HWMod
WS25

e Hardware Modeling [VU] (191.011)
- WS25 —

Logic Synthesis, Place and Route

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:03 (f8a58e9)

HWMod
WS25

Introduction

Recall: Y-Diagram

m Tools translate between different views

Behavior

A

VHDL Design

Geometry Structure

System Level

Algorithmic Level

Register-Transfer Level

Logical Level

Circuit Level

HWMod
WS25

Introduction

Recall: Y-Diagram

m Tools translate between different views
m VHDL design to circuit implementation

Behavior

A

VHDL Design

Geometry Structure

System Level

Algorithmic Level

Register-Transfer Level

Logical Level

Circuit Level

HWMod
WS25

Introduction

Recall: Y-Diagram

m Tools translate between different views
m VHDL design to circuit implementation

m What do the tools do? How do translations work?

Behavior System Level

A

Algorithmic Level

VHDL Design
Register-Transfer Level

Logical Level

Geometry Structure Circuit Level

Hardware Design Flow

HWMod

e [Specification] verbal / formal description of behavior
e [Design Entry] model in description language (e.g., VHDL)

Hardware Design Flow

HWMod
WS25 [

Specification] verbal / formal description of behavior

S
s % [Desigi Entry] model in description language (e.g., VHDL)
5
—[Compilation] translation to network of generic logic elements
©
*§ [Technology Mapping] mapping to cells of target technology

| Placement & Routing | placement and interconnection of cells

Hardware Design Flow

HWMod

e [Specification] verbal / formal description of behavior
g y
s % [Design Entry] model in description language (e.g., VHDL)

3

—[Compilation] translation to network of generic logic elements
©
*§ [Technology Mapping] mapping to cells of target technology

| Placement & Routing | placement and interconnection of cells
3
2 (Fabrication / Download | physical implementation
o

[Chip Complete |

HWMod
WS25

Introduction

Hardware Design Flow (cont'd)

Implementation

[Specification]

!

Design Entry]

!

[Compilation]

| Technology Mapping |

| Placement & Routing |

(Fabrication / Download |

[Chip Complete |

HWMod
WS25

Introduction

Hardware Design Flow (cont'd)

Implementation

[Specification]

!

Design Entry]

|

[Compilation]

| Technology Mapping |

| Placement & Routing |

(Fabrication / Download |

[Chip Complete |

Validation
Verification
Beh. Sim
Func. Sim.
Prelayout Sim.

Postlayout Sim.

Test

HWMod
WS25

Introduction

Hardware Design Flow (cont'd)

Implementation

Synthesis

[Specification]

!

Design Entry]

|

[Compilation]

| Technology Mapping |

| Placement & Routing |

(Fabrication / Download |

[Chip Complete |

Validation
Verification
Beh. Sim
Func. Sim.
Prelayout Sim.

Postlayout Sim.

Test

Design Entry

e m Description of target circuit (behavioral RTL in VHDL)

Design Entry

Design Entry

e m Description of target circuit (behavioral RTL in VHDL)
m Readable by tools, basis for simulation and documentation

Design Entry

Design Entry

e m Description of target circuit (behavioral RTL in VHDL)
m Readable by tools, basis for simulation and documentation

m Example: Synchronous counter

Design Entry entity counter is

1

2 port (

3 clk, res_n : in std_ulogic;

4 number : out unsigned(7 downto 0)
5)i

6 end entity;

7

8 architecture beh of counter is begin
9 sync : process (clk, res_n) begin
10 if res_n = "0’ then

11 number <= (others => '0');

12 elsif rising_edge (clk) then

13 number <= number + 1;

14 end if;

15 end process;
16 end architecture;

Design Entry

e m Description of target circuit (behavioral RTL in VHDL)
m Readable by tools, basis for simulation and documentation

m Example: Synchronous counter

Design Entry entity counter is

1

2 port (

3 clk, res_n : in std_ulogic;

4 number : out unsigned(7 downto 0)
5)i

6 end entity;

7

8 architecture beh of counter is begin
9 sync : process (clk, res_n) begin
10 if res_n = '0’ then

11 number <= (others => ’'0');

12 elsif rising_edge (clk) then

13 number <= number + 1;

14 end if;

15 end process;
16 end architecture;

Design Entry

e m Description of target circuit (behavioral RTL in VHDL)
m Readable by tools, basis for simulation and documentation

m Example: Synchronous counter

Design Entry entity counter is

1

2 port (

3 clk, res_n : in std_ulogic;

