
HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Hardware Modeling [VU] (191.011)
– WS24 –

Latches and combinational loops

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-12, 16:31 (21636bb)

Hardware Modeling [VU] (191.011)
– WS24 –

Latches and combinational loops

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Latches and combinational loops

In this lecture we will discuss the two most common mistakes made when describing sequential circuit elements in VHDL. In
particular, the structures that lead to undesired latches and combinational loops will be covered.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Undesired Latches

In this course latches are always undesired

Often not available as primitive building blocks

Instead built from available combinational elements
Feedback path can lead to an oscillation

D Q

1

Undesired Latches

In this course latches are always undesired

Often not available as primitive building blocks

Instead built from available combinational elements
Feedback path can lead to an oscillation

D Q

Latches and combinational loops
Undesired Latches

Undesired Latches

Now that you know the difference between latches and flip-flops, the question arises when you should use which. However,
let us make one thing clear straight away: In the context of this course, and also the subsequent lab course, latches are
always a mistake. Under no circumstances you should create a circuit that contains latches. In the following we will explain
why we do not use latches and what you can do to mitigate coding them in the first place.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Undesired Latches

In this course latches are always undesired
Often not available as primitive building blocks

Instead built from available combinational elements
Feedback path can lead to an oscillation

D Q

1

Undesired Latches

In this course latches are always undesired
Often not available as primitive building blocks

Instead built from available combinational elements
Feedback path can lead to an oscillation

D Q

Latches and combinational loops
Undesired Latches

Undesired Latches

As we mentioned in a previous lecture, the synchronous design style is used in an overwhelming majority of cases. In this
design style the flip-flop is usually the state-holding building block of choice, as its sampling point directly relates to the clock
signal central to such designs. Due to the synchronous design style being so prominently used, many technologies target it
and do not provide latches.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Undesired Latches

In this course latches are always undesired
Often not available as primitive building blocks

Instead built from available combinational elements

Feedback path can lead to an oscillation

D Q

1

Undesired Latches

In this course latches are always undesired
Often not available as primitive building blocks

Instead built from available combinational elements

Feedback path can lead to an oscillation

D Q

Latches and combinational loops
Undesired Latches

Undesired Latches

If the description of a circuit that targets such a technology still models a latch, it will be built from available combinational
logic. In its simplest form such an implementation can look like the one depicted on the slide. It consists of three inverters
and two switches, where always only one switch is closed.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Undesired Latches

In this course latches are always undesired
Often not available as primitive building blocks

Instead built from available combinational elements

Feedback path can lead to an oscillation

D Q

1

Undesired Latches

In this course latches are always undesired
Often not available as primitive building blocks

Instead built from available combinational elements

Feedback path can lead to an oscillation

D Q

Latches and combinational loops
Undesired Latches

Undesired Latches

If the first switch is closed, the latch is enabled and forwards the input to its output. This is to what we referred to as the latch
being transparent in the lecture about sequential elements. Furthermore, it also applies the input value to the third inverter
gate in a feedback path.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Undesired Latches

In this course latches are always undesired
Often not available as primitive building blocks

Instead built from available combinational elements

Feedback path can lead to an oscillation

D Q

1

Undesired Latches

In this course latches are always undesired
Often not available as primitive building blocks

Instead built from available combinational elements

Feedback path can lead to an oscillation

D Q

Latches and combinational loops
Undesired Latches

Undesired Latches

If the input switch is open and the feedback loop closed, the latch outputs the previously captured input value. This corre-
sponds to its enable signal being inactive.
Note that the particular implementation of the switches depends on the respective technology. We will not go into detail on
this topic in this course.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Undesired Latches

In this course latches are always undesired
Often not available as primitive building blocks

Instead built from available combinational elements
Feedback path can lead to an oscillation

D Q

1

Undesired Latches

In this course latches are always undesired
Often not available as primitive building blocks

Instead built from available combinational elements
Feedback path can lead to an oscillation

D Q

Latches and combinational loops
Undesired Latches

Undesired Latches

A problem with building a latch like that is that the overall delay of the feedback path, still highlighted in red, can become quite
high. If the input was not stable after a transition for sufficiently long, the feedback loop might start to oscillate. This must
of course never happen as subsequent parts of the circuit will either also start to oscillate or observe undesired values and
transitions.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Latch Errors (cont’d)

How do latches happen?

Not all paths through comb.
process write to signal
Need to hold state ⇒ infer latch

Always cover all cases
Default assignment or others

Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin


x <= ’0’;

 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

2

Pitfalls - Latch Errors (cont’d)

How do latches happen?

