

# Hardware Modeling [VU] (191.011) – WS25 – Metastability

Guest Lecture by Prof. Steininger

WS 2025/26

# Recap: Synchronous Design

HWMod  
WS25

Metastability  
Recap  
Metastability

- Hardware usually operates with high concurrency
  - Circuits consist of complex networks of comb. gates
  - Combinational gates immediately react to input changes

# Recap: Synchronous Design

HWMod  
WS25

Metastability  
Recap  
Metastability

- Hardware usually operates with high concurrency
  - Circuits consist of complex networks of comb. gates
  - Combinational gates immediately react to input changes
- Coordination is required for proper operation
  - Inputs must be stable throughout computation
  - Outputs must be valid when used

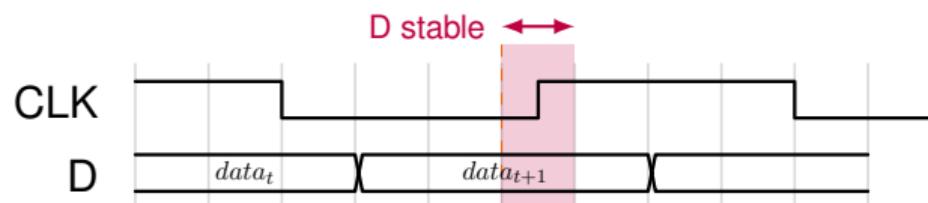
# Recap: Synchronous Design

- Hardware usually operates with high concurrency
  - Circuits consist of complex networks of comb. gates
  - Combinational gates immediately react to input changes
- Coordination is required for proper operation
  - Inputs must be stable throughout computation
  - Outputs must be valid when used

⇒ Use a global clock signal as common notion of time

- Flip-flops between combinational logic control signal propagation

# Recap: Synchronous Design

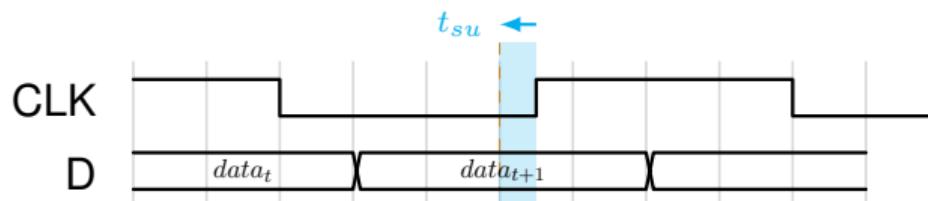

- Hardware usually operates with high concurrency
  - Circuits consist of complex networks of comb. gates
  - Combinational gates immediately react to input changes
- Coordination is required for proper operation
  - Inputs must be stable throughout computation
  - Outputs must be valid when used
- ⇒ Use a global clock signal as common notion of time
  - Flip-flops between combinational logic control signal propagation
  - Flip-flops have inherent timing constraints

# Flip-Flop Timing Constraints

HWMod  
WS25

Metastability  
Recap  
Metastability

- Input data must be stable around active clock edge
  - Otherwise not clear which value to capture

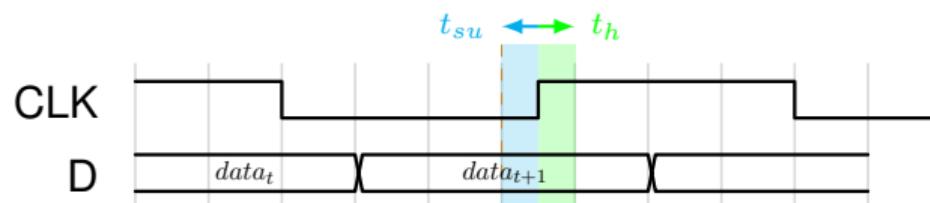



# Flip-Flop Timing Constraints

HWMod  
WS25

Metastability  
Recap  
Metastability

- Input data must be stable around active clock edge
  - Otherwise not clear which value to capture
  - **Setup Time**: specifies how long data must be stable *before* clock edge