4 number : out unsigned(7 downto 0)
5)i

6 end entity;

7

8 architecture beh of counter is begin
9 sync : process (clk, res_n) begin
10 if res_n = "0’ then

11 number <= (others => '0');

12 elsif rising_edge (clk) then

13 number <= number + 1;

14 end if;

15 end process;
16 end architecture;

Compilation

HWMod
WS25

m Design entry converted to technology-agnostic netlist

Compilation

Compilation

HWMod
WS25

m Design entry converted to technology-agnostic netlist
m Netlist: circuit as graph < RTL schematic

Compilation

Compilation

HWMod

WS25
m Design entry converted to technology-agnostic netlist
m Netlist: circuit as graph < RTL schematic

counter:cnt
(=) Tho cin AddO number[0]~reg[7.0]

A[7.0] OUT[7.0]
8'h1 B[7.0] number[7..0]
clk|

res_n

Compilation

HWMod
WS25
m Design entry converted to technology-agnostic netlist
m Netlist: circuit as graph < RTL schematic
m Generic components (MUX, adder, basic gates)

counter:cnt
= Tho cin_ AddO number[0]~reg[7.0]

A[7.0] OUT[7.0]
8'h1 B[7.0] number[7..0]
clk|

res_n

Compilation

HWMod
WS25

m Design entry converted to technology-agnostic netlist
m Netlist: circuit as graph < RTL schematic

m Generic components (MUX, adder, basic gates)
m Tools determine interfaces and check connections

counter:cnt
= Tho cin AddO number[0]~reg[7.0]

A[7..M\ OUT[7.0]

8'h1 B[7. 0]5 ’ number[7..0]

clk]

res_n

Compilation

HWMod
WS25

m Design entry converted to technology-agnostic netlist
m Netlist: circuit as graph < RTL schematic

m Generic components (MUX, adder, basic gates)

m Tools determine interfaces and check connections
m Might not exist in target technology

counter:cnt
= Tho cin AddO number[0]~reg[7.0]

A[7..M\ OUT[7.0]

8'h1 B[7. 0]5 ’ number[7..0]

clk]

Technology Mapping

HWMod
WS25

m Map generic elements to target technology

Tech. Map.

Technology Mapping

HWMod
WS25

m Map generic elements to target technology
m E.g.: ASIC, PAL, Gate-Array, FPGA

Tech. Map.

Technology Mapping

HWMod
WS25

m Map generic elements to target technology
m E.g.: ASIC, PAL, Gate-Array, FPGA

m Requires target library of available cells
m Gates, sequential elements, etc.

Tech. Map.

m Target technology is now fixed

Introduction to FPGASs

HWMod
WS25

m Field Programmable Gate Array

FPGAs

Introduction to FPGASs

HWMod
WS25

m Field Programmable Gate Array ?!

FPGAs

Introduction to FPGASs

HWMod
WS25

m Field Programmable Gate Array ?!
m Generic circuit, configurable for target circuit

FPGAs

Introduction to FPGASs

HWMod
WS25

m Field Programmable Gate Array ?!
m Generic circuit, configurable for target circuit
m Programmable logic cells and interconnect

FPGAs

Introduction to FPGASs

HWMod
WS25

m Field Programmable Gate Array ?!
m Generic circuit, configurable for target circuit

m Programmable logic cells and interconnect
+ Large volumes = comparably cheap

FPGAs

Introduction to FPGASs

HWMod
WS25

m Field Programmable Gate Array ?!
m Generic circuit, configurable for target circuit

m Programmable logic cells and interconnect

+ Large volumes = comparably cheap
+ Already fabricated = simpler, faster design

FPGAs

Introduction to FPGASs

HWMod
WS25

m Field Programmable Gate Array ?!
m Generic circuit, configurable for target circuit

m Programmable logic cells and interconnect

+ Large volumes = comparably cheap
+ Already fabricated = simpler, faster design
- Already fabricated = less optimizations

FPGAs

Introduction to FPGASs

HWMod
WS25

m Field Programmable Gate Array ?!
m Generic circuit, configurable for target circuit

m Programmable logic cells and interconnect

+ Large volumes = comparably cheap

+ Already fabricated = simpler, faster design
- Already fabricated = less optimizations

- Generic design = inevitable overhead

FPGAs

Introduction to FPGASs

HWMod
WS25

m Field Programmable Gate Array ?!
m Generic circuit, configurable for target circuit

m Programmable logic cells and interconnect

+ Large volumes = comparably cheap

+ Already fabricated = simpler, faster design
- Already fabricated = less optimizations

- Generic design = inevitable overhead

m How can such circuits be built?

