
HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

Hardware Modeling [VU] (191.011)
– WS25 –

Sequential Circuit Example: LFSR

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-11-11, 14:41 (f8a58e9)

Hardware Modeling [VU] (191.011)
– WS25 –

Sequential Circuit Example: LFSR

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Sequential Circuit Example: LFSR

In the previous lecture you learned how different flavors of latches and flip-flops can be described in VHDL. However, while
these elements enable the construction of sequential circuits within the synchronous paradigm, you have not yet seen how
such a circuit can actually be described. This is what we’ll do in this lecture.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register

Chain of FFs (shift-register ) fed by linear combination of its current state
Pseudo-random sequence of bits

1

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register

Chain of FFs (shift-register ) fed by linear combination of its current state
Pseudo-random sequence of bits

Sequential Circuit Example: LFSR

Example: 4-bit LFSR

On the slide you can find the schematic of our example circuit. In particular, this circuit is a so-called linear-feedback-shift-
register, abbreviated as LFSR.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register
Chain of FFs (shift-register ) fed by linear combination of its current state

Pseudo-random sequence of bits

1

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register
Chain of FFs (shift-register ) fed by linear combination of its current state

Pseudo-random sequence of bits

Sequential Circuit Example: LFSR

Example: 4-bit LFSR

As the name suggests, such circuits revolve around a so-called shift register , fed by a linear combination of its current state.
A shift register itself is nothing more than a chain of flip-flops, where each flip-flop samples the output of its predecessor. This
essentially shifts the currently stored bits by one flip-flop per clock period, hence the name.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register
Chain of FFs (shift-register ) fed by linear combination of its current state
Pseudo-random sequence of bits

1

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register
Chain of FFs (shift-register ) fed by linear combination of its current state
Pseudo-random sequence of bits

Sequential Circuit Example: LFSR

Example: 4-bit LFSR

Note that this type of circuit is not some artificial example, but actually something commonly encountered in circuits. In
particular, LFSRs are often used as pseudo-random number generators. This means that they can generate a sequence of
bits that looks like it is random while it actually is not. We will now discuss how the circuit operates.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 0 0

res n

clk

o
2

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 0 0

res n

clk

o

Sequential Circuit Example: LFSR

LFSR - Circuit Operation Principle

To demonstrate the circuit’s operation, we highlight the data wires of the circuit in blue when propagating a logical 0, and in
red for logical 1. We also show the logical value currently held by each flip-flop and a timing diagram of the inputs and outputs
underneath the circuit.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 0 0

res n

clk

o
2

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 0 0

res n

clk

o

Sequential Circuit Example: LFSR

LFSR - Circuit Operation Principle

As you can observe in the wave diagram, the first thing that is done is to reset the circuit – just as we discussed in the
previous lecture. As a result, all flip-flops, except the first one, hold a zero. This initial value is vital, as all flip-flops being zero
would result in the output being constantly zero as well. And that’s not very random.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 1 0 0

res n

clk

o
2

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 1 0 0

res n

clk

o

Sequential Circuit Example: LFSR

LFSR - Circuit Operation Principle

At the first rising clock edge, all flip-flops sample their inputs. This leads to the stored 1 being shifted to the right. The
left-most flip-flop samples the output of the XOR gate, which is 0 since the two right-most flip-flops both hold a 0.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 0 1 0

res n

clk

o
2

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 0 1 0

res n

clk

o

Sequential Circuit Example: LFSR

LFSR - Circuit Operation Principle

At the next clock edge, the current register bits are shifted to the right again. Note how this makes the feedback path high.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 0 1

res n

clk

o
2

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 0 1

res n

clk

o

Sequential Circuit Example: LFSR

LFSR - Circuit Operation Principle

The first flip-flop now samples the applied 1 from the feedback path, while the already stored 1 is shifted into the last flip-flop
As a result, the output signal is asserted, as can also be observed in the wave diagram.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 1 0 0

res n

clk

o
2

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 1 0 0

res n

clk

o

Sequential Circuit Example: LFSR

LFSR - Circuit Operation Principle

The shifting of bits continues, making the output become low again.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 1 1 0

res n

clk

o
2

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 1 1 0

res n

clk

o

Sequential Circuit Example: LFSR

LFSR - Circuit Operation Principle

The LFSR continues in this fashion of sampling the feedback and shifting its internal state, producing a sequence of 0s and
1s at its output.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 1 1

res n

clk

o
2

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 1 1

res n

clk

o

Sequential Circuit Example: LFSR

LFSR - Circuit Operation Principle

The shifting now leads to the output being set for two consecutive clock cycles. However, by now you have likely gotten the
hang of it, and we can continue by discussing how such a circuit can be described in VHDL.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

