L-Sequential Circuit Example: LFSR

Hardware Modeling [VU] (191.011)

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

Ws 202526

In the previous lecture you learned how different flavors of latches and flip-flops can be described in VHDL. However, while
these elements enable the construction of sequential circuits within the synchronous paradigm, you have not yet seen how
such a circuit can actually be described. This is what we’ll do in this lecture.

HWMod
WS25

LFsR Hardware Modeling [VU] (191.011)
- WS25 —

Sequential Circuit Example: LFSR

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-11-11, 14:41 (f8a58e9)

L-Sequential Circuit Example: LFSR

L_Example: 4-bit LFSR

= Linear Feedback Shift Register

On the slide you can find the schematic of our example circuit. In particular, this circuit is a so-called linear-feedback-shift-
register, abbreviated as LFSR.

Example: 4-bit LFSR

HWMod
WS25
(A
=
LFSR
D
QX(O) D Qx(l) D QX(Z) D QX(B) °
T SET T RST T RST T RST
clk —* ¢ ¢
res_n

m Linear Feedback Shift Register

L-Sequential Circuit Example: LFSR

L_Example: 4-bit LFSR

= Linear Feedback Shit Register
' Chain of FFs (shift-register) fed by linear combination of s current state

As the name suggests, such circuits revolve around a so-called shift register, fed by a linear combination of its current state.
A shift register itself is nothing more than a chain of flip-flops, where each flip-flop samples the output of its predecessor. This
essentially shifts the currently stored bits by one flip-flop per clock period, hence the name.

Example: 4-bit LFSR

HWMod
WS25
(A
I

LFSR

D QX(O) D QX(l) D OX(2) D QX(B) °

T SET T RST T RST T RST
clk —* ¢ °

res.n

m Linear Feedback Shift Register
m Chain of FFs (shift-register) fed by linear combination of its current state

L-Sequential Circuit Example: LFSR

L_Example: 4-bit LFSR

Note that this type of circuit is not some artificial example, but actually something commonly encountered in circuits. In
particular, LFSRs are often used as pseudo-random number generators. This means that they can generate a sequence of

bits that looks like it is random while it actually is not. We will now discuss how the circuit operates.

Example: 4-bit LFSR

HWMod
WS25
(A
I

LFSR

D QX(O) D QX(l) D OX(2) D QX(B) °

T SET T RST T RST T RST
clk —* ¢ °

res.n

m Linear Feedback Shift Register
m Chain of FFs (shift-register) fed by linear combination of its current state
m Pseudo-random sequence of bits

L-Sequential Circuit Example: LFSR

L_LFSR - Circuit Operation Principle

To demonstrate the circuit's operation, we highlight the data wires of the circuit in blue when propagating a logical 0, and in

red for logical 1. We also show the logical value currently held by each flip-flop and a timing diagram of the inputs and outputs
underneath the circuit.

LFSR - Circuit Operation Principle

s ==
pAUN D Q % (0) D Q % (1) b Q % (2) D Q (3)
1 0 0 0
T SET r RST P RST T RST
clk — ‘ ‘
res._n
res_n _I_
clk
o

L-Sequential Circuit Example: LFSR

L_LFSR - Circuit Operation Principle

As you can observe in the wave diagram, the first thing that is done is to reset the circuit — just as we discussed in the
previous lecture. As a result, all flip-flops, except the first one, hold a zero. This initial value is vital, as all flip-flops being zero
would result in the output being constantly zero as well. And that’s not very random.

LFSR - Circuit Operation Principle

s ==
pAUN D Q % (0) D Q % (1) b Q % (2) D Q (3)
1 0 0 0
T SET r RST P RST T RST
clk — ‘ ‘
res._n
res_n _I_
clk
o

L-Sequential Circuit Example: LFSR

L_LFSR - Circuit Operation Principle

At the first rising clock edge, all flip-flops sample their inputs. This leads to the stored 1 being shifted to the right. The
left-most flip-flop samples the output of the XOR gate, which is 0 since the two right-most flip-flops both hold a 0.

LFSR - Circuit Operation Principle

s ==
pAUN D Qx(O) D Qx(l) D Qx<2) D Qx(3) ©
0 1 0 0
T SET r RST P RST T RST
clk ‘ ‘ ‘
res._n
res_n _I
clk I 1
(@)

L-Sequential Circuit Example: LFSR

L_LFSR - Circuit Operation Principle

At the next clock edge, the current register bits are shifted to the right again. Note how this makes the feedback path high.

