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Recap: Synchronous Design

Hardware usually operates with high concurrency
Circuits consist of complex networks of comb. gates
Combinational gates immediately react to input changes

Coordination is required for proper operation
Inputs must be stable throughout computation
Outputs must be valid when used

⇒ Use a global clock signal as common notion of time
Flip-flops between combinational logic control signal propagation

Flip-flops have inherent timing constraints
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Flip-Flop Timing Constraints

Input data must be stable around active clock edge
Otherwise not clear which value to capture

Setup Time: specifies how long data must be stable before clock edge
Hold Time: specifies how long data must be stable after clock edge

This is the setup-hold window (SUH window)

D stabletsu thSUH

CLK

D datat datat+1
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Timing Violations?

Static timing analysis ensures sufficiently long clock period for all timing
constraints of FFs and comb. logic to be satisfied

⇒ Are timing violations then even possible? Why bother?
Every useful circuit requires an interface to the outside world

Transition at external inputs will arrive at any time
In particular: they can arrive within a SUH window

SUH

clk

ext. signal
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Consequences

MTBU

Timing Violations!

What happens if the timing constraints are violated?

Distinguish between combinational gates and sequential FFs

Comb. gates: simply produce incomplete results
Flip-flop: Metastability
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Flip-Flop Metastability

The flip-flop is supposed to assume one of two states after a clock edge
State reflected by the output

Transition during SUH window ⇒ FF might not able to decide on state
The FF is metastable (i.e., between two stable states)

⇒ Flip-flop stay may at intermediate state for some resolution time

SUH

resolution time

clk

D

Q

5
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Consequences

MTBU

Physical Analogy

Inherent to any system with transitions between multiple stable states

Metastability is the act of balancing between stable states
Output voltage of FF, elephant on ball...

In general: Metastability cannot be mitigated!

Neither resolution time nor final outcome can be determined in advance

6
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Consequences of Metastability in Circuits

Obtaining binary logic levels by discretizing analog voltage

Comparison against threshold voltage
Metastable flip-flop outputs intermediate voltage
Depending on particular threshold voltages different interpretation
Late transitions, Glitches, Oscillations

HIGH
range

LOW
range

forbidden
range

detectable
HIGH
range

detectable
LOW
range

threshold A

threshold B
MS FF output

3.3V

2.0V

0.8V

0.0V 7
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Estimating Effects of Metastability

MS cannot be mitigated, can we determine how often it causes problems?

Two contributing factors:
1 How often input transitions fall within SH window
2 How often metastability resolves before propagating

Input transition rate in general uncorrelated to clock ⇒ assume uniform
distribution of clock-to-data time
Resolution time not predictable ⇒ only statistical estimation possible

⇒ Mean Time Between Upsets (MTBU)

MTBU =
1

λin · fclk · TW
· e

tres
τC

8
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MTBU Estimation

MTBU depends on technology and circuit parameters

Note: Rate of input transitions
Exponential influence of tres on MTBU!

Where does this formula come from? Consider upset rate (UR)

1 How often input transitions fall within SH window
2 How often metastability resolves before propagating

Formula applicable for uncorrelated input data only!

MTBU =
1

λin · fclk · TW
· e

tres
τC

1

MTBU
= UR = λin · TW

Tclk
· e−

tres
τC

input transition rate clock frequency FF parameter

time to resolve

avg. rate of transitions within SH window

proportion of MS cases not resolving in time
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Lecture Complete!
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