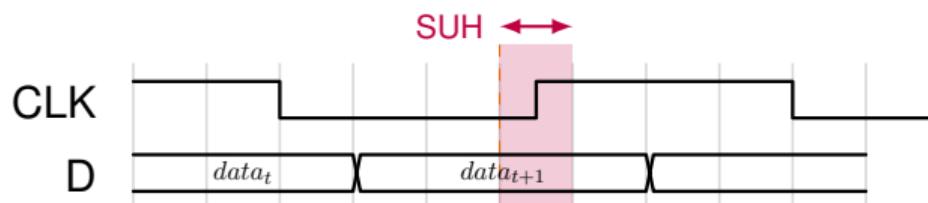



# Flip-Flop Timing Constraints

HWMod  
WS25

Metastability  
Recap  
Metastability

- Input data must be stable around active clock edge
  - Otherwise not clear which value to capture
  - **Setup Time**: specifies how long data must be stable *before* clock edge
  - **Hold Time**: specifies how long data must be stable *after* clock edge




# Flip-Flop Timing Constraints

HWMod  
WS25

Metastability  
Recap  
Metastability

- Input data must be stable around active clock edge
  - Otherwise not clear which value to capture
  - **Setup Time**: specifies how long data must be stable *before* clock edge
  - **Hold Time**: specifies how long data must be stable *after* clock edge
- This is the **setup-hold window** (SUH window)



# Timing Violations?

HWMod  
WS25

Metastability  
Recap  
Metastability

- Static timing analysis ensures sufficiently long clock period for all timing constraints of FFs and comb. logic to be satisfied

# Timing Violations?

HWMod  
WS25

Metastability  
Recap  
Metastability

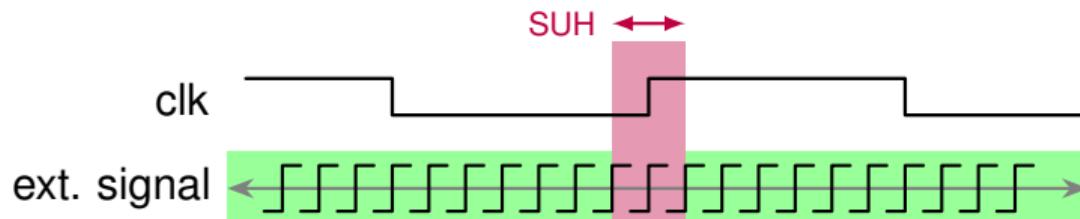
- Static timing analysis ensures sufficiently long clock period for all timing constraints of FFs and comb. logic to be satisfied
- ⇒ Are timing violations then even possible? Why bother?

# Timing Violations?

HWMod  
WS25

Metastability  
Recap  
Metastability

- Static timing analysis ensures sufficiently long clock period for all timing constraints of FFs and comb. logic to be satisfied
- ⇒ Are timing violations then even possible? Why bother?
- Every useful circuit requires an interface to the outside world


# Timing Violations?

- Static timing analysis ensures sufficiently long clock period for all timing constraints of FFs and comb. logic to be satisfied
- ⇒ Are timing violations then even possible? Why bother?
- Every useful circuit requires an interface to the outside world
  - Transition at external inputs will arrive at *any* time



# Timing Violations?

- Static timing analysis ensures sufficiently long clock period for all timing constraints of FFs and comb. logic to be satisfied
- ⇒ Are timing violations then even possible? Why bother?
- Every useful circuit requires an interface to the outside world
  - Transition at external inputs will arrive at *any* time
  - In particular: they can arrive within a SUH window



# Timing Violations!

HWMOD  
WS25

Metastability

Recap

Metastability

Analogy

Consequences

MTBU

- What happens *if* the timing constraints are violated?

# Timing Violations!

HWMod  
WS25

Metastability

Recap

Metastability

Analogy

Consequences

MTBU

- What happens *if* the timing constraints are violated?
- Distinguish between combinational gates and sequential FFs

# Timing Violations!

HWMod  
WS25

Metastability

Recap

Metastability

Analogy

Consequences

MTBU

- What happens *if* the timing constraints are violated?
- Distinguish between combinational gates and sequential FFs
  - Comb. gates: simply produce incomplete results