LFSR - Circuit Operation Principle

s ==
pAUN D Qx(O) D Qx(l) D Qx<2) D Qx(3) ©
0 0 1 0
T SET r RST P RST T RST
clk ‘ ‘ ‘
res._n
res_n _I
clk [1T 1
(@)

L-Sequential Circuit Example: LFSR

L_LFSR - Circuit Operation Principle

The first flip-flop now samples the applied 1 from the feedback path, while the already stored 1 is shifted into the last flip-flop
As a result, the output signal is asserted, as can also be observed in the wave diagram.

LFSR - Circuit Operation Principle

s =
pAUN D Q % (0) D Q % (1) b Q % (2) D Q <(3)
1 0 0 1
T SET r RST P RST T RST
clk ‘ ‘ ‘
res._n
res_n _I
clk I O
(@) ‘

L-Sequential Circuit Example: LFSR

L_LFSR - Circuit Operation Principle

The shifting of bits continues, making the output become low again.

LFSR - Circuit Operation Principle

e ==
e D O=51° P 1P e °
1 1 0 0
clk ‘ ‘ ‘
res._n
res_n _I
clk 1 I 17 1L
o [

L-Sequential Circuit Example: LFSR

L_LFSR - Circuit Operation Principle

The LFSR continues in this fashion of sampling the feedback and shifting its internal state, producing a sequence of Os and
1s at its output.

LFSR - Circuit Operation Principle

e ==
i D O—=51° P Y 1P e °
0 1 1 0
clk . ¢ ¢
res._n
res_n _I
SR e N e I e B e B
o [

L-Sequential Circuit Example: LFSR

L_LFSR - Circuit Operation Principle

The shifting now leads to the output being set for two consecutive clock cycles. However, by now you have likely gotten the
hang of it, and we can continue by discussing how such a circuit can be described in VHDL.

LFSR - Circuit Operation Principle

e ==
e D O=51° 1P Y 1P e °
1 0 1 1
clk ‘ ‘ ‘
res._n
res_n _I
RV e T e N e N e O e O e OO

L-Sequential Circuit Example: LFSR

L-LFSR - VHDL Design ZHE0

On the slide you can find an entity declaration for the LFSR circuit. The ports should not be too surprising, containing a clock,
reset and output. Let us now look at the accompanying architecture.

LFSR - VHDL Design

HWMod
WS25

LFSR

VHDL Design

entity lfsr is

1
2 port (

3 clk : in std_ulogic;
4 res_n : in std_ulogic;
5 ¢} : out std_ulogic
6)i

7 end entity;

L-Sequential Circuit Example: LFSR

L-LFSR - VHDL Design

In its declarative part, the architecture declares a single vector signal for the register x.

LFSR - VHDL Design

HWMod
OsHs 9 architecture arch of lfsr is
10 signal x : std_ulogic_vector (0 to 3);
LFSR 11 begin
12
VHDL Design . 13
14
15
16
17
18
19
1 entity lfsr is 20
2 port (21
3 clk : in std_ulogic; 22
4 res_n : in std_ulogic; 23 .
5 ° : out std_ulogic 24 end architecture;
6)
7 end entity;

L-Sequential Circuit Example: LFSR

L-LFSR - VHDL Design

As shown in the previous lecture, to model this register, we can use a process that asynchronously resets this signal and
updates it at rising clock edges.

LFSR - VHDL Design

HWMod
WS2 . .
525 9 architecture arch of 1lfsr is
10 signal x : std_ulogic_vector (0 to 3);
LFSR 11 begin
12
VHDL Design
< 13

14
15
16
17
18
19
20

1 entity lfsr is
21

2 port (
3 clk : in std_ulogic; 22

. . 23
4 res_n : in std_ulogic; hi
5 ° : out std_ulogic 24 end architecture;
6)i
7 end entity;

L-Sequential Circuit Example: LFSR

L-LFSR - VHDL Design ZHE0

Hence, we add a respective process with the respective if-structure added inside the process. Note that we assume that
the flip-flops are reset asynchronously.

LFSR - VHDL Design

HWMod
OsHs 9 architecture arch of lfsr is
10 signal x : std_ulogic_vector (0 to 3);
LFSR 11 begin
12 sync : process(clk, res_n)
VHDL Design .

13 begin
14 if res_n = 0’ then
15
16 elsif rising_edge (clk) then
17
18
19

1 entity lfsr is 20 .
21 end if;

2 port (

3 clk : in std_ulogic; 22 end process;

. . 23

4 res_n : in std_ulogic; hi

5 ° : out std_ulogic 24 end architecture;

6)i

7 end entity;

L-Sequential Circuit Example: LFSR

L-LFSR - VHDL Design ZHE0

Recall that this also means that the process must be sensitive to both the reset, and the clock.

