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In this lecture we will discuss how VHDL designs become actual hardware implementations of the circuits they model. We
will discuss logic synthesis, placement and routing of VHDL code to circuits. We will briefly talk about the design flow in
general, and the compilation, technology mapping, placement and routing steps in particular and illustrate them at the hand
of an example. We will also introduce FPGAs as a target technology for our designs.
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Recall: Y-Diagram

Recall the Y-diagram of previous lectures. We introduced it as a useful tool for capturing and illustrating overall flow from a
model of a circuit to a proper implementation. In essence, the Y-diagram expresses that a model must be equipped with an
increasing amount of detail in order to implement it. However, we also learned that there might exist multiple paths when
descending from the model’s level of abstraction to that of the final circuit.
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Recall: Y-Diagram

On the slide we can see an example path, drawn in red, that translates between the different points of view while descending
on the level of abstraction. While we already saw this in a previous lecture, we only mentioned that these translations are
done by tools, harnessing the advantages of different viewpoints at the various levels of abstraction. We have not yet talked
about these tools, which do much of the heavy lifting involved in creating complex circuits, though.
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Recall: Y-Diagram

However, just as good software developers should be aware of the steps involved in compilation or interpretation of their pro-
grams, good hardware designers should be aware of the tasks handled by the tools that convert their models into hardware.
The overarching goal of this lecture will be to discuss this steps briefly. First, let us have a first look at the specific steps
involved in the hardware design flow before we discuss each one in a bit more detail.
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Hardware Design Flow

Each hardware design starts with a specification. This specification should clearly define the desired behavior, interface and
environment of a design. It is typically plain text or a formal description like a timing diagram of the desired behavior. Note
that you already used such specifications yourselves during this course. After all, the homework task descriptions are mostly
nothing else but a specification of a desired design. This description is the major reference during the development and
validation of the target circuit. As the specification should be easily understood by all parties involved in the overall design
process, the first task for a designer is to convert the specification into a design entry. The design entry is a description
of the design in a hardware description language, based on the specification. In our course a design entry is always VHDL
code describing the desired hardware.
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Hardware Design Flow

Given a design entry, meaning some VHDL code, the next step is to convert it to data structures that can be used by tools in
subsequent steps. This is the task of the compilation step. Among others, the code is checked for syntactical validity, type
safety and the violation of any interfaces. The result of the compilation is a network of generic logic elements, meaning we
can view the compilation as translation from a behavioral to a structural description. After the compilation, the technology
mapping step takes place. In this step the network produced by the compilation step is mapped to a target technology.
Finally, the process of creating an implementation description finishes with the placement and routing step. Here the logic
cells are placed in physical space and connected to another.
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Hardware Design Flow

After the previous steps the intermediate structural description was converted to a physical one. This description is sufficiently
detailed to either manufacture a chip from scratch, or to download it to a generic hardware platform. We will discuss this in
more detail later. The final result of this design flow is a chip implementing the initial specification. Finally, it should be noted
that, depending on the target technology, the distinct steps can become quite elaborate themselves, consisting of multiple
steps and iterations.
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Hardware Design Flow (cont’d)

The hardware design flow discussed so far captures all the steps involved in implementing a circuit. However, this is an
incomplete view. As we learned in a previous lecture, hardware development is driven by the first-time-right paradigm, where
designs have to be thoroughly validated to decrease the probability of severe bugs when deploying a circuit. For this reason
it is important to perform verification after each implementation step.
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Hardware Design Flow (cont’d)

You can find the respective verification step between two implementation steps on the right of the slide. While all steps are
paramount in practice, we will restrict ourselves to behavioral, and the occasional postlayout, simulations during this course.
Note that the simulations that you performed so far are behavioral simulations.
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Hardware Design Flow (cont’d)

However, as verification, and the steps involved, is a deep topic on its own, there will be a dedicated lecture on it at a later
point in this course. In this lecture we will focus on the synthesis, involving the compilation and technology mapping steps,
and the placement and routing step. Let us now continue by discussing these steps in more detail.
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Design Entry