# Timing Violations!

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

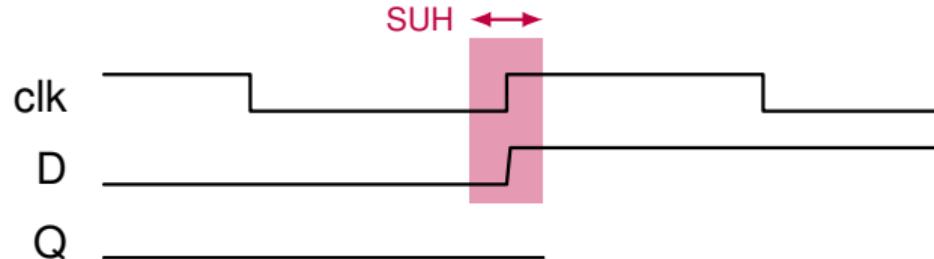
- What happens *if* the timing constraints are violated?
- Distinguish between combinational gates and sequential FFs
  - Comb. gates: simply produce incomplete results
  - Flip-flop: **Metastability**

# Flip-Flop Metastability

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- The flip-flop is supposed to assume one of two states after a clock edge
  - State reflected by the output

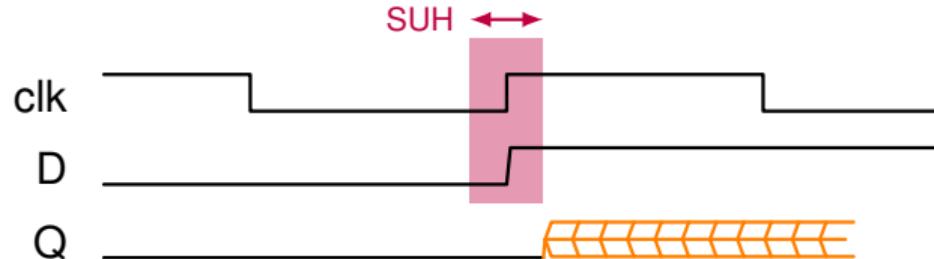



# Flip-Flop Metastability

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- The flip-flop is supposed to assume one of two states after a clock edge
  - State reflected by the output
- Transition during SUH window  $\Rightarrow$  FF might not able to decide on state



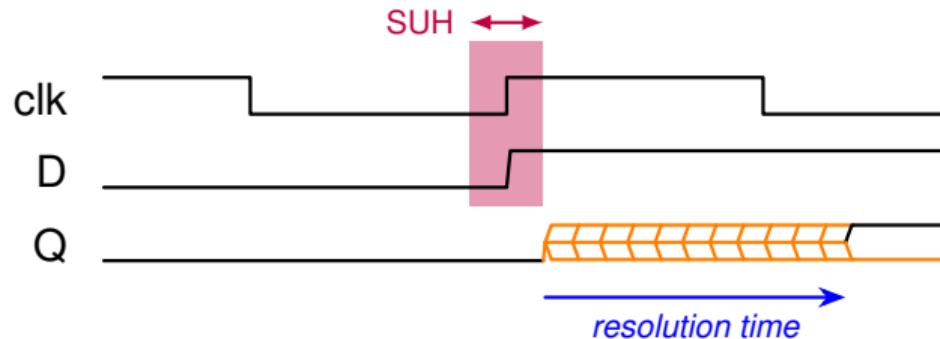

# Flip-Flop Metastability

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- The flip-flop is supposed to assume one of two states after a clock edge
  - State reflected by the output
- Transition during SUH window  $\Rightarrow$  FF might not able to decide on state
- The FF is *metastable* (i.e., between two stable states)




# Flip-Flop Metastability

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- The flip-flop is supposed to assume one of two states after a clock edge
  - State reflected by the output
- Transition during SUH window  $\Rightarrow$  FF might not able to decide on state
- The FF is *metastable* (i.e., between two stable states)

$\Rightarrow$  Flip-flop stay may at intermediate state for some *resolution time*



# Physical Analogy

HWMOD  
WS25

Metastability

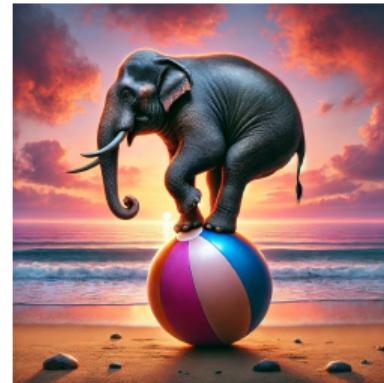
Recap

Metastability

Analogy

Consequences

MTBU


- Inherent to any system with transitions between multiple stable states

# Physical Analogy

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- Inherent to any system with transitions between multiple stable states
- Metastability is the act of *balancing* between stable states
  - Output voltage of FF, elephant on ball...