LFSR - VHDL Design

HWMod
OsHs 9 architecture arch of lfsr is
10 signal x : std_ulogic_vector (0 to 3);
LFSR 11 begin
12 sync : process(clk, res_n)
VHDL Design .

13 begin
14 if res_n = 0’ then
15
16 elsif rising_edge (clk) then
17
18
19

1 entity lfsr is 20 .
21 end if;

2 port (

3 clk : in std_ulogic; 22 end process;

4 res_n : in std_ulogic; 23 .

5 ° : out std_ulogic 24 end architecture;

6)i

7 end entity;

L-Sequential Circuit Example: LFSR

L-LFSR - VHDL Design

During the asynchronous reset, all bits of x, except for the one at index 0, are reset to ’ 0’ via an aggregate expression. The
first bit is set to / 17 to model the asynchronous set of the left-most flip-flop we mentioned before.

LFSR - VHDL Design

HWMod
WS25

LFSR

VHDL Design

entity lfsr is

1
2 port (

3 clk : in std_ulogic;
4 res_n : in std_ulogic;
5 ¢} : out std_ulogic
6)i

7 end entity;

9 architecture arch of lfsr is

10 signal x : std_ulogic_vector (0 to 3);
11 begin

12 sync : process(clk, res_n)

13 begin

14 if res_n = 0’ then

15 x <= (0 => "1’, others => '0");
16 elsif rising_edge (clk) then

17

18

19

20

21 end if;

22 end process;

23

24 end architecture;

L-Sequential Circuit Example: LFSR

L-LFSR - VHDL Design

At rising clock edges, the register is updated such that it implements the introduced LFSR. In particular, this means that
the distinct bits of the register are connected to form a chain of flip-flops, where each flip-flop samples the output of its
predecessor. The left-most flip-flop samples the XOR of the bits 2 and 3.

LFSR - VHDL Design

HWMod
OsHs 9 architecture arch of lfsr is
10 signal x : std_ulogic_vector (0 to 3);
LFSR 11 begin
12 sync : process(clk, res_n)
VHDL Design .

13 begin
14 if res_n = 0’ then
15 x <= (0 => "1’, others => '0");
16 elsif rising_edge (clk) then
17 x(0) <= x(2) xor x(3);
18 x (1) <= x(0);
19 X (2) <= x(1);

1 entity lfsr is 20 X(s) <= x(2);
21 end if;

2 port (

3 clk : in std_ulogic; 22 end process;

. . 23

4 res_n : in std_ulogic; .

5 ° : out std_ulogic 24 end architecture;

6)i

7 end entity;

L-Sequential Circuit Example: LFSR

L-LFSR - VHDL Design

Finally, we use a concurrent signal assignment to connect the output of the right-most flip-flop to the output port o.

LFSR - VHDL Design

HWMod
WS25

LFSR

VHDL Design

entity lfsr is

1
2 port (

3 clk : in std_ulogic;
4 res_n : in std_ulogic;
5 ¢} : out std_ulogic
6)i

7 end entity;

9
10
11

22

24

architecture arch of lfsr is
signal x : std_ulogic_vector (0 to 3);
begin
sync : process(clk, res_n)
begin
if res_n = 0’ then
x <= (0 => "1’, others => '0");
elsif rising_edge (clk) then

x(0) <= x(2) xor x(3);
x (1) <= x(0);
x(2) <= x(1);
x(3) <= x(2);
end if;

end process;
o <= x(3);
end architecture;

L-Sequential Circuit Example: LFSR

L_LFSR - Testbench

To conclude this example, let us discuss how a testbench can be written for the LFSR. On the slide you can already find a
part of the architecture for such a testbench. It declares the signals required by the unit under test, and instantiates it.

LFSR - Testbench

HWMod
WS25
LFSR 1 architecture bench of 1fsr_tb is
2 signal clk : std_ulogic;
Tostbonch 3 signal res_n : std_ulogic;
4 signal o : std_ulogic;
5
6
7
8 begin

10 uut : entity work.lfsr

11 port map (

12 clk => clk,

13 res_n => res_n,
14 o => 0O

15)i

L-Sequential Circuit Example: LFSR

L_LFSR - Testbench

Obviously, a synchronous design like this one requires a clock to simulate it. But where does this clock signal come from?
As for all inputs of the unit-under-test, the testbench has to generate and apply it. This is what we’ll address now, as you
previously only had to test combinational designs.