FPGAs

Look-Up Tables (LUTSs)

HWMod
Ws25 m How to implement arbitrary logic functions?

m Map inputs to outputs = truth table

FPGAs

Look-Up Tables (LUTSs)

HWMod
Ws25 m How to implement arbitrary logic functions?

m Map inputs to outputs = truth table
= Same in FPGAs: Look-up Tables (LUTs)

FPGAs

LUT2 —Y

Look-Up Tables (LUTSs)

HWMod
Ws25 m How to implement arbitrary logic functions?

m Map inputs to outputs = truth table
= Same in FPGAs: Look-up Tables (LUTs)
m Store in SRAM cells, use inputs to select

FPGAs

LUT2 —Y

HWMod
WS25

FPGAs

Look-Up Tables (LUTSs)

m How to implement arbitrary logic functions?

m Map inputs to outputs = truth table
= Same in FPGAs: Look-up Tables (LUTs)
m Store in SRAM cells, use inputs to select

m For sequential logic, add flip-flops

LUT2 —Y

HWMod
WS25

FPGAs

Look-Up Tables (LUTSs)

m How to implement arbitrary logic functions?

m Map inputs to outputs = truth table
= Same in FPGAs: Look-up Tables (LUTs)
m Store in SRAM cells, use inputs to select

m For sequential logic, add flip-flops
m Logic Element (LE)

Logic Element

LUT2 —Y

LEs in Real FPGAs

Hiiod m Real LEs are more complex and powerful

WS25
Register Chain Register Bypass
Routing from LAB-Wide
previous LE Synchronous LAB-Wide Programmable
Load Synchronous | Register
LE el
FPGAS Carry-In J ?‘ea'
data 1 S Row, Column,
data 2 Synch And Direct Link
Py Look-Up Table| Carry [H e and o q Routing
LUT) | Chain g
(Clear Logic
data 4- ENA
CLAN Row, Column,
-And Direct Link
aber Routing
label2
Chip-Wide | Asynchronous Local
Reset Clear Logic Routing
Register Feedback (DEV_CLRn)
Clock & Register Chain
Clock Enable Output
Select
LE Carry-Out labcki— 1
labck2—;
labelkenat—t
labclkena2—

LEs in Real FPGAs

Hliod m Real LEs are more complex and powerful

WS25
Register Chain Register Bypass
Routing from LAB-Wide
previous LE Synchronous LAB-Wide Programmable
Load Synchronous | Register
LE al
FPGAs Carry-In | CJ\eav
data 1 S Row, Column,
data 2 Synch And Direct Link
G s Look-Up Table| Carry —D oo o q Routing
LUT) | Chain !
(Clear Logic
data 4- ENA
CLEN Row, Column,
-And Direct Link
abe Routing
label2
Chip-Wide | Asynchronous Local
Reset Clear Logic Routing
Register Feedback (DEV_CLRn)
Clock & Register Chain
Clock Enable Output
Select
LE Carry-Out labcki— 1
labck2—
labelkenat—t
labclkena2—

HWMod
WS25

FPGAs

LEs in Real FPGAs

m Real LEs are more complex and powerful
m Bigger LUTs (3-6 inputs), dedicated carry chains

Register Chain Register Bypass
Routing from LAB-Wide
previous LE Synchronous LAB-Wide Programmable
Load Synchronous | Register
LE Carry-In J Clear
]
data 1 S Row, Column,
data 2 Synchronous And Direct Link
data 3 LookUp Table) Carry _D— Load and P 9 Routing
wn ain Clear Logic
data 4- ENA
CLEN Row, Column,
And Direct Link
Routing
labelrt
label2
Chip-Wide A%YI"CWS"OHS Local
lear Logic
Reset Routing
Register Feedback (DEV_CLRn)
Clock & Register Chain
Clock Enable Output
Select
LE Carry-Out labcki— 1
labck2—;
labelkenat—t
labclkena2—

HWMod
WS25

FPGAs

LEs in Real FPGAs

m Real LEs are more complex and powerful

m Bigger LUTs (3-6 inputs), dedicated carry chains
m Clear/set logic, sometimes multiple FFs

Register Chain

Register Bypass
Routing from LAB-Wide
previous LE Synchronous LAB-Wide Programmable
Load ~ Synchronous
LE Carry-In Register

