HWMod
WS25

nimereste Hardware Modeling [VU] (191.011)
- WS25 —

Numeric Standard Package

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:04 (f8a58e9)

Integer Arithmetic in Hardware

HWMod
WS25

m When possible use ranged integer for synthesizable code

Motivation

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl

Integer Arithmetic in Hardware

HWMod
WS25

m When possible use ranged integer for synthesizable code
m However: integer type has some limitations

Motivation

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl

Integer Arithmetic in Hardware

HWMod
WS25
m When possible use ranged integer for synthesizable code

m However: integer type has some limitations
m Only 32/ 64 bits guaranteed by standard (2008 / 2019)

Motivation

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl

Integer Arithmetic in Hardware

HWMod
WS25

m When possible use ranged integer for synthesizable code

m However: integer type has some limitations

m Only 32/ 64 bits guaranteed by standard (2008 / 2019)
m Restricted to Boolean 0 and 1 vs. 9-valued logic

Motivation

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl

Integer Arithmetic in Hardware

HWMod
WS25

m When possible use ranged integer for synthesizable code
m However: integer type has some limitations

m Only 32/ 64 bits guaranteed by standard (2008 / 2019)
m Restricted to Boolean 0 and 1 vs. 9-valued logic
m Behavior on over-/underflow undefined = wrap-around or runtime error

Motivation

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl

Integer Arithmetic in Hardware

HWMod
WS25

m When possible use ranged integer for synthesizable code
m However: integer type has some limitations

m Only 32/ 64 bits guaranteed by standard (2008 / 2019)
m Restricted to Boolean 0 and 1 vs. 9-valued logic
m Behavior on over-/underflow undefined = wrap-around or runtime error

Motivation

= |EEE numeric_std package &

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl

Integer Arithmetic in Hardware

HWMod
WS25

m When possible use ranged integer for synthesizable code
m However: integer type has some limitations

m Only 32/ 64 bits guaranteed by standard (2008 / 2019)
m Restricted to Boolean 0 and 1 vs. 9-valued logic
m Behavior on over-/underflow undefined = wrap-around or runtime error

Motivation

= |EEE numeric_std package &
m Requires import from the ieee library

library ieee;
use ieee.numeric_std.all;

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std.vhdl

The IEEE numeric_std Package

HWMod
WS25

B unsigned and signed with respective operator definitions

IEEE Package

The IEEE numeric_std Package

HWMod
WS25

B unsigned and signed with respective operator definitions
m Wrap-around on over-/underflow behavior

1 process is

2 variable a : integer
3 := integer’high;

4 begin

5 report to_string(a);
6 a :=a + 1;

7 report to_string(a);
8 wait;

9 end process;

The IEEE numeric_std Package

HWMod
WS25

B unsigned and signed with respective operator definitions
m Wrap-around on over-/underflow behavior

1 process is

2 variable a : integer
3 := integer’high;

4 begin

5 report to_string(a);
6 a :=a + 1;

7 report to_string(a);
8 wait;

9 end process;

The IEEE numeric_std Package

HWMod
WS25

B unsigned and signed with respective operator definitions
m Wrap-around on over-/underflow behavior

1 process is

2 variable a : integer
3 := integer’high;

4 begin

5 report to_string(a);
6 a :=a + 1;

7 report to_string(a);
8 wait;

9 end process;

[...]: 2147483647

The IEEE numeric_std Package

HWMod
WS25
B unsigned and signed with respective operator definitions
m Wrap-around on over-/underflow behavior

process is

1

2 variable a : integer
3 := integer’high;

4 begin

5 report to_string(a);
6 a :=a + 1;

7 report to_string(a);
8 wait;

9 end process;

[...]: 2147483647

[...]: error: overflow detected

The IEEE numeric_std Package

HWMod
WS25
B unsigned and signed with respective operator definitions
m Wrap-around on over-/underflow behavior

1 process is 1 process is
2 variable a : integer 2 variable a : signed (31 downto 0)
3 := integer’high; 3 := to_signed(integer’high, 32);
4 begin 4 begin
5 report to_string(a); 5 report to_string(to_integer(a));
6 a :=a + 1; 6 a :=a + 1;
7 report to_string(a); 7 report to_string(to_integer(a));
8 wait; 8 wait;
9 end process; 9 end process;

[...]: 2147483647

[...]: error: overflow detected

The IEEE numeric_std Package

HWMod
WS25
B unsigned and signed with respective operator definitions
m Wrap-around on over-/underflow behavior