LFSR - Testbench

HWMod
WS25
LFSR 1 architecture bench of 1fsr_tb is
2 signal clk : std_ulogic;
Tostbonch 3 signal res_n : std_ulogic;
4 signal o : std_ulogic;
5
6
7
8 begin

10 uut : entity work.lfsr

11 port map (

12 clk => clk,

13 res_n => res_n,
14 o => o

15)i

L-Sequential Circuit Example: LFSR

L_LFSR - Testbench

First, we declare an additional constant and a signal.

LFSR - Testbench

HWMod
WS25

LFSR architecture bench of 1fsr_tb is

1
2 signal clk : std_ulogic;
3 signal res_n : std_ulogic;
Testbench .)
4 signal o : std_ulogic;
5
6 constant CLK_PERIOD : time := 10 ns;
7 signal stop_clk : boolean := false;
8 begin

10 uut : entity work.lfsr

11 port map (

12 clk => clk,

13 res_n => res_n,
14 o => o

15)i

L-Sequential Circuit Example: LFSR

L_LFSR - Testbench

The constant holds the desired clock period, in this case 10 ns. Often, the exact value of the clock period is not too
important. However, in general, a design is specified for a range or a particular clock frequency. The testbench should then
also adhere to this. An exception where setting the right clock period is paramount are postlayout simulations, but more on
that at another time.

LFSR - Testbench

HWMod
WS25
LFSR 1 architecture bench of 1lfsr_tb is
2 signal clk : std_ulogic;
Tostbonch 3 signal res_n : std_ulogic;
4 signal o : std_ulogic;
5
6 constant CLK_PERIOD : time := 10 ns;
7 signal stop_clk : boolean := false;
8 begin

10 uut : entity work.lfsr

11 port map (

12 clk => clk,

13 res_n => res_n,
14 o => 0O

15)i

L-Sequential Circuit Example: LFSR

L_LFSR - Testbench

The purpose of the stop_c1k signal will become clear in a moment.

LFSR - Testbench

HWMod
WS25

LFSR architecture bench of 1fsr_tb is

1
2 signal clk : std_ulogic;
Tostbonch 3 signal res_n : std_ulogic;
4 signal o : std_ulogic;
5
6 constant CLK_PERIOD : time := 10 ns;
7 signal stop_clk : boolean := false;
8 begin

10 uut : entity work.lfsr

11 port map (

12 clk => clk,

13 res_n => res_n,
14 o => 0O

15)i

L-Sequential Circuit Example: LFSR

L_LFSR - Testbench

TO deal with the clock, we start by creating a dedicated clock generation process. The purpose of this non-synthesizable
code is to periodically toggle the clock signal.

LFSR - Testbench

HWMod 1 clkgen : process
Wws25 2 begin
3 while not stop_clk loop
LFSR 1 architecture bench of 1lfsr_tb is 4 clk <= "0’";
2 signal clk : std_ulogic; 5 wait for 0.5+CLK_PERIOD;
Tostbonch 3 signal res_n : std_ulogic; 6 clk <= "1";
4 signal o : std_ulogic; 7 wait for 0.5*CLK_PERIOD;
5 8 end loop;
6 constant CLK_PERIOD : time := 10 ns; 9 wait;
7 signal stop_clk : boolean := false; 10 end process;
8 begin

10 uut : entity work.lfsr

11 port map (

12 clk => clk,

13 res_n => res_n,
14 o => 0O

15)i

L-Sequential Circuit Example: LFSR

L_LFSR - Testbench

The desired clock period is achieved by waiting for half the respective constant after each of the two assignments.

LFSR - Testbench

HWMod 1 clkgen : process
Wws25 2 begin
3 while not stop_clk loop
LFSR 1 architecture bench of 1lfsr_tb is 4 clk <= "0’";
2 signal clk : std_ulogic; 5 wait for 0.5+CLK_PERIOD;
Tostbonch 3 signal res_n : std_ulogic; 6 clk <= "1";
4 signal o : std_ulogic; 7 wait for 0.5*CLK_PERIOD;
5 8 end loop;
6 constant CLK_PERIOD : time := 10 ns; 9 wait;
7 signal stop_clk : boolean := false; 10 end process;
8 begin

10 uut : entity work.lfsr

11 port map (

12 clk => clk,

13 res_n => res_n,
14 o => 0O

15)i

L-Sequential Circuit Example: LFSR

L_LFSR - Testbench

However, if we want the simulation to terminate automatically, we must ensure that all signals become stable eventually.
Naturally, this includes the clock signal. Therefore, we wrap the assignments to the clock signal in a while-loop that runs until
the stop_c1k signal becomes true.

