
HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

Hardware Modeling [VU] (191.011)
– WS25 –

Sequential Circuit Example: LFSR

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:04 (f8a58e9)



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register

Chain of FFs (shift-register ) fed by linear combination of its current state
Pseudo-random sequence of bits

1



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register
Chain of FFs (shift-register ) fed by linear combination of its current state

Pseudo-random sequence of bits

1



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

Example: 4-bit LFSR

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

Linear Feedback Shift Register
Chain of FFs (shift-register ) fed by linear combination of its current state
Pseudo-random sequence of bits

1



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 0 0

res n

clk

o
2



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 0 0

res n

clk

o
2



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 1 0 0

res n

clk

o
2



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 0 1 0

res n

clk

o
2



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 0 1

res n

clk

o
2



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 1 0 0

res n

clk

o
2



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

0 1 1 0

res n

clk

o
2



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Circuit Operation Principle

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

1 0 1 1

res n

clk

o
2



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - VHDL Design

D Q

SET

D Q

RST

D Q

RST

D Q

RST

o
x(0) x(1) x(2) x(3)

res n

clk

 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;

3



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

LFSR - Testbench

 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;

4



HWMod
WS25

LFSR
Operation

VHDL Design

Testbench

Lecture Complete!

Modified: 2025-12-16, 16:04 (f8a58e9)


	Sequential Circuit Example: LFSR

