =, /=
Logical: Same as for std_ulogic_vector
Shift / rotate: sll, srl, rol, ror, sla, sra

resize function

Useful overloads for integer / natural operand

4

Arithmetic Operators

Most common operators are defined and implemented
Arithmetic: +, -, * , /, rem, mod, abs
Relational: >, <, <=, >=, =, /=
Logical: Same as for std_ulogic_vector
Shift / rotate: sll, srl, rol, ror, sla, sra

resize function

Useful overloads for integer / natural operand

Numeric Standard Package
Operators

Arithmetic Operators

In addition to that, there are relational and logical operators defined, as well as the shift and rotate ones we already mentioned
for the types of the std_logic_1164 package. However, be aware that there is also the possibility to perform arithmetic
shifts on the unsigned and signed types by using the sla and sra operators.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl


HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Arithmetic Operators

Most common operators are defined and implemented
Arithmetic: +, -, * , /, rem, mod, abs
Relational: >, <, <=, >=, =, /=
Logical: Same as for std_ulogic_vector
Shift / rotate: sll, srl, rol, ror, sla, sra
resize function

Useful overloads for integer / natural operand

4

Arithmetic Operators

Most common operators are defined and implemented
Arithmetic: +, -, * , /, rem, mod, abs
Relational: >, <, <=, >=, =, /=
Logical: Same as for std_ulogic_vector
Shift / rotate: sll, srl, rol, ror, sla, sra
resize function

Useful overloads for integer / natural operand

Numeric Standard Package
Operators

Arithmetic Operators

The package further provides a resize function that allows to create a longer or shorter value from a given one of type
unsigned or signed. We will discuss this operator in more detail on the next slide.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl


HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Arithmetic Operators

Most common operators are defined and implemented
Arithmetic: +, -, * , /, rem, mod, abs
Relational: >, <, <=, >=, =, /=
Logical: Same as for std_ulogic_vector
Shift / rotate: sll, srl, rol, ror, sla, sra
resize function

Useful overloads for integer / natural operand

4

Arithmetic Operators

Most common operators are defined and implemented
Arithmetic: +, -, * , /, rem, mod, abs
Relational: >, <, <=, >=, =, /=
Logical: Same as for std_ulogic_vector
Shift / rotate: sll, srl, rol, ror, sla, sra
resize function

Useful overloads for integer / natural operand

Numeric Standard Package
Operators

Arithmetic Operators

Finally, in addition to implementations of the operators for the numerical types, there are useful overloads for applying the
operators to a numerical type and an integer or natural operand. This allows to model operations with constants in a
very concise manner.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl


HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

5

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

Numeric Standard Package
Operators

Arithmetic Operators (cont’d)

The resize function and the operator overloads deserve a bit more elaboration. We will discuss them by means of an
example now, the skeleton of which is already shown on the slide.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

5

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

Numeric Standard Package
Operators

Arithmetic Operators (cont’d)

In the declarative section of the example process two four bit long variables of unsigned respectively signed type are
declared. They are both initialized to the same value 1010. Let us now first discuss the resize function. As already
mentioned, its purpose is to change the size of an argument of either unsigned or signed type. However, as you already
know, array types in VHDL are value types. Thus, the length of an object of an array type cannot be changed after its
declaration. Therefore, the function will return a new value of the desired length while keeping the original object unchanged.
Furthermore, be aware that the resize function’s behavior depends on the specific type of the argument that is to be resized.
In the case of increasing the size of an unsigned value, the argument is extended with zeros to its left to match the desired
length.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

5

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

Numeric Standard Package
Operators

Arithmetic Operators (cont’d)

For example, consider the example on the slide which uses the function to get a version of u extended to 5 bits.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

5

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

Numeric Standard Package
Operators

Arithmetic Operators (cont’d)

Extending this with zero yields an unsigned object holding the bit string 01010. For a signed value on the other hand, the
sign bit is used when extending.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

5

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

Numeric Standard Package
Operators

Arithmetic Operators (cont’d)

This is illustrated by this next example where the resize function is used to create a signed object that holds the value of
the variable s extended by one bit. Since the sign bit is 1, the resulting value will also be extended by a 1.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

5

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

Numeric Standard Package
Operators

Arithmetic Operators (cont’d)

In case the desired length passed to the resize function is shorter than the one of the array argument, the array must be
truncated. This is the case for the current example shown on the slide. Again, the behavior differs depending on the specific
type. For an unsigned value, bits are removed from left to right until the target length is reached.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

5

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

Numeric Standard Package
Operators

Arithmetic Operators (cont’d)