As already mentioned, the design entry is a description of the target circuit in a hardware description language like VHDL.
This makes it a formal model of the target circuit. Often, especially for complex designs, this will be a behavioral RTL model.
While a specification might also be a formal model, a major difference between it and the design entry is that the design entry
is of a form that is easy to read for tools. This makes it a suitable basis for simulations and further implementation steps.
Furthermore, as the name suggests, a model in a description language also serves as documentation of the desired behavior.
If you recall the introduction to VHDL, this was initially actually the very purpose of hardware description languages.
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Design Entry

Although you already saw some design entries, such as the various full adder VHDL descriptions, let us consider another
example which we will use throughout this lecture to illustrate the implementation steps. Our example will be a synchronous
eight bit counter. The counter shall have an active-low reset, a clock input and an output for the counter value.



HWMod
WS24

Syn. & PR
Introduction

Design Entry

Compilation

Tech. Map.

FPGAs

Place & Route

Design Entry

Description of the target circuit (e.g., behavioral RTL model in VHDL)
Readable by tools, basis for simulation, documentation

Example: Synchronous counter
1 entity counter is
2 port(
3 clk, res_n : in std_ulogic;
4 number : out unsigned(7 downto 0)
5 );
6 end entity;
7

8 architecture beh of counter is begin
9 sync : process (clk, res_n) begin

10 if res_n = ’0’ then
11 number <= (others => ’0’);

12 elsif rising_edge(clk) then
13 number <= number + 1;
14 end if;
15 end process;
16 end architecture;

4

Design Entry

Description of the target circuit (e.g., behavioral RTL model in VHDL)
Readable by tools, basis for simulation, documentation

Example: Synchronous counter
1 entity counter is
2 port(
3 clk, res_n : in std_ulogic;
4 number : out unsigned(7 downto 0)
5 );
6 end entity;
7

8 architecture beh of counter is begin
9 sync : process (clk, res_n) begin

10 if res_n = ’0’ then
11 number <= (others => ’0’);

12 elsif rising_edge(clk) then
13 number <= number + 1;
14 end if;
15 end process;
16 end architecture;

Logic Synthesis, Place and Route
Design Entry

Design Entry

Recall that since we want to model a synchronous circuit with asynchronous reset, our sensitivity list only contains the clock
and the reset. The counter is initially reset to the value 0 using an asynchronous reset. Note that it is checked if the reset is
low, because we want an active-low reset.
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At each rising edge of the clock input the counter value shall increase by one. Can you recall what happens when the counter
reaches its maximum value, meaning all eight bits are set to one, and it is incremented further? You might want to pause the
video and try to recall. As the type of the counter is unsigned, it will simply wrap-around on an overflow.
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Compilation

Next, after we have a design entry, the compilation step takes place. As already mentioned, this step converts the design
entry into a network of generic logic elements. Okay, but what does this mean? Let us first discuss the network part. With
circuits being just a set of components connected via wires, they can easily be described as graphs. The circuit components
become nodes and the wires edges. The compilation step will result in a data structure containing a graph corresponding to
the circuit modeled by our design entry. This data structure is typically called netlist.
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Compilation

On the slide you can see the resulting network when compiling our counter example. Not too surprising, it consists of an eight
bit adder and eight flip-flops with feedback to the adder. What about the second part of the compilation step, the ”generic”
logic elements? Well, in a nutshell, the compilation simply converts a design entry, which is on the behavioral axis of the
Y-diagram, to a structural description. It is completely oblivious to any specific technology and uses basic circuit elements
that do not depend on a specific technology as well. Examples for such generic circuit elements are multiplexers, basic gates
but also adders and flip-flops. These elements are so fundamental that it is safe to assume that any target technology must
be able to create them by some means.
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For example, the adder in our example is simply shown as generic addition block. Naturally, this is not a valid description of
an adder circuit. However, the tool knows how the interface of an adder looks like and that the target technology will be able
to provide a circuit that can perform addition using this interface. A more elaborate description is not necessary at this step.
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In particular, even rather basic elements like the particular flip-flops used during the compilation might not even exist in the
target technology. For example, it could be that no flip-flops with asynchronous reset are available, although the model
requires this functionality. However, dealing with issues like this is the job of the technology mapping step.
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Technology Mapping