Not all paths through comb.
process write to signal
Need to hold state ⇒ infer latch

Always cover all cases
Default assignment or others

Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin


x <= ’0’;

 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

Latches and combinational loops
Undesired Latches

Pitfalls - Latch Errors (cont’d)

As we discussed on the previous slide, latches can be quite problematic, and you should therefore not use them in your
designs. However, sometimes they happen by mistake - especially if you are new to describing hardware. We will now look
at a stereotypical example of an undesired latch.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Latch Errors (cont’d)

How do latches happen?

Not all paths through comb.
process write to signal
Need to hold state ⇒ infer latch

Always cover all cases
Default assignment or others

Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin


x <= ’0’;

 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

2

Pitfalls - Latch Errors (cont’d)

How do latches happen?

Not all paths through comb.
process write to signal
Need to hold state ⇒ infer latch

Always cover all cases
Default assignment or others

Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin


x <= ’0’;

 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

Latches and combinational loops
Undesired Latches

Pitfalls - Latch Errors (cont’d)

The example we consider is a simple combinational comparator. It takes two unsigned inputs, ”A” and ”B”, and computes an
output ”X” of type std_ulogic. Whenever ”A” is smaller than ”B” the module shall output one, otherwise we do not care.
The main process of the shown code implements this. You might want to pause the video for a few seconds to analyze the
code and trying to find possible problems. The problem with the shown code is that ”X” is not always assigned a value
when the process is triggered. Considering that this describes a combinational circuit this is certainly problematic, as such a
circuit should map any possible combination of inputs to an output. So, what hardware does the shown code describe?



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Latch Errors (cont’d)

How do latches happen?
Not all paths through comb.
process write to signal

Need to hold state ⇒ infer latch
Always cover all cases

Default assignment or others
Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin


x <= ’0’;

 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

2

Pitfalls - Latch Errors (cont’d)

How do latches happen?
Not all paths through comb.
process write to signal

Need to hold state ⇒ infer latch
Always cover all cases

Default assignment or others
Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin


x <= ’0’;

 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

Latches and combinational loops
Undesired Latches

Pitfalls - Latch Errors (cont’d)

If we recall the semantics of signal assignments the resulting circuit is actually quite intuitive. The signal ”X” will hold its value
between assignments. Thus, if there is a path through the process that does not write to ”X”, we describe a state-holding
behavior.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Latch Errors (cont’d)

How do latches happen?
Not all paths through comb.
process write to signal
Need to hold state ⇒ infer latch

Always cover all cases
Default assignment or others

Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin


x <= ’0’;

 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

2

Pitfalls - Latch Errors (cont’d)

How do latches happen?
Not all paths through comb.
process write to signal
Need to hold state ⇒ infer latch

Always cover all cases
Default assignment or others

Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin


x <= ’0’;

 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

Latches and combinational loops
Undesired Latches

Pitfalls - Latch Errors (cont’d)

In the absence of a clock this state-holding will be implemented by a latch. We also say, that a latch is inferred from the
description.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Latch Errors (cont’d)

How do latches happen?
Not all paths through comb.
process write to signal
Need to hold state ⇒ infer latch

Always cover all cases
Default assignment or others

Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin


x <= ’0’;

 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

2

Pitfalls - Latch Errors (cont’d)

How do latches happen?
Not all paths through comb.
process write to signal
Need to hold state ⇒ infer latch

Always cover all cases
Default assignment or others

Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin


x <= ’0’;

 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

Latches and combinational loops
Undesired Latches

Pitfalls - Latch Errors (cont’d)

To illustrate this the image on the slide shows the circuit that the code actually describes. How can we mitigate this undesired
latch? The answer is quite simple: If a combinational process writes to a signal, we must ensure that it does so on all possible
paths through its body.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Latch Errors (cont’d)

How do latches happen?
Not all paths through comb.
process write to signal
Need to hold state ⇒ infer latch

Always cover all cases
Default assignment or others

Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin


x <= ’0’;

 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

2

Pitfalls - Latch Errors (cont’d)

How do latches happen?
Not all paths through comb.
process write to signal
Need to hold state ⇒ infer latch

Always cover all cases
Default assignment or others

Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin


x <= ’0’;

 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

Latches and combinational loops
Undesired Latches

Pitfalls - Latch Errors (cont’d)