1 process is 1 process is
2 variable a : integer 2 variable a : signed (31 downto 0)
3 := integer’high; 3 := to_signed(integer’high, 32);
4 begin 4 begin
5 report to_string(a); 5 report to_string(to_integer(a));
6 a :=a + 1; 6 a :=a + 1;
7 report to_string(a); 7 report to_string(to_integer(a));
8 wait; 8 wait;
9 end process; 9 end process;

[...]: 2147483647

[...]: error: overflow detected

The IEEE numeric_std Package

HWMod
WS25
B unsigned and signed with respective operator definitions
m Wrap-around on over-/underflow behavior

1 process is 1 process is
2 variable a : integer 2 variable a : signed (31 downto 0)
3 := integer’high; 3 := to_signed(integer’high, 32);
4 begin 4 begin
5 report to_string(a); 5 report to_string(to_integer(a));
6 a :=a + 1; 6 a :=a + 1;
7 report to_string(a); 7 report to_string(to_integer(a));
8 wait; 8 wait;
9 end process; 9 end process;

[...]: 2147483647 [...]: 2147483647

[...]: error: overflow detected

The IEEE numeric_std Package

HWMod
WS25
B unsigned and signed with respective operator definitions
m Wrap-around on over-/underflow behavior
1 process is 1 process is
2 variable a : integer 2 variable a : signed (31 downto 0)
3 := integer’high; 3 := to_signed(integer’high, 32);
4 begin 4 begin
5 report to_string(a); 5 report to_string(to_integer(a));
6 a :=a + 1; 6 a :=a + 1;
7 report to_string(a); 7 report to_string(to_integer(a));
8 wait; 8 wait;
9 end process; 9 end process;
[...]: 2147483647 [...]: 2147483647
[...]: error: overflow detected [...]: —-2147483648

The unsigned and signed Types

HWMod
WS25

m Resolved array types of std_ulogic

Types

The unsigned and signed Types

HWMod
WS25
m Resolved array types of std_ulogic
m Can be interpreted as std_logic_vector for arithmetic

Types

The unsigned and signed Types

HWMod
WS25
m Resolved array types of std_ulogic

m Can be interpreted as std_logic_vector for arithmetic
Trpes m Represent unsigned / two’s complement binary integers

The unsigned and signed Types

HWMod
WS25

m Resolved array types of std_ulogic

m Can be interpreted as std_logic_vector for arithmetic
Trpes m Represent unsigned / two’s complement binary integers

m Examples

signal a : unsigned(3 downto 0) := "1111"; -- 15

The unsigned and signed Types

HWMod
WS25
m Resolved array types of std_ulogic
m Can be interpreted as std_logic_vector for arithmetic
Trpes m Represent unsigned / two’s complement binary integers

m Examples
signal a : unsigned(3 downto 0) = "1111"; -- 15
signal b : signed (3 downto 0) = "1111"; -— -1

The unsigned and signed Types

HWMod
WS25

m Resolved array types of std_ulogic

m Can be interpreted as std_logic_vector for arithmetic
Trpes m Represent unsigned / two’s complement binary integers
m Bit string literal initialization possible

m Examples
signal a : unsigned(3 downto 0) = "1111"; -- 15
signal b : signed (3 downto 0) = "1111"; -— -1

The unsigned and signed Types

HWMod
WS25

m Resolved array types of std_ulogic

m Can be interpreted as std_logic_vector for arithmetic
Types m Represent unsigned / two’s complement binary integers

m Bit string literal initialization possible

m Elements are nine-valued = useful for debugging

m Examples
signal a : unsigned(3 downto 0) = "1111"; 15
signal b : signed (3 downto 0) = "1111"; - =1

The unsigned and signed Types

HWMod
WS25

m Resolved array types of std_ulogic

m Can be interpreted as std_logic_vector for arithmetic
Types m Represent unsigned / two’s complement binary integers

m Bit string literal initialization possible

m Elements are nine-valued = useful for debugging

m Wrap around on over- / underflow = behavior of “real” hardware

m Examples
signal a : unsigned(3 downto 0) = "1111"; 15
signal b : signed (3 downto 0) = "1111"; - =1

Arithmetic Operators

HWMod
WS25

m Most common operators are defined and implemented =

Operators

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl

Arithmetic Operators

HWMod
WS25

m Most common operators are defined and implemented =
Operaors m Arithmetic: +, -, = , /, rem, mod, abs

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl

Arithmetic Operators

HWMod
WS25

m Most common operators are defined and implemented &
Operaors m Arithmetic: +, -, = , /, rem, mod, abs
m Relational: >, <, <=, >=, =, /=
m Logical: Same as for std_ulogic_vector
m Shift / rotate: s11, srl, rol, ror, sla, sra