The next step after the compilation is the technology mapping. Here the generic circuit elements used by the compilation
are mapped to the target technology. Such target technologies can, for example, be application-specific-integrated-circuits,
programmable-array-logic, gate-arrays or FPGAs. Do not worry if you did not here about these technologies before, they will
be covered in another course. In this course we will only consider FPGAs, which we will therefore introduce in this lecture.
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Technology Mapping

The way this mapping works is that each technology comes with a library of available cells that can be used. Such a library
can, for example, consist of a set of gates with which arbitrary logic functions can be implemented, but also of sequential
elements like flip-flops. However, also more specialized or less frequently used elements like particular memories or latches
can be part of the library. The tool responsible for mapping the generic elements to the target technology then basically
tries to implement each generic logic element of the compilation using the available ones.
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Technology Mapping

Note that after this step the target technology is set and can no longer be changed in subsequent steps.
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Introduction to FPGAs

Let us now introduce FPGAs, the target technology we use in this and further courses. This is an acronym for field-
programmable-gate-array.
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So far so good, but what does this actually mean?
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FPGAs are one instance of a class of generic circuits that can be configured to implement a wide range of digital logic circuits.
To some limited extent, you can view such generic circuits like a box filled with Lego blocks. As long as you do not run out of
blocks, you can build whatever you want assuming it can be built using Lego. Just like this box of toy bricks, generic circuits
provide you with a set of different building blocks you can connect to compose a complex system. But how can you actually
compose different circuits out of a static chip?
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The answer to this question are programmable logic cells and a programmable interconnect. We will view both in detail over
the next few slides. However, first let us address why one would use such a generic circuit at all, and why they are not used
all the time.
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Let us start with some advantages of generic over full custom chips. First, generic chips can be manufactured in larger
volumes as they address a larger audience than most application-specific designs do. This makes them, for a hardware
design, comparably cheap. Furthermore, if we recall the Y-diagram, some steps like the manufacturing were already done.
This makes designing circuits for FPGAs simpler, faster and reduces the entry barrier to getting developing hardware.
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So far so good, but what about disadvantages? While having an already manufactured chip comes with some benefits, it also
has some drawbacks when compared to a full custom design. In particular, the amount of possible optimizations is limited.
Furthermore, a chip that is made for arbitrary designs is inevitably subject to overhead. To revisit the Lego example: Assume
you are provided with a box of an equal amount of red and blue blocks because most people need a combination of both. If
you only happen to require red blocks, the blue blocks are for naught, only consuming space you could use for red blocks.
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At this point this generic circuits likely still appear quite magical. Therefore, we will break down how a simple generic circuit
could be implemented on the next few slides.
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Let us first address the issue that we must be able to implement arbitrary digital logic in our FPGAs. As we all know, defining
an arbitrary digital logic function requires us to map each possible input to an output. We do this using a truth table, just as
the one shown on the slide for the function not ”A”.
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One way to build programmable logic is doing exactly the same. So-called look-up tables are used, which take arbitrary input
vectors and return the respective output. The slide shows a two-input look-up table as blackbox. This element can implement
all sixteen possible two-input functions. Let us now look how this abstract look-up table can be implemented in hardware.
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A straightforward implementation is based on SRAM. For our purpose it suffices to consider this kind of memory as being
programmed once after starting our circuit, and then providing the programmed values until the power supply is cut. We can
use such memory cells to store the truth table of our desired logic function. These memory cells are then connected to a
multiplexer controlled by the function’s input signals. Depending on their value the respective truth table value is forwarded.
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Since we do not only want to build combinational, but also sequential logic, we equip our programmable logic block also with
an optional flip-flop. Depending on another SRAM cell we can either use the flip-flop on its own or to sample the truth table
output.
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And with this we have our simple programmable logic circuit. All we have to do is to program the SRAM cells and we get an
arbitrary two-input logic function with optional flip-flop. We will call blocks like this logic elements from now on. Please pause
the video for a moment, study the circuit in detail and make sure that you understand why and how this is programmable.
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While our simple logic element is illustrative and generally not too far from reality, the logic elements in real FPGAs are
usually more complex and also powerful. The slide shows the schematic of a logic element used in an actual FPGA.
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Among other things, we can observe that the look-up table has four inputs instead of two, allowing it to implement significantly
more logic functions.
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Furthermore, the table is equipped with a dedicated logic for carry chains which allows efficient adder implementations. The
reason for that is that addition is required often, and it is typical practice to make the common case fast.
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The flip-flop comes with some additional logic attached to it, allowing to feed it from more sources, setting or clearing its
content and even disabling it. Furthermore, some FPGAs feature logic elements with more than a single flip flop. However,
this is not the case for the one shown on the slide.
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In its majority, an FPGA consists of such logic elements. Multiple logic elements are gathered in a cluster and such clusters
are then physically arranged in a grid. The image on the slide shows the overview of an actual FPGA chip, where everything
shaded blue consists of logic elements. Let us now zoom into this grid.
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This view allows us to clearly observe the grid of rectangular cells. Note how the chip does not only consist of a single type
of cell, but rather of multiple different ones, highlighted by the different colors.
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The majority of cells are the clusters of logic elements. In this up-close view we can clearly observe that for this particular
FPGA logic elements form clusters of size sixteen.