This is often not the case when signal assignments are part of conditional code and not all branches lead to an assignment.
To ensure that no latch is inferred, we can add a default assignment at the beginning of the process, or make sure all cases
are covered. The ”others” keyword comes in handy for that purpose.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Latch Errors (cont’d)

How do latches happen?
Not all paths through comb.
process write to signal
Need to hold state ⇒ infer latch

Always cover all cases
Default assignment or others

Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin
 x <= ’0’;
 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

2

Pitfalls - Latch Errors (cont’d)

How do latches happen?
Not all paths through comb.
process write to signal
Need to hold state ⇒ infer latch

Always cover all cases
Default assignment or others

Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin
 x <= ’0’;
 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

Latches and combinational loops
Undesired Latches

Pitfalls - Latch Errors (cont’d)

For our example, we can simply set ”X” to 0 before the conditional code. If the condition is met, the previous assignment will
be overwritten.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Latch Errors (cont’d)

How do latches happen?
Not all paths through comb.
process write to signal
Need to hold state ⇒ infer latch

Always cover all cases
Default assignment or others

Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin
 x <= ’0’;
 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

2

Pitfalls - Latch Errors (cont’d)

How do latches happen?
Not all paths through comb.
process write to signal
Need to hold state ⇒ infer latch

Always cover all cases
Default assignment or others

Latches are detected and reported
during synthesis

Never ignore these warnings!

≤
a

b
en

D Q’1’ x
x

 entity cmp is
 port(
 a, b : in unsigned;
 x : out std_ulogic
 );
 end entity;


 architecture arch of cmp is
 begin

 main : process (all) begin
 x <= ’0’;
 if a <= b then
 x <= ’1’;
 end if;
 end process;
 end architecture;

Latches and combinational loops
Undesired Latches

Pitfalls - Latch Errors (cont’d)

Finally, we want to mention that the synthesis tool we are using in this course is capable of detecting latches and will warn
you whenever they find one. You must never ignore warnings like that!



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Combinational Loops

Not only latches can result in comb. feedback loops

A comb. process must never read and write to same signal

Especially hard to spot at interfaces
Feedback paths must contain a flip-flop

Combinational loops are also reported during synthesis

 architecture beh of counter is
 signal cnt : unsigned(7 downto 0);
 begin
 comb : process(all) begin
 cnt <= cnt + 1;
 end process;
 end architecture;

+
+1

cnt

3

Pitfalls - Combinational Loops

Not only latches can result in comb. feedback loops

A comb. process must never read and write to same signal

Especially hard to spot at interfaces
Feedback paths must contain a flip-flop

Combinational loops are also reported during synthesis

 architecture beh of counter is
 signal cnt : unsigned(7 downto 0);
 begin
 comb : process(all) begin
 cnt <= cnt + 1;
 end process;
 end architecture;

+
+1

cnt

Latches and combinational loops
Comb. Loops

Pitfalls - Combinational Loops

On the previous slides we have discussed the problems involved in creating undesired latches. A major problem is the
possibility of the feedback loop involved in latches starting to oscillate. However, this is not the only scenario in which such a
loop can be implied by the description of a circuit.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Combinational Loops

Not only latches can result in comb. feedback loops

A comb. process must never read and write to same signal

Especially hard to spot at interfaces
Feedback paths must contain a flip-flop

Combinational loops are also reported during synthesis

 architecture beh of counter is
 signal cnt : unsigned(7 downto 0);
 begin
 comb : process(all) begin
 cnt <= cnt + 1;
 end process;
 end architecture;

+
+1

cnt

3

Pitfalls - Combinational Loops

Not only latches can result in comb. feedback loops

A comb. process must never read and write to same signal

Especially hard to spot at interfaces
Feedback paths must contain a flip-flop

Combinational loops are also reported during synthesis

 architecture beh of counter is
 signal cnt : unsigned(7 downto 0);
 begin
 comb : process(all) begin
 cnt <= cnt + 1;
 end process;
 end architecture;

+
+1

cnt

Latches and combinational loops
Comb. Loops

Pitfalls - Combinational Loops

Consider the code shown on the slide. It shows the architecture of a purely combinational eight bit counter with wrap-around
on overflow. The shown process will trigger whenever the counter variable is incremented, leading to another increment.
Briefly pause the video and think about this code. How does the circuit it implements look like? Is this circuit problematic?



