HWMod
WS25

LrsR Hardware Modeling [VU] (191.011)
- WS25 —

Sequential Circuit Example: LFSR

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:04 (f8a58e9)

Example: 4-bit LFSR

HWMod
WS25

(A
=
LFSR
D
D QX(O) D Qx(l) D Qx(z) QX(B) o
T SET T RST T RST T RST
clk —* ‘ ‘

res.n

m Linear Feedback Shift Register

Example: 4-bit LFSR

HWMod
WS25

(A
=
LFSR
D QX(O) D Qx(l) D Qx(z) D Qx(3) o
Tsﬁ TRiST TRTT TRTT
clk —* ‘ ‘

res.n

m Linear Feedback Shift Register
m Chain of FFs (shift-register) fed by linear combination of its current state

Example: 4-bit LFSR

HWMod
WS25

LFSR

x(0) x (1) x(2) x(3)

Tsﬁ TRiST TRTT TRTT
clk —* ¢ °

res.n

m Linear Feedback Shift Register
m Chain of FFs (shift-register) fed by linear combination of its current state
m Pseudo-random sequence of bits

LFSR - Circuit Operation Principle

e ==
Lgps::m D Q % (0) D Q (1) D Q %(2) D Q %(3) O
1 0 0 0
T SET P RST P RST T RST
clk —s : ‘
res.n
res_n _I_
clk __

LFSR - Circuit Operation Principle

e ==
Lgps::m D Q % (0) D Q (1) D Q %(2) D Q %(3) O
1 0 0 0
T SET P RST P RST T RST
clk —s : ‘
res.n
res_n _I_
clk __

LFSR - Circuit Operation Principle

e ==
Lgps::m D Q = (0) D Q = (1) D Q %(2) D Q %(3) O
0 1 0 0
clk —s . ‘
res.n
res.n I
clk [1

LFSR - Circuit Operation Principle

e ==
Lgps::m D Q = (0) D Q (1) D Q %(2) D Q %(3) O
0 0 1 0
T SET P RST P RST T RST
clk —s . ‘
res.n
res_n _I

LFSR - Circuit Operation Principle

HWMod

WS25

LFSR D Q D Q

Operation X (0) X (1)

RST

RST

LFSR - Circuit Operation Principle

e ==
Lgps::m D Q % (0) D Q = (1) D Q %(2) D Q %(3) O
1 1 0 0
clk —s . ‘
res.n
res.n _J
clk [I I 1

LFSR - Circuit Operation Principle

e ==
Lo D O=51° P Y 1P e °
0 1 1 0
clk . ‘ ‘
res._n
res_n _I
cx ML

LFSR - Circuit Operation Principle

e ==
o D Q=51 1P UG 1P
1 0 : :
T SET P RST P RST T RST
clk . ‘ ‘
res._n
res_n _I
ST e I e I s O O s

LFSR - VHDL Design

HWMod
WS25

LFSR

VHDL Design

entity lfsr is

1
2 port (

3 clk : in std_ulogic;
4 res_n : in std_ulogic;
5 (¢} : out std_ulogic
6)i

7 end entity;

LFSR - VHDL Design

HWMod
WS25

LFSR

VHDL Design

entity lfsr
port (
clk
res_n
o
)i
end entity;

in std_ulogic;
in std_ulogic;
out std_ulogic

9 architecture arch of lfsr is
10 signal x : std_ulogic_vector (0 to 3);
11 begin

12

13

14

15

16

17

18

19

20

21

22

23

24 end architecture;

LFSR - VHDL Design

HWMod
WS25

LFSR

VHDL Design

entity lfsr
port (
clk
res_n
o
)i
end entity;

in std_ulogic;
in std_ulogic;
out std_ulogic

9 architecture arch of lfsr is
10 signal x : std_ulogic_vector (0 to 3);
11 begin

12

13

14

15

16

17

18

19

20

21

22

23

24 end architecture;

LFSR - VHDL Design

HWMod
pLSsS 9 architecture arch of lfsr is
10 signal x : std_ulogic_vector (0 to 3);
LFSR 11 begin
12 sync : process(clk, res_n)
VHDL Design .

13 begin
14 if res_n = '0’ then
15
16 elsif rising_edge (clk) then
17
18
19

1 entity lfsr is 20 .
21 end if;

2 port (

3 clk : in std_ulogic; 22 end process;

4 res_n : in std_ulogic; 23 .

5 ° : out std_ulogic 24 end architecture;

6)i

7 end entity;

LFSR - VHDL Design

HWMod
pLSsS 9 architecture arch of lfsr is
10 signal x : std_ulogic_vector (0 to 3);
LFSR 11 begin
12 sync : process(clk, res_n)
VHDL Design .