Thus, the result of the resize/ call shown on the slide is u with its left-bit dropped.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

5

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

Numeric Standard Package
Operators

Arithmetic Operators (cont’d)

For signed values, bits are also dropped from left to right, but the most significant bit of the result will always be the sign
bit of the original array. In contrast to the previous example with the unsigned truncation the result in the signed case is
therefore 110, as this is the value of s with its left-most bit removed and the new left-most bit set to the old sign bit.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

5

Arithmetic Operators (cont’d)

1 process is
2 variable u : unsigned(3 downto 0) := "1010";
3 variable s : signed(3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); -- 01010
6 report to_string(resize(s, 5)); -- 11010
7

8 report to_string(resize(u, 3)); -- 010
9 report to_string(resize(s, 3)); -- 110

10

11 u := u + 1;
12 s := s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;
17 end process;

Numeric Standard Package
Operators

Arithmetic Operators (cont’d)

Finally, let us briefly illustrate the useful operator overloads we mentioned before. As shown in the example code on the slide,
we can simply perform operations between variables of unsigned respectively signed type and integer values. This
allows to increment u by 1 and subtract 2 from s in a very concise manner. Furthermore, the example also shows uses of
the respective overloads for two of the relational operators. Again, this allows for very concise comparisons between the
numerical array types and integer constants.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Type Conversion

Conversion function from / to integer, type casts between array types

Integer Type
(Conversion Function)

Array Types
(Type Cast)

SUV
std_ulogic_vector

I
integer

S
signed

U
unsigned

std ulogic vector(S)
to integer(S)

std ulogic vector(U)to integer(U)

to signed(I, S’length)

to unsigned(I,U’length)

signed(SUV)

unsigned(SUV)

signed(U)unsigned(S)

6

Type Conversion

Conversion function from / to integer, type casts between array types

Integer Type
(Conversion Function)

Array Types
(Type Cast)

SUV
std_ulogic_vector

I
integer

S
signed

U
unsigned

std ulogic vector(S)
to integer(S)

std ulogic vector(U)to integer(U)

to signed(I, S’length)

to unsigned(I,U’length)

signed(SUV)

unsigned(SUV)

signed(U)unsigned(S)

Numeric Standard Package
Conversion

Type Conversion

Finally, let us briefly discuss the conversion between the different types we know by now. In principle, we have to distinguish
between the array types of the numeric_std and std_logic_1164 packages and basic integers. Between the different
arrays, std_ulogic_vector, std_logic_vector, signed and unsigned we can simply perform type casts, as the
internal representation is the same, and we just want to change its interpretation. If we want to convert from the numerical
types of the numeric_std package to the integer type, or vice versa, we require conversion functions.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Type Conversion

Conversion function from / to integer, type casts between array types

Integer Type
(Conversion Function)

Array Types
(Type Cast)

SUV
std_ulogic_vector

I
integer

S
signed

U
unsigned

std ulogic vector(S)
to integer(S)

std ulogic vector(U)to integer(U)

to signed(I, S’length)

to unsigned(I,U’length)

signed(SUV)

unsigned(SUV)

signed(U)unsigned(S)

6

Type Conversion

Conversion function from / to integer, type casts between array types

Integer Type
(Conversion Function)

Array Types
(Type Cast)

SUV
std_ulogic_vector

I
integer

S
signed

U
unsigned

std ulogic vector(S)
to integer(S)

std ulogic vector(U)to integer(U)

to signed(I, S’length)

to unsigned(I,U’length)

signed(SUV)

unsigned(SUV)

signed(U)unsigned(S)

Numeric Standard Package
Conversion

Type Conversion

Have a look at the image on the slide which shows all possible type conversions between these types. Note how all con-
versions in the red-shaded area are just type casts between the different array types, and how the green-shaded area
marks contains conversions functions. Note how this essentially partitions the conversions into those from integer to the
numeric_std types and vice versa, and those between the different array types of std_ulogic. This difference is also
reflected by the naming convention. Where type-casts simply use the target type name, the conversion functions start with a
to. Furthermore, note how the conversion from an integer to a numeric_std type requires a length. This makes sense
considering that the numeric_std types are arrays type that require a range constraint and that an integer might also
hold values smaller than its full 32-bit would support.



HWMod
WS24

numeric std
Motivation

IEEE Package

Types

Operators

Conversion

Lecture Complete!

Modified: 2025-03-12, 16:24 (b25118c)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.


	Numeric Standard Package
	Motivation
	IEEE Package
	Types
	Operators
	Conversion