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Combinational Loops

Not only latches can result in comb. feedback loops

A comb. process must never read and write to same signal

Especially hard to spot at interfaces
Feedback paths must contain a flip-flop

Combinational loops are also reported during synthesis

 architecture beh of counter is
 signal cnt : unsigned(7 downto 0);
 begin
 comb : process(all) begin
 cnt <= cnt + 1;
 end process;
 end architecture;

+
+1

cnt

3

Pitfalls - Combinational Loops

Not only latches can result in comb. feedback loops

A comb. process must never read and write to same signal

Especially hard to spot at interfaces
Feedback paths must contain a flip-flop

Combinational loops are also reported during synthesis

 architecture beh of counter is
 signal cnt : unsigned(7 downto 0);
 begin
 comb : process(all) begin
 cnt <= cnt + 1;
 end process;
 end architecture;

+
+1

cnt

Latches and combinational loops
Comb. Loops

Pitfalls - Combinational Loops

Next to the code you can see an abstract view of the corresponding circuit. The output of the combinational counter circuit is
directly fed back to one of the operand inputs.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Combinational Loops

Not only latches can result in comb. feedback loops

A comb. process must never read and write to same signal

Especially hard to spot at interfaces
Feedback paths must contain a flip-flop

Combinational loops are also reported during synthesis

 architecture beh of counter is
 signal cnt : unsigned(7 downto 0);
 begin
 comb : process(all) begin
 cnt <= cnt + 1;
 end process;
 end architecture;

+
+1

cnt

3

Pitfalls - Combinational Loops

Not only latches can result in comb. feedback loops

A comb. process must never read and write to same signal

Especially hard to spot at interfaces
Feedback paths must contain a flip-flop

Combinational loops are also reported during synthesis

 architecture beh of counter is
 signal cnt : unsigned(7 downto 0);
 begin
 comb : process(all) begin
 cnt <= cnt + 1;
 end process;
 end architecture;

+
+1

cnt

Latches and combinational loops
Comb. Loops

Pitfalls - Combinational Loops

This is again a combinational feedback loop and prone to the same problems as the one in the latch we discussed previously.
The feedback loop is highlighted in red.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Combinational Loops

Not only latches can result in comb. feedback loops
A comb. process must never read and write to same signal

Especially hard to spot at interfaces
Feedback paths must contain a flip-flop

Combinational loops are also reported during synthesis

 architecture beh of counter is
 signal cnt : unsigned(7 downto 0);
 begin
 comb : process(all) begin
 cnt <= cnt + 1;
 end process;
 end architecture;

+
+1

cnt

3

Pitfalls - Combinational Loops

Not only latches can result in comb. feedback loops
A comb. process must never read and write to same signal

Especially hard to spot at interfaces
Feedback paths must contain a flip-flop

Combinational loops are also reported during synthesis

 architecture beh of counter is
 signal cnt : unsigned(7 downto 0);
 begin
 comb : process(all) begin
 cnt <= cnt + 1;
 end process;
 end architecture;

+
+1

cnt

Latches and combinational loops
Comb. Loops

Pitfalls - Combinational Loops

In order to prevent your designs from describing such loops, combinational processes must never read and write to the same
signal. Whenever this is the case, the assignment will trigger the process which might result in another assignment, thus
creating a loop.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Combinational Loops

Not only latches can result in comb. feedback loops
A comb. process must never read and write to same signal

Especially hard to spot at interfaces
Feedback paths must contain a flip-flop

Combinational loops are also reported during synthesis

 architecture beh of counter is
 signal cnt : unsigned(7 downto 0);
 begin
 comb : process(all) begin
 cnt <= cnt + 1;
 end process;
 end architecture;

+
+1

cnt

3

Pitfalls - Combinational Loops

Not only latches can result in comb. feedback loops
A comb. process must never read and write to same signal

Especially hard to spot at interfaces
Feedback paths must contain a flip-flop

Combinational loops are also reported during synthesis

 architecture beh of counter is
 signal cnt : unsigned(7 downto 0);
 begin
 comb : process(all) begin
 cnt <= cnt + 1;
 end process;
 end architecture;

+
+1

cnt

Latches and combinational loops
Comb. Loops

Pitfalls - Combinational Loops

Special care must be taken at the interface between modules as it can be quite hard for a designer to spot such loops
between multiple modules. However, since feedback loops can be required, for example in control applications, it is often
necessary to create designs containing them. When doing so, the clue is to not create purely combinational loops, but rather
to include flip-flops in the feedback path. This way, signal transitions can only propagate on a per-clock-period basis, allowing
the tool to ensure that no oscillations will happen.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Combinational Loops

Not only latches can result in comb. feedback loops
A comb. process must never read and write to same signal