LFSR - Testbench

HWMod 1 clkgen : process
Wws25 2 begin
3 while not stop_clk loop
LFSR 1 architecture bench of 1lfsr_tb is 4 clk <= "0’";
2 signal clk : std_ulogic; 5 wait for 0.5+CLK_PERIOD;
Tostbonch 3 signal res_n : std_ulogic; 6 clk <= "1";
4 signal o : std_ulogic; 7 wait for 0.5*CLK_PERIOD;
5 8 end loop;
6 constant CLK_PERIOD : time := 10 ns; 9 wait;
7 signal stop_clk : boolean := false; 10 end process;
8 begin

10 uut : entity work.lfsr

11 port map (

12 clk => clk,

13 res_n => res_n,
14 o => 0O

15)i

L-Sequential Circuit Example: LFSR

L_LFSR - Testbench

After that, the clock remains stable, and the clock generation process will wait indefinitely. Note that the stop signal will be
set by the stimulus process once it is done with testing the unit-under-test. We will now look at this process.

LFSR - Testbench

HWMod 1 clkgen : process
Wws25 2 begin
3 while not stop_clk loop
LFSR 1 architecture bench of 1lfsr_tb is 4 clk <= "0’";
2 signal clk : std_ulogic; 5 wait for 0.5+CLK_PERIOD;
Tostbonch 3 signal res_n : std_ulogic; 6 clk <= "1";
4 signal o : std_ulogic; 7 wait for 0.5*CLK_PERIOD;
5 8 end loop;
6 constant CLK_PERIOD : time := 10 ns; 9 wait;
7 signal stop_clk : boolean := false; 10 end process;
8 begin

10 uut : entity work.lfsr

11 port map (

12 clk => clk,

13 res_n => res_n,
14 o => 0O

15)i

L-Sequential Circuit Example: LFSR

L_LFSR - Testbench

The first task of the stimulus process is to reset the UUT. As already mentioned, otherwise the design might be in an arbitrary
state which prohibits proper testing. Note that the reset should be applied for some time, ideally more than a clock cycle, to
ensure that everything is properly reset. In this case we activate the reset until two rising clock edges were observed.

LFSR - Testbench

HWMod
WS25
LFSR 1 architecture bench of 1lfsr_tb is
2 signal clk : std_ulogic;
Tostbonch 3 signal res_n : std_ulogic;
4 signal o : std_ulogic;
5
6 constant CLK_PERIOD : time := 10 ns;
7 signal stop_clk : boolean := false;
8 begin

10 uut : entity work.lfsr

11 port map (

12 clk => clk,

13 res_n => res_n,
14 o => 0O

15)i

N U A W N =

NN = 4 a4
- O © N O O A WN = O ©

clkgen : process

begin
while not stop_clk loop
clk <= "0’";

wait for 0.5*CLK_PERIOD;
clk <= "1";
wait for 0.5*CLK_PERIOD;
end loop;
wait;
end process;

stimulus : process

begin
res_n <= "0’;
wait until rising_edge (clk);
wait until rising_edge (clk) ;
res_n <= "1’;
wait for 6+CLK_PERIOD;
stop_clk <= true;
wait;

end process;

L-Sequential Circuit Example: LFSR

L_LFSR - Testbench

Afterwards, we let the LFSR run for six clock periods and then stop the clock. The simulation will then be able to automatically
terminate because all signals are stable. Finally, we want to remark that the general structure of this testbench can be used

for any of the synchronous designs you will encounter in this course.

LFSR - Testbench

HWMod
WS25
LFSR 1 architecture bench of 1lfsr_tb is
2 signal clk : std_ulogic;
Tostbonch 3 signal res_n : std_ulogic;
4 signal o : std_ulogic;
5
6 constant CLK_PERIOD : time := 10 ns;
7 signal stop_clk : boolean := false;
8 begin

10 uut : entity work.lfsr

11 port map (

12 clk => clk,

13 res_n => res_n,
14 o => 0O

15)i

N U A W N =

NN = 4 a4
- O © N O O A WN = O ©

clkgen : process

begin
while not stop_clk loop
clk <= "0’";

wait for 0.5*CLK_PERIOD;
clk <= "1";
wait for 0.5*CLK_PERIOD;
end loop;
wait;
end process;

stimulus : process

begin
res_n <= '0’;
wait until rising_edge (clk);
wait until rising_edge (clk);
res_n <= "1’;
wait for 6+CLK_PERIOD;
stop_clk <= true;
wait;

end process;

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

HWMod
WS25

LFSR

Testbench

Lecture Complete!

Modified: 2025-11-11, 14:41 (f8a58e9)

	Sequential Circuit Example: LFSR