13 begin
14 if res_n = '0’ then
15
16 elsif rising_edge (clk) then
17
18
19

1 entity lfsr is 20 .
21 end if;

2 port (

3 clk : in std_ulogic; 22 end process;

4 res_n : in std_ulogic; 23 .

5 ° : out std_ulogic 24 end architecture;

6)i

7 end entity;

LFSR - VHDL Design

HWMod
pLSsS 9 architecture arch of lfsr is
10 signal x : std_ulogic_vector (0 to 3);
LFSR 11 begin
12 sync : process(clk, res_n)
VHDL Design .

13 begin
14 if res_n = '0’ then
15 x <= (0 => "1’, others => '0");
16 elsif rising_edge (clk) then
17
18
19

1 entity lfsr is 20 .
21 end if;

2 port (

3 clk : in std_ulogic; 22 end process;

4 res_n : in std_ulogic; 23 .

5 ° : out std_ulogic 24 end architecture;

6)i

7 end entity;

LFSR - VHDL Design

HWMod
pLSsS 9 architecture arch of lfsr is
10 signal x : std_ulogic_vector (0 to 3);
LFSR 11 begin
12 sync : process(clk, res_n)
VHDL Design .

13 begin
14 if res_n = '0’ then
15 x <= (0 => "1’, others => '0");
16 elsif rising_edge (clk) then
17 x(0) <= x(2) xor x(3);
18 x (1) <= x(0);
19 x(2) <= x(1);

1 entity lfsr is 20 X(‘?) <= x(2);
21 end if;

2 port (

3 clk : in std_ulogic; 22 end process;

4 res_n : in std_ulogic; 23 .

5 ° : out std_ulogic 24 end architecture;

6)i

7 end entity;

LFSR - VHDL Design

HWMod
pLSsS 9 architecture arch of lfsr is
10 signal x : std_ulogic_vector (0 to 3);
LFSR 11 begin
12 sync : process(clk, res_n)
VHDL Design .

13 begin
14 if res_n = '0’ then
15 x <= (0 => "1’, others => '0");
16 elsif rising_edge (clk) then
17 x(0) <= x(2) xor x(3);
18 x (1) <= x(0);
19 x(2) <= x(1);

1 entity lfsr is 20 X(‘?) <= x(2);
21 end if;

2 port (

3 clk : in std_ulogic; 22 end process;

4 res_n : in std_ulogic; 23 o <= X‘(3);

5 ° : out std_ulogic 24 end architecture;

6)i

7 end entity;

LFSR - Testbench

HWMod
WS25
LFSR 1 architecture bench of 1fsr_tb is
2 signal clk : std_ulogic;
Tostbonch 3 signal res_n : std_ulogic;
4 signal o : std_ulogic;
5
6
7
8 begin
9
10 uut : entity work.lfsr
11 port map (
12 clk => clk,
13 res_n => res_n,
14 o => o
15)i

LFSR - Testbench

HWMod
WS25
LFSR 1 architecture bench of 1fsr_tb is
2 signal clk : std_ulogic;
Tostbonch 3 signal res_n : std_ulogic;
4 signal o : std_ulogic;
5
6
7
8 begin
9
10 uut : entity work.lfsr
11 port map (
12 clk => clk,
13 res_n => res_n,
14 o => o
15)i

LFSR - Testbench

HWMod
WS25
LFSR 1 architecture bench of 1fsr_tb is
2 signal clk : std_ulogic;
Tostbonch 3 signal res_n : std_ulogic;
4 signal o : std_ulogic;
5
6 constant CLK_PERIOD : time := 10 ns;
7 signal stop_clk : boolean := false;
8 begin
9
10 uut : entity work.lfsr
11 port map (
12 clk => clk,
13 res_n => res_n,
14 o => 0
15)

LFSR - Testbench

HWMod
WS25
LFSR 1 architecture bench of lfsr_tb is
2 signal clk : std_ulogic;
Tostbonch 3 signal res_n : std_ulogic;
4 signal o : std_ulogic;
5
6 constant CLK_PERIOD : time := 10 ns;
7 signal stop_clk : boolean := false;
8 begin
9
10 uut : entity work.lfsr
11 port map (
12 clk => clk,
13 res_n => res_n,
14 o => 0
15)i

LFSR - Testbench

HWMod
WS25
LFSR 1 architecture bench of lfsr_tb is
2 signal clk : std_ulogic;
Tostbonch 3 signal res_n : std_ulogic;
4 signal o : std_ulogic;
5
6 constant CLK_PERIOD : time := 10 ns;
7 signal stop_clk : boolean := false;
8 begin
9
10 uut : entity work.lfsr
11 port map (
12 clk => clk,
13 res_n => res_n,
14 o => 0
15)i