HWMod
WS24

Syn. & PR
Introduction

Design Entry

Compilation

Tech. Map.

FPGAs

Place & Route

FPGA Structure

FPGA consists of a grid of LE clusters (and other elements)

16 LEsMemory

Multiplier

IO Cell

10

FPGA Structure

FPGA consists of a grid of LE clusters (and other elements)

16 LEsMemory

Multiplier

IO Cell

Logic Synthesis, Place and Route
FPGAs

FPGA Structure

Next, we also have some dedicated memory cells. The reason for that is that many designs require memory to store data.
And while it is possible to build memory out of logic elements, this is very costly in terms of chip area and also performance.
To combat this FPGA vendors tend to equip their chips with such embedded memory blocks that offer a lot denser and faster
memory.
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Furthermore, just as the dedicated adder logic we could observe in the logic element on the previous slide, many FPGAs
come with dedicated multipliers. Just as with memories and adders, this is a lot more area efficient and faster than building
multipliers out of logic elements considering that multipliers are used often.
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In order to interface with the outside world, FPGA chips are equipped with IO-cells that provide a plethora of different input
and output functionality. Finally, the black areas mark parts of the chip that are not equipped with any usable logic.
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While programmable logic cells are paramount for creating a generic circuit, they are only one part of it. We also need a
means to compose networks of this simple cells in order to implement our target circuits.
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FPGAs can connect logic elements by using programmable interconnect. In a nutshell, all logic elements are connected to
a switching matrix where multiple wires of adjacent logic elements and dedicated transport wires intersect. By programming
which of these intersections are tapped, we can configure where the inputs of logic elements come from and where their
outputs are forwarded to.
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If we zoom in into such a switching matrix, we can see that the programmable intersections are again implemented using
SRAM cells. The respective switching itself happens using multiplexers. We will not delve into this in more detail in this
lecture.



HWMod
WS24

Syn. & PR
Introduction

Design Entry

Compilation

Tech. Map.