Especially hard to spot at interfaces
Feedback paths must contain a flip-flop

Combinational loops are also reported during synthesis

 architecture beh of counter is
 signal cnt : unsigned(7 downto 0);
 begin
 comb : process(all) begin
 cnt <= cnt + 1;
 end process;
 end architecture;

+
+1

cnt

3

Pitfalls - Combinational Loops

Not only latches can result in comb. feedback loops
A comb. process must never read and write to same signal

Especially hard to spot at interfaces
Feedback paths must contain a flip-flop

Combinational loops are also reported during synthesis

 architecture beh of counter is
 signal cnt : unsigned(7 downto 0);
 begin
 comb : process(all) begin
 cnt <= cnt + 1;
 end process;
 end architecture;

+
+1

cnt

Latches and combinational loops
Comb. Loops

Pitfalls - Combinational Loops

Speaking of tools, just as with latches tools will also detect combinational loops and warn you about them. Again: do not
ignore such warnings!



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Combinational Loops (cnt’d)

 architecture beh2 of counter is
 signal cnt, cnt_next : unsigned(7 downto 0);
 begin

 sync : process(clk, res_n) begin
 if res_n = ’0’ then
 cnt <= (others => ’0’);
 elsif rising_edge(clk) then
 cnt <= cnt_next;
 end if;

 end process;


 comb : process(all) begin
 cnt_next <= cnt + 1;
 end process;
 end architecture;

+ D Q

RST

+1

clk
res_n

cnt

4

Pitfalls - Combinational Loops (cnt’d)

 architecture beh2 of counter is
 signal cnt, cnt_next : unsigned(7 downto 0);
 begin

 sync : process(clk, res_n) begin
 if res_n = ’0’ then
 cnt <= (others => ’0’);
 elsif rising_edge(clk) then
 cnt <= cnt_next;
 end if;

 end process;


 comb : process(all) begin
 cnt_next <= cnt + 1;
 end process;
 end architecture;

+ D Q

RST

+1

clk
res_n

cnt

Latches and combinational loops
Comb. Loops

Pitfalls - Combinational Loops (cnt’d)

Let us finish our discussion of the pitfalls involved in coding sequential logic by considering how we could implement the
counter from the previous slide without a purely combinational feedback loop. First, let us introduce an additional signal with
the suffix ”next”. We will use this signal to name the output of the combinational adder required for our counter. The other
signal, cnt, will be used to describe a flip-flop.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Combinational Loops (cnt’d)

 architecture beh2 of counter is
 signal cnt, cnt_next : unsigned(7 downto 0);
 begin
 sync : process(clk, res_n) begin
 if res_n = ’0’ then
 cnt <= (others => ’0’);
 elsif rising_edge(clk) then
 cnt <= cnt_next;
 end if;

 end process;


 comb : process(all) begin
 cnt_next <= cnt + 1;
 end process;
 end architecture;

+ D Q

RST

+1

clk
res_n

cnt

4

Pitfalls - Combinational Loops (cnt’d)

 architecture beh2 of counter is
 signal cnt, cnt_next : unsigned(7 downto 0);
 begin
 sync : process(clk, res_n) begin
 if res_n = ’0’ then
 cnt <= (others => ’0’);
 elsif rising_edge(clk) then
 cnt <= cnt_next;
 end if;

 end process;


 comb : process(all) begin
 cnt_next <= cnt + 1;
 end process;
 end architecture;

+ D Q

RST

+1

clk
res_n

cnt

Latches and combinational loops
Comb. Loops

Pitfalls - Combinational Loops (cnt’d)

The process describing the register adheres to the structure you already saw in a previous lecture. The modelled register
features an asynchronous reset and samples the value of cnt next on any rising clock edge. This value stored by the register
is then processed by combinational logic.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Combinational Loops (cnt’d)

 architecture beh2 of counter is
 signal cnt, cnt_next : unsigned(7 downto 0);
 begin
 sync : process(clk, res_n) begin
 if res_n = ’0’ then
 cnt <= (others => ’0’);
 elsif rising_edge(clk) then
 cnt <= cnt_next;
 end if;

 end process;


 comb : process(all) begin
 cnt_next <= cnt + 1;
 end process;
 end architecture;

