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Example: 4-bit LFSR
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 entity lfsr is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 o : out std_ulogic
 );
 end entity;

 architecture arch of lfsr is
 signal x : std_ulogic_vector(0 to 3);
 begin
 sync : process(clk, res_n)
 begin
 if res_n = ’0’ then
 x <= (0 => ’1’, others => ’0’);
 elsif rising_edge(clk) then
 x(0) <= x(2) xor x(3);
 x(1) <= x(0);
 x(2) <= x(1);
 x(3) <= x(2);
 end if;
 end process;
 o <= x(3);
 end architecture;
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 architecture bench of lfsr_tb is
 signal clk : std_ulogic;
 signal res_n : std_ulogic;
 signal o : std_ulogic;


 constant CLK_PERIOD : time := 10 ns;
 signal stop_clk : boolean := false;
 begin


 uut : entity work.lfsr
 port map (
 clk => clk,
 res_n => res_n,
 o => o
 );

 clkgen : process
 begin
 while not stop_clk loop
 clk <= ’0’;
 wait for 0.5*CLK_PERIOD;
 clk <= ’1’;
 wait for 0.5*CLK_PERIOD;
 end loop;
 wait;

 end process;


 stimulus : process
 begin
 res_n <= ’0’;
 wait until rising_edge(clk);
 wait until rising_edge(clk);
 res_n <= ’1’;
 wait for 6*CLK_PERIOD;
 stop_clk <= true;
 wait;
 end process;
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