FPGAs

Place & Route

Technology Mapping to an FPGA

Generic elements are implemented using LEs and connecting them

Each LE implements a part of the logic

In this case the available carry chain for adders is used

12

Technology Mapping to an FPGA

Generic elements are implemented using LEs and connecting them

Each LE implements a part of the logic

In this case the available carry chain for adders is used

Logic Synthesis, Place and Route
FPGAs

Technology Mapping to an FPGA

Let us now return to the technology mapping step of a synchronous counter to an SRAM-based FPGA. Recall that the overall
goal was to map the generic circuit shown on the slides to the target technology. For an FPGA this means that we must map
the circuit to a network of logic elements.
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On the right of the slide the result of such a mapping, performed by a tool, is shown. The teal boxes right are the eight
flip-flops our eight bit counter requires. These flip-flops are fed by a chain of logic. Let us have a closer look at one of these
logic blocks.
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Zooming into such a block reveals that in our particular example the dedicated carry chain for adders is used instead of
the lookup table, clearly shown by use of the carry out, ”C-OUT” output. This makes sense considering that we modelled a
counter. The tool thus picked the most efficient implementation available in the target technology.
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Placement & Routing

The final step in obtaining a physical description of our design is the placement and routing one. As the name suggests,
these are actually two steps. However, due to their close interplay we will cover them together. First, let’s consider the
placement step. As mentioned at the beginning of this lecture, the task of this step is to place the elements used in the
network produced by the technology mapping step to the available physical area. For an FPGA this means that we must
assign each logic element, memory cell, multiplier and IO cell to a cell of the grid of the respective type. While this might
sound easy, it is actually highly non-trivial. First, for very complex designs that fill most of the available area the physical
constraints of possible cell locations can make it hard to place connected cells next to another. Furthermore, naturally the
placement has a big impact on the wires used to connect cells and thus on the overall timing. In order to meet timing
constraints the placer thus has to minimize delay due to the wiring without knowing the wiring yet.
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Placement & Routing

Computing this wiring is the job of the routing step. It takes the cell locations generated by the placer and tries to connect
them via the available interconnect resources. As mentioned, the wiring between cells must satisfy the required timing
constraints.



HWMod
WS24

Syn. & PR
Introduction

Design Entry

Compilation

Tech. Map.

FPGAs

Place & Route

Placement & Routing

Placement: Choose position of LEs and other elements
Constrained by physical availability
Minimize not yet known interconnect

Routing: Connect the placed cells
Constrained by available interconnect
Goal: Meet timing constraints

Paramount for timing and non-trivial
Multiple iterations of placement and respective routing
Driven by heuristics

13

Placement & Routing

Placement: Choose position of LEs and other elements
Constrained by physical availability
Minimize not yet known interconnect

Routing: Connect the placed cells
Constrained by available interconnect
Goal: Meet timing constraints

Paramount for timing and non-trivial
Multiple iterations of placement and respective routing
Driven by heuristics

Logic Synthesis, Place and Route
Placement & Routing

Placement & Routing

In general, placing and routing cells is highly non-trivial. To combat this the placing and routing steps are usually executed in
an iterative manner where the placer gets timing information about previous tries and thus is able to incrementally improve
its output. Furthermore, both steps are typically guided by heuristics.
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Placement & Routing

On the right side of the slide the final result of placing and routing our simple example circuit on an FPGA is shown. We
can observe that the eight logic elements used in the network produced by the technology mapping step are placed within a
single cluster. The brown lines show how the cells are connected to another and to the chip’s IO cells.
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FPGA Bitstream

In case of an FPGA, the final result of the design flow is a so-called bitstream. This basically encodes the content of
all the chip’s SRAM cells. By programming the SRAM cells using this bitstream, all logic elements and the interconnect are
configured as required to implement the target circuit. The figure at the bottom of the slide illustrates how such a configuration
looks like for a single logic element of our counter implementation. We can see the dedicated carry chain being used and fed
into the flip-flop. This flip-flop is connected to an asynchronous reset and clock, just as in our VHDL code.
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Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.
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