+ D Q

RST

+1

clk
res_n

cnt

4

Pitfalls - Combinational Loops (cnt’d)

 architecture beh2 of counter is
 signal cnt, cnt_next : unsigned(7 downto 0);
 begin
 sync : process(clk, res_n) begin
 if res_n = ’0’ then
 cnt <= (others => ’0’);
 elsif rising_edge(clk) then
 cnt <= cnt_next;
 end if;

 end process;


 comb : process(all) begin
 cnt_next <= cnt + 1;
 end process;
 end architecture;

+ D Q

RST

+1

clk
res_n

cnt

Latches and combinational loops
Comb. Loops

Pitfalls - Combinational Loops (cnt’d)

The respective process is almost the same as the one before, that resulted in a combinational loop, except for a small detail.
Instead of having the same signal in the left and right-hand side of the increment assignment, the current output of the
register is incremented by one and assigned to the signal that the flip-flop will sample at the next rising clock edge. Observe
how the combinational process thus now no longer reads from and writes to the same signal! This is immediately clear when
we look at the circuit described by this code.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Pitfalls - Combinational Loops (cnt’d)

 architecture beh2 of counter is
 signal cnt, cnt_next : unsigned(7 downto 0);
 begin
 sync : process(clk, res_n) begin
 if res_n = ’0’ then
 cnt <= (others => ’0’);
 elsif rising_edge(clk) then
 cnt <= cnt_next;
 end if;

 end process;


 comb : process(all) begin
 cnt_next <= cnt + 1;
 end process;
 end architecture;

+ D Q

RST

+1

clk
res_n

cnt

4

Pitfalls - Combinational Loops (cnt’d)

 architecture beh2 of counter is
 signal cnt, cnt_next : unsigned(7 downto 0);
 begin
 sync : process(clk, res_n) begin
 if res_n = ’0’ then
 cnt <= (others => ’0’);
 elsif rising_edge(clk) then
 cnt <= cnt_next;
 end if;

 end process;


 comb : process(all) begin
 cnt_next <= cnt + 1;
 end process;
 end architecture;

+ D Q

RST

+1

clk
res_n

cnt

Latches and combinational loops
Comb. Loops

Pitfalls - Combinational Loops (cnt’d)

As expected, the resulting circuit, shown on the slide, consists of an adder and a flip-flop. Due to the flip-flop intercepting the
path from the adder’s output to its input, there is no combinational loop any longer. Note that this structure comprising a
synchronous process modeling flip-flops that sample ”next” signals produced by one or more combinational processes is an
important design pattern used for many VHDL designs. Keep this in mind when writing your own code.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Summary

Latches
Often due to missing default values in comb. processes

Comb. loops
Never read from and write to the same signal in a comb. process

Never ignore the tool warnings!

5

Summary

Latches
Often due to missing default values in comb. processes

Comb. loops
Never read from and write to the same signal in a comb. process

Never ignore the tool warnings!

Latches and combinational loops
Summary

Summary

Finally, let us finish this lecture by highlighting the key takeaways. Undesired latches often have their origin in missing default
assignments in combinational processes containing conditional code, which then often results in signals being required to
hold their value. To mitigate this, use default assignments or ensure that you cover all possible outcomes of conditions. Of
course, doing both is also fine.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Summary

Latches
Often due to missing default values in comb. processes

Comb. loops
Never read from and write to the same signal in a comb. process

Never ignore the tool warnings!

5

Summary

Latches
Often due to missing default values in comb. processes

Comb. loops
Never read from and write to the same signal in a comb. process

Never ignore the tool warnings!

Latches and combinational loops
Summary

Summary

Combinational loops are the result of combinational logic reading from and writing to the same signal, leading to feedback
paths that do not contain flip-flops. To mitigate this, make sure that your combinational processes never read from and write
to the same signal. If such feedback behavior is required, introduce flip-flops somewhere in the feedback path. Of course,
such loops can also be the result of multiple combinational processes.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Summary

Latches
Often due to missing default values in comb. processes

Comb. loops
Never read from and write to the same signal in a comb. process

Never ignore the tool warnings!

5

Summary

Latches
Often due to missing default values in comb. processes

Comb. loops
Never read from and write to the same signal in a comb. process

Never ignore the tool warnings!

Latches and combinational loops
Summary

Summary

Finally, never ignore the respective warnings produced by the tools. In this course, this always highlights fatal issues in your
design that you need to deal with. The slide shows you examples of how such warnings can look like.



HWMod
WS24

Latches &
Loops
Latches

Comb. Loops

Summary

Lecture Complete!

Modified: 2025-03-12, 16:31 (21636bb)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.


	Latches and combinational loops
	Undesired Latches
	Comb. Loops
	Summary