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl

Arithmetic Operators

HWMod
WS25

m Most common operators are defined and implemented &
Operators m Arithmetic: +, -, = , /, rem, mod, abs
m Relational: >, <, <=, >=, =, /=
m Logical: Same as for std_ulogic_vector
m Shift / rotate: s11, srl, rol, ror, sla, sra
B resize function

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl

Arithmetic Operators

HWMod
WS25

m Most common operators are defined and implemented &=
Operators m Arithmetic: +, -, = , /, rem, mod, abs
m Relational: >, <, <=, >=, =, /=
m Logical: Same as for std_ulogic_vector
m Shift / rotate: s11, srl, rol, ror, sla, sra
m resize function

m Useful overloads for integer / natural operand

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/numeric_std-body.vhdl

Arithmetic Operators (cont’d)

HWMod
WS25 .

1 process 1is
2
3
4 begin
5

Operators 6
7
8
9
10
11
12
13
14
15
16 wait;

17 end process;

Arithmetic Operators (cont’d)

HWMod
WS25 .

1 process 1is
2 variable u : unsigned(3 downto 0) = "1010";
3 variable s : signed (3 downto 0) := "1010";
4 begin
5

Operators 6
7
8
9
10
11
12
13
14
15
16 wait;

17 end process;

Arithmetic Operators (cont’d)

HWMod
WS25 .
process 1is
variable u : unsigned(3 downto 0) = "1010";
variable s : signed (3 downto 0) := "1010";

1
2
3
4 begin

5 report to_string(resize(u, 5));
6

7

8

Operators

16 wait;
17 end process;

Arithmetic Operators (cont’d)

HWMod
WS25 .
1 process 1is
2 variable u : unsigned(3 downto 0) = "1010";
3 variable s : signed (3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); —— 01010
Operators 6
7
8
9
10
11
12
13
14
15
16 wait;

17 end process;

Arithmetic Operators (cont’d)

HWMod
WS25 .
1 process 1is
2 variable u : unsigned(3 downto 0) = "1010";
3 variable s : signed (3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); —— 01010
Operators 6 report to_string(resize(s, 5)); - 11010
7
8
9
10
11
12
13
14
15
16 wait;

17 end process;

Arithmetic Operators (cont’d)

HWMod
WS25 .
1 process 1is
2 variable u : unsigned(3 downto 0) = "1010";
3 variable s : signed (3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); —— 01010
Operators 6 report to_string(resize(s, 5)); - 11010
7
8 report to_string(resize(u, 3));
9
10
11
12
13
14
15
16 wait;

17 end process;

Arithmetic Operators (cont’d)

HWMod
WS25 .
1 process 1is
2 variable u : unsigned(3 downto 0) = "1010";
3 variable s : signed (3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); —— 01010
Operators 6 report to_string(resize(s, 5)); - 11010
7
8 report to_string(resize(u, 3)); —- 010
9
10
11
12
13
14
15
16 wait;

17 end process;

HWMod
WS25

Operators

Arithmetic Operators (cont’d)

16

process 1is

variable u
variable s

begin
report
report

report
report

wait;

to_string(resize (u,
to_string(resize (s,

to_string(resize (u,
to_string(resize (s,

17 end process;

unsigned (3 downto 0)
signed (3 downto 0)

= "1010";
= "1010";
5)); —-- 01010
5)); —- 11010
3)); —— 010
3)); -—- 110

Arithmetic Operators (cont’d)

HWMod
WS25 .
1 process 1is
2 variable u : unsigned(3 downto 0) = "1010";
3 variable s : signed (3 downto 0) := "1010";
4 begin
5 report to_string(resize(u, 5)); —- 01010
Operators 6 report to_string(resize(s, 5)); -- 11010
7
8 report to_string(resize(u, 3)); - 010
9 report to_string(resize(s, 3)); —— 110
10
11 u :=u + 1;
12 s :=s - 2;
13 if u = 0 or s < -1 then
14 report "HWMod is awesome";
15 end if;
16 wait;

17 end process;

Type Conversion

HiwMod Conversion function from /to integer, type casts between array types

Type Conversion

AL Conversion function from /to integer, type casts between array types

WS25
Integer Type Array Types
(Conversion Function) (Type Cast)

std_ulogic_vector(S)

to_integer(S)

Conversion

to-signed(l, S’length) signed(SUV)

unsigned(S) || signed(u)

to_unsigned(l,U’length) unsigned(SUV)

Suv

std_ulogic_vector

to_integer(U) std_ulogic_vector(U)

HWMod
WS25

Lecture Complete!

Modified: 2025-12-16, 16:04 (f8a58e9)

	Numeric Standard Package
	Motivation
	IEEE Package
	Types
	Operators
	Conversion