HWMod
WS25

LFSR

Testbench

LFSR - Testbench

architecture bench of lfsr_tb is

signal clk std_ulogic;
signal res_n std_ulogic;
signal o std_ulogic;
constant CLK_PERIOD time := 10 ns;
signal stop_clk boolean := false;
begin
uut entity work.lfsr
port map (
clk => clk,
res_n => res_n,
o => o
)i

O © O N O O~ W N =

clkgen
begin
while not stop_clk loop
clk <= "0’";
wait for 0.5*CLK_PERIOD;
clk <= "1";
wait for 0.5*CLK_PERIOD;
end loop;
wait;
end process;

process

HWMod
WS25

LFSR

Testbench

LFSR - Testbench

architecture bench of 1lfsr_tb is

signal clk std_ulogic;
signal res_n std_ulogic;
signal o std_ulogic;
constant CLK_PERIOD time := 10 ns;
signal stop_clk boolean := false;
begin
uut entity work.lfsr
port map (
clk => clk,
res_n => res_n,
o => o
)i

O © O N O O~ W N =

clkgen
begin
while not stop_clk loop
clk <= "0’";
wait for 0.5+CLK_PERIOD;
clk <= "1";
wait for 0.5*CLK_PERIOD;
end loop;
wait;
end process;

process

HWMod
WS25

LFSR

Testbench

LFSR - Testbench

architecture bench of 1lfsr_tb is

signal clk std_ulogic;
signal res_n std_ulogic;
signal o std_ulogic;
constant CLK_PERIOD time := 10 ns;
signal stop_clk boolean := false;
begin
uut entity work.lfsr
port map (
clk => clk,
res_n => res_n,
o => o
)i

O © O N O O~ W N =

clkgen
begin
while not stop_clk loop
clk <= "0’";
wait for 0.5*CLK_PERIOD;
clk <= "1";
wait for 0.5*CLK_PERIOD;
end loop;
wait;
end process;

process

HWMod
WS25

LFSR

Testbench

LFSR - Testbench

architecture bench of lfsr_tb is

signal clk std_ulogic;
signal res_n std_ulogic;
signal o std_ulogic;
constant CLK_PERIOD time := 10 ns;
signal stop_clk boolean := false;
begin
uut entity work.lfsr
port map (
clk => clk,
res_n => res_n,
o => o
)i

O © O N O O~ W N =

clkgen
begin
while not stop_clk loop
clk <= "0’";
wait for 0.5*CLK_PERIOD;
clk <= "1";
wait for 0.5*CLK_PERIOD;
end loop;
wait;
end process;

process

LFSR - Testbench

HWMod 1 clkgen : process
Wws25 2 begin
3 while not stop_clk loop
LFSR 1 architecture bench of 1lfsr_tb is 4 clk <= "0’";
2 signal clk : std_ulogic; 5 wait for 0.5+xCLK_PERIOD;
Tostbonch 3 signal res_n : std_ulogic; 6 clk <= "1";
4 signal o : std_ulogic; 7 wait for 0.5*CLK_PERIOD;
5 8 end loop;
6 constant CLK_PERIOD : time := 10 ns; 9 wait;
7 signal stop_clk : boolean := false; 10 end process;
8 begin 11
9 12 stimulus : process
10 uut : entity work.lfsr 13 begin
11 port map (14 res_n <= "0’;
12 clk => clk, 15 wait until rising_edge (clk);
13 res_n => res_n, 16 wait until rising_edge (clk) ;
14 o => o 17 res_n <= "1’;
15) ; 18 wait for 6%xCLK_PERIOD;
19 stop_clk <= true;
20 wait;
21 end process;

LFSR - Testbench

HWMod 1 clkgen : process
Wws25 2 begin
3 while not stop_clk loop
LFSR 1 architecture bench of 1lfsr_tb is 4 clk <= "0’";
2 signal clk : std_ulogic; 5 wait for 0.5+xCLK_PERIOD;
Tostbonch 3 signal res_n : std_ulogic; 6 clk <= "1";
4 signal o : std_ulogic; 7 wait for 0.5*CLK_PERIOD;
5 8 end loop;
6 constant CLK_PERIOD : time := 10 ns; 9 wait;
7 signal stop_clk : boolean := false; 10 end process;
8 begin 11
9 12 stimulus : process
10 uut : entity work.lfsr 13 begin
11 port map (14 res_n <= "0’;
12 clk => clk, 15 wait until rising_edge (clk);
13 res_n => res_n, 16 wait until rising_edge (clk);
14 o => o 17 res_n <= "1’;
15) ; 18 wait for 6*xCLK_PERIOD;
19 stop_clk <= true;
20 wait;
21 end process;

HWMod
WS25

LFSR

Testbench

Lecture Complete!

Modified: 2025-12-16, 16:04 (f8a58e9)

	Sequential Circuit Example: LFSR

