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Introduction

Recall: Y-Diagram

m Tools translate between different views
m VHDL design to circuit implementation

m What do the tools do? How do translations work?
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m Design entry converted to technology-agnostic netlist
m Netlist: circuit as graph < RTL schematic

m Generic components (MUX, adder, basic gates)

m Tools determine interfaces and check connections
m Might not exist in target technology

counter:cnt
= Tho cin AddO number[0]~reg[7.0]

A[7..M\ OUT[7.0]

8'h1 B[7. 0]5 ’ number[7..0]

clk]
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m Map generic elements to target technology
m E.g.: ASIC, PAL, Gate-Array, FPGA

m Requires target library of available cells
m Gates, sequential elements, etc.

Tech. Map.

m Target technology is now fixed
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m Field Programmable Gate Array ?!
m Generic circuit, configurable for target circuit

m Programmable logic cells and interconnect

+ Large volumes = comparably cheap

+ Already fabricated = simpler, faster design
- Already fabricated = less optimizations

- Generic design = inevitable overhead

m How can such circuits be built?

FPGAs
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FPGAs

Look-Up Tables (LUTSs)

m How to implement arbitrary logic functions?

m Map inputs to outputs = truth table
= Same in FPGAs: Look-up Tables (LUTs)
m Store in SRAM cells, use inputs to select

m For sequential logic, add flip-flops
m Logic Element (LE)

Logic Element

LUT2 —Y
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LEs in Real FPGAs

m Real LEs are more complex and powerful

m Bigger LUTs (3-6 inputs), dedicated carry chains
m Clear/set logic, sometimes multiple FFs
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m How to connect LEs to form complex circuits?
= Programmable interconnect
m Programmable via SRAM (connected through MUXes)

FPGAs
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RHA m Generic elements implemented using LEs
m Each LE implements part of the logic
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Technology Mapping to an FPGA

RHA m Generic elements implemented using LEs
m Each LE implements part of the logic
m Here: carry chain for adders is used

FPGAs
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Wi m Placement: Choose position of LEs

m Constrained by physical availability
m Minimize unknown interconnect =

m Routing: Connect placed cells
m Constrained by available interconnect
m Goal: Meet timing constraints

m Paramount for timing, non-trivial

m Multiple iterations
m Driven by heuristics

Place & Route
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