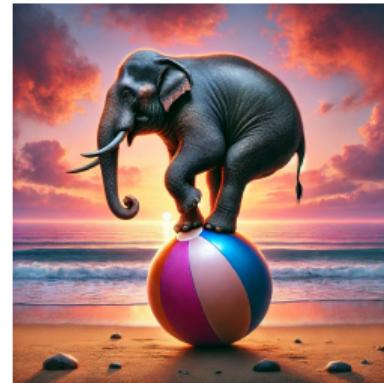


# Physical Analogy

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- Inherent to any system with transitions between multiple stable states
- Metastability is the act of *balancing* between stable states
  - Output voltage of FF, elephant on ball...
- In general: Metastability **cannot** be mitigated!

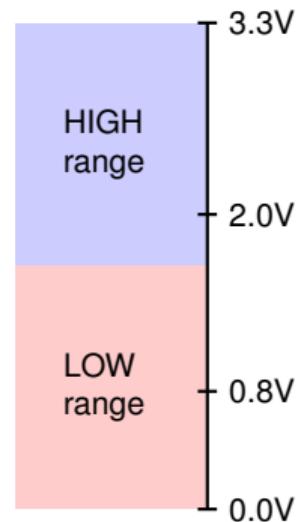



# Physical Analogy

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- Inherent to any system with transitions between multiple stable states
- Metastability is the act of *balancing* between stable states
  - Output voltage of FF, elephant on ball...
- In general: Metastability **cannot** be mitigated!
  - Neither resolution time nor final outcome can be determined in advance

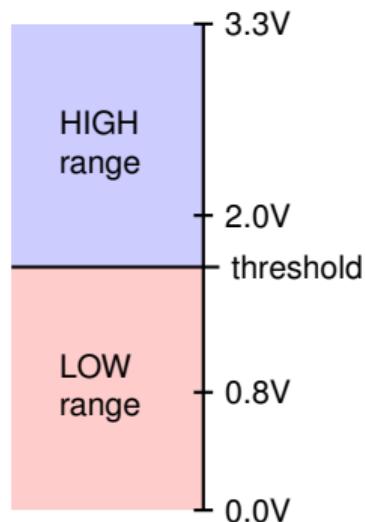



# Consequences of Metastability in Circuits

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- Obtaining binary logic levels by discretizing analog voltage

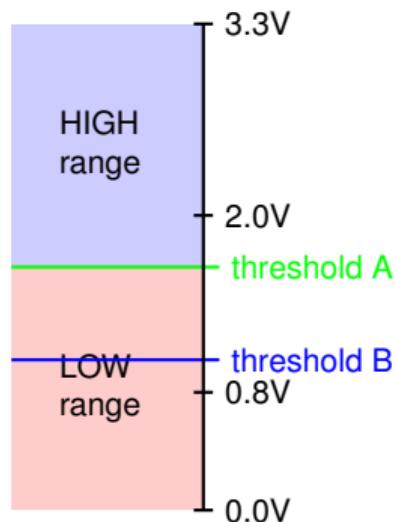



# Consequences of Metastability in Circuits

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- Obtaining binary logic levels by discretizing analog voltage
  - Comparison against threshold voltage

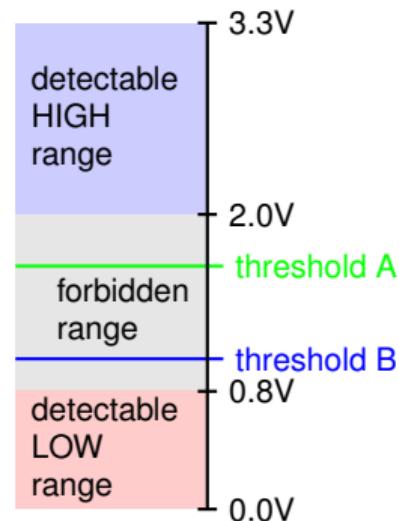



# Consequences of Metastability in Circuits

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- Obtaining binary logic levels by discretizing analog voltage
  - Comparison against threshold voltage