Sequential Circuit Example: LFSR

LFSR - VHDL Design

On the slide you can find an entity declaration for the LFSR circuit. The ports should not be too surprising, containing a clock,
reset and output. Let us now look at the accompanying architecture.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

Sequential Circuit Example: LFSR

LFSR - VHDL Design

In its declarative part, the architecture declares a single vector signal for the register x.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

Sequential Circuit Example: LFSR

LFSR - VHDL Design

As shown in the previous lecture, to model this register, we can use a process that asynchronously resets this signal and
updates it at rising clock edges.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

Sequential Circuit Example: LFSR

LFSR - VHDL Design

Hence, we add a respective process with the respective if-structure added inside the process. Note that we assume that
the flip-flops are reset asynchronously.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

Sequential Circuit Example: LFSR

LFSR - VHDL Design

Recall that this also means that the process must be sensitive to both the reset, and the clock.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

Sequential Circuit Example: LFSR

LFSR - VHDL Design

During the asynchronous reset, all bits of x, except for the one at index 0, are reset to ’0’ via an aggregate expression. The
first bit is set to ’1’ to model the asynchronous set of the left-most flip-flop we mentioned before.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

Sequential Circuit Example: LFSR

LFSR - VHDL Design

At rising clock edges, the register is updated such that it implements the introduced LFSR. In particular, this means that
the distinct bits of the register are connected to form a chain of flip-flops, where each flip-flop samples the output of its
predecessor. The left-most flip-flop samples the XOR of the bits 2 and 3.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

Sequential Circuit Example: LFSR

LFSR - VHDL Design

Finally, we use a concurrent signal assignment to connect the output of the right-most flip-flop to the output port o.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Example: LFSR

LFSR - Testbench

To conclude this example, let us discuss how a testbench can be written for the LFSR. On the slide you can already find a
part of the architecture for such a testbench. It declares the signals required by the unit under test, and instantiates it.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Example: LFSR

LFSR - Testbench

Obviously, a synchronous design like this one requires a clock to simulate it. But where does this clock signal come from?
As for all inputs of the unit-under-test, the testbench has to generate and apply it. This is what we’ll address now, as you
previously only had to test combinational designs.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Example: LFSR

LFSR - Testbench

First, we declare an additional constant and a signal.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Example: LFSR

LFSR - Testbench

The constant holds the desired clock period, in this case 10 ns. Often, the exact value of the clock period is not too
important. However, in general, a design is specified for a range or a particular clock frequency. The testbench should then
also adhere to this. An exception where setting the right clock period is paramount are postlayout simulations, but more on
that at another time.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Example: LFSR

LFSR - Testbench

The purpose of the stop_clk signal will become clear in a moment.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Example: LFSR

LFSR - Testbench

TO deal with the clock, we start by creating a dedicated clock generation process. The purpose of this non-synthesizable
code is to periodically toggle the clock signal.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Example: LFSR

LFSR - Testbench

The desired clock period is achieved by waiting for half the respective constant after each of the two assignments.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Example: LFSR

LFSR - Testbench

However, if we want the simulation to terminate automatically, we must ensure that all signals become stable eventually.
Naturally, this includes the clock signal. Therefore, we wrap the assignments to the clock signal in a while-loop that runs until
the stop_clk signal becomes true.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Example: LFSR

LFSR - Testbench

After that, the clock remains stable, and the clock generation process will wait indefinitely. Note that the stop signal will be
set by the stimulus process once it is done with testing the unit-under-test. We will now look at this process.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Example: LFSR

LFSR - Testbench

The first task of the stimulus process is to reset the UUT. As already mentioned, otherwise the design might be in an arbitrary
state which prohibits proper testing. Note that the reset should be applied for some time, ideally more than a clock cycle, to
ensure that everything is properly reset. In this case we activate the reset until two rising clock edges were observed.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

Sequential Circuit Example: LFSR

LFSR - Testbench

Afterwards, we let the LFSR run for six clock periods and then stop the clock. The simulation will then be able to automatically
terminate because all signals are stable. Finally, we want to remark that the general structure of this testbench can be used
for any of the synchronous designs you will encounter in this course.



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

Lecture Complete!

Modified: 2025-11-11, 14:41 (f8a58e9)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.


	Sequential Circuit Example: LFSR