J ?‘ea'
v

{] Row, Column,
Synchronous And Direct Link
LMK‘L[{'JEJ”‘E g:;"‘r" _D Load and o Routing
(Lum Clear Logic
ENA
CLEN Row, Column,

data 4-
And Direct Link
Routing
labelrt
label2
Chip-Wide A%YI"CWS"OHS Local
lear Logic
Reset Routing
Register Feedback (DEV_CLRn)
Clock & Register Chain
Clock Enable Output
Select
LE Carry-Out labcki— 1

labclk2—

labelkena 1—
labclkena2—

FPGA Structure

HWMod

WS2s m FPGA: grid of LE clusters and other elements
——— ;
|
I 1

FPGA Structure

HWMod

WS2s m FPGA: grid of LE clusters and other elements
|= IIIIIIIIIIIIIIIIIIIIIIIIIII ®-"“"K
|
I 1

FPGA Structure

HWMod
WS2s m FPGA: grid of LE clusters and other elements
|= IIIIIIIIIIIIIIIIIIIIIIIIIII ®-"“"K
|
D\
16 LEs
I 1

FPGA Structure

HWMod
WS2s m FPGA: grid of LE clusters and other elements

| HiH

Memory 16 LEs

FPGA Structure

HWMod

WS2s m FPGA: grid of LE clusters and other elements
e @\
|

— Multiplier

L]

Memory 16 LEs

FPGA Structure

HWMod

WS2s m FPGA: grid of LE clusters and other elements
e @\
|

— Multiplier

L]

Memory 16 LEs

FPGA Programmable Interconnect

HWMod
WS25

m How to connect LEs to form complex circuits?

FPGAs

FPGA Programmable Interconnect

HWMod
WS25

m How to connect LEs to form complex circuits?
= Programmable interconnect

FPGAs

LE LE —

LE LE —

FPGA Programmable Interconnect

HWMod
WS25

m How to connect LEs to form complex circuits?
= Programmable interconnect
m Programmable via SRAM (connected through MUXes)

FPGAs

LE LE —

LE

ATN

\\-/
—
m

\

Technology Mapping to an FPGA

s m Generic elements implemented using LEs

FPGAs

Technology Mapping to an FPGA

RHA m Generic elements implemented using LEs
m Each LE implements part of the logic

FPGAs

counterscnt
= Thocin Addo number{0]~reg(7.0]
a0 I ourrr.op
1 o701 %) B B 0.0
Dscir
cLan
o

vvvvvvv

| &

Technology Mapping to an FPGA

RHA m Generic elements implemented using LEs
m Each LE implements part of the logic
m Here: carry chain for adders is used

FPGAs

oaTAA >

DATAB[

DATAD >

vvvvvvv

| &

Placement & Routing

HWMod
WS25

Placement & Routing

HWMod
Wi m Placement: Choose position of LEs

Placement & Routing

HWMod
Wi m Placement: Choose position of LEs

m Constrained by physical availability

Placement & Routing

HWMod
Wi m Placement: Choose position of LEs

m Constrained by physical availability
m Minimize unknown interconnect

Placement & Routing

HWMod
Wi m Placement: Choose position of LEs

m Constrained by physical availability
m Minimize unknown interconnect
m Routing: Connect placed cells

m Constrained by available interconnect
m Goal: Meet timing constraints

Placement & Routing

HWMod
Wi m Placement: Choose position of LEs

m Constrained by physical availability
m Minimize unknown interconnect
m Routing: Connect placed cells
m Constrained by available interconnect
m Goal: Meet timing constraints
m Paramount for timing, non-trivial

m Multiple iterations
m Driven by heuristics

Placement & Routing

HWMod
Wi m Placement: Choose position of LEs

m Constrained by physical availability
m Minimize unknown interconnect =

m Routing: Connect placed cells
m Constrained by available interconnect
m Goal: Meet timing constraints

m Paramount for timing, non-trivial

m Multiple iterations
m Driven by heuristics

Place & Route

FPGA Bitstream

e m For FPGAs: result is a bitstream

m Content of all SRAM cells
m Configures LEs and interconnect

FPGA Bitstream

e m For FPGAs: result is a bitstream

m Content of all SRAM cells
m Configures LEs and interconnect

HWMod
WS25

Lecture Complete!

Modified: 2025-12-16, 16:03 (f8a58e9)

	Logic Synthesis, Place and Route
	Introduction
	Design Entry
	Compilation
	Technology Mapping
	FPGAs
	Placement & Routing

