HWMod
WS25

Loops. Hardware Modeling [VU] (191.011)
— WS25 —

Latches and combinational loops

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:03 (f8a58e9)



Undesired Latches

HWMod
WS25

m When should you use a latch or a flip-flop?



Undesired Latches

HWMod
WS25

m When should you use a latch or a flip-flop?
m In this course latches are always undesired



Undesired Latches

HWMod
WS25

m When should you use a latch or a flip-flop?

m In this course latches are always undesired
m Often not available as primitive building blocks



Undesired Latches

HWMod