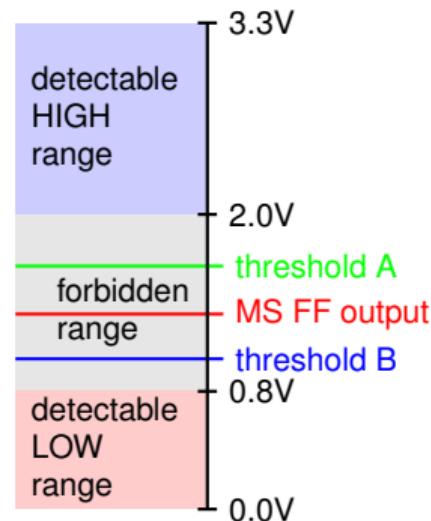



# Consequences of Metastability in Circuits

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- Obtaining binary logic levels by discretizing analog voltage
  - Comparison against threshold voltage

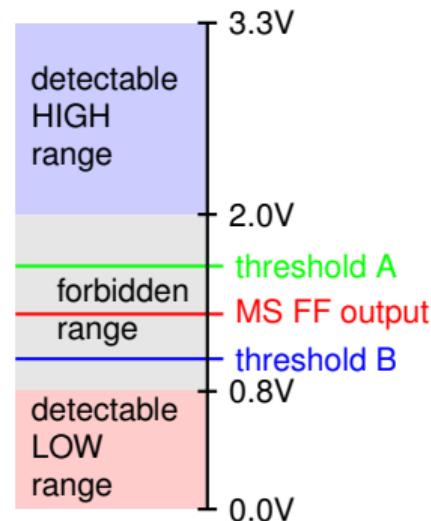



# Consequences of Metastability in Circuits

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- Obtaining binary logic levels by discretizing analog voltage
  - Comparison against threshold voltage
- Metastable flip-flop outputs intermediate voltage

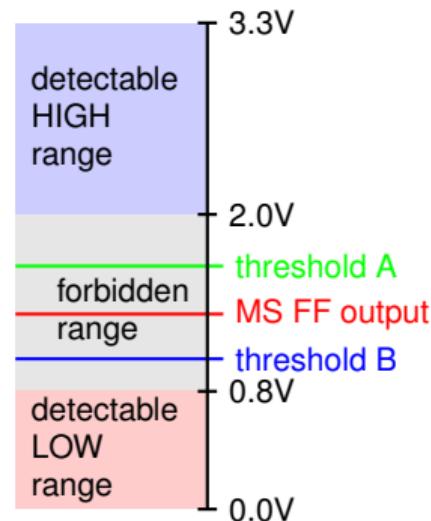



# Consequences of Metastability in Circuits

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- Obtaining binary logic levels by discretizing analog voltage
  - Comparison against threshold voltage
- Metastable flip-flop outputs intermediate voltage
- Depending on particular threshold voltages different interpretation




# Consequences of Metastability in Circuits

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- Obtaining binary logic levels by discretizing analog voltage
  - Comparison against threshold voltage
- Metastable flip-flop outputs intermediate voltage
- Depending on particular threshold voltages different interpretation
- Late transitions, Glitches, Oscillations



# Estimating Effects of Metastability

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- MS cannot be mitigated, can we determine how often it causes problems?

# Estimating Effects of Metastability

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- MS cannot be mitigated, can we determine how often it causes problems?
- Two contributing factors:
  - 1 How often input transitions fall within SH window
  - 2 How often metastability resolves before propagating

# Estimating Effects of Metastability

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- MS cannot be mitigated, can we determine how often it causes problems?
- Two contributing factors:
  - 1 How often input transitions fall within SH window
  - 2 How often metastability resolves before propagating
- Input transition rate in general uncorrelated to clock  $\Rightarrow$  assume uniform distribution of clock-to-data time

# Estimating Effects of Metastability

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- MS cannot be mitigated, can we determine how often it causes problems?
- Two contributing factors:
  - 1 How often input transitions fall within SH window
  - 2 How often metastability resolves before propagating
- Input transition rate in general uncorrelated to clock  $\Rightarrow$  assume uniform distribution of clock-to-data time
- Resolution time not predictable  $\Rightarrow$  only statistical estimation possible

# Estimating Effects of Metastability

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- MS cannot be mitigated, can we determine how often it causes problems?
- Two contributing factors:
  - 1 How often input transitions fall within SH window
  - 2 How often metastability resolves before propagating
- Input transition rate in general uncorrelated to clock  $\Rightarrow$  assume uniform distribution of clock-to-data time
- Resolution time not predictable  $\Rightarrow$  only statistical estimation possible  
 $\Rightarrow$  *Mean Time Between Upsets* (MTBU)

$$MTBU = \frac{1}{\lambda_{in} \cdot f_{clk} \cdot T_W} \cdot e^{\frac{t_{res}}{\tau_C}}$$

# MTBU Estimation

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- MTBU depends on technology and circuit parameters

$$MTBU = \frac{1}{\lambda_{in} \cdot f_{clk} \cdot T_W} \cdot e^{\frac{t_{res}}{\tau_C}}$$

input transition rate      clock frequency      FF parameter

time to resolve

# MTBU Estimation

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- MTBU depends on technology and circuit parameters
  - Note: **Rate** of input transitions
  - Exponential influence of  $t_{res}$  on MTBU!

$$MTBU = \frac{1}{\lambda_{in} \cdot f_{clk} \cdot T_W} \cdot e^{\frac{t_{res}}{\tau_C}}$$

input transition rate      clock frequency      FF parameter

time to resolve

# MTBU Estimation

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- MTBU depends on technology and circuit parameters
  - Note: **Rate** of input transitions
  - Exponential influence of  $t_{res}$  on MTBU!
- Where does this formula come from? Consider upset rate (UR)

$$MTBU = \frac{1}{\lambda_{in} \cdot f_{clk} \cdot T_W} \cdot e^{\frac{t_{res}}{\tau_C}}$$

$$\frac{1}{MTBU} = UR = \lambda_{in} \cdot \frac{T_W}{T_{clk}} \cdot e^{-\frac{t_{res}}{\tau_C}}$$

# MTBU Estimation

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- MTBU depends on technology and circuit parameters
  - Note: **Rate** of input transitions
  - Exponential influence of  $t_{res}$  on MTBU!
- Where does this formula come from? Consider upset rate (UR)
  - 1 How often input transitions fall within SH window

$$MTBU = \frac{1}{\lambda_{in} \cdot f_{clk} \cdot T_W} \cdot e^{\frac{t_{res}}{\tau_C}}$$

$$\frac{1}{MTBU} = UR = \lambda_{in} \cdot \frac{T_W}{T_{clk}} \cdot e^{-\frac{t_{res}}{\tau_C}}$$

avg. rate of transitions within SH window

# MTBU Estimation

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- MTBU depends on technology and circuit parameters
  - Note: **Rate** of input transitions
  - Exponential influence of  $t_{res}$  on MTBU!
- Where does this formula come from? Consider upset rate (UR)
  - 1 How often input transitions fall within SH window
  - 2 How often metastability resolves before propagating

$$MTBU = \frac{1}{\lambda_{in} \cdot f_{clk} \cdot T_W} \cdot e^{\frac{t_{res}}{\tau_C}}$$

$$\frac{1}{MTBU} = UR = \lambda_{in} \cdot \frac{T_W}{T_{clk}} \cdot e^{-\frac{t_{res}}{\tau_C}}$$

proportion of MS cases not resolving in time

avg. rate of transitions within SH window

# MTBU Estimation

HWMod  
WS25

Metastability  
Recap  
Metastability  
Analogy  
Consequences  
MTBU

- MTBU depends on technology and circuit parameters
  - Note: **Rate** of input transitions
  - Exponential influence of  $t_{res}$  on MTBU!
- Where does this formula come from? Consider upset rate (UR)
  - 1 How often input transitions fall within SH window
  - 2 How often metastability resolves before propagating
- Formula applicable for *uncorrelated* input data **only!**

$$MTBU = \frac{1}{\lambda_{in} \cdot f_{clk} \cdot T_W} \cdot e^{\frac{t_{res}}{\tau_C}}$$
$$\frac{1}{MTBU} = UR = \lambda_{in} \cdot \frac{T_W}{T_{clk}} \cdot e^{-\frac{t_{res}}{\tau_C}}$$

proportion of MS cases not resolving in time

avg. rate of transitions within SH window

# Lecture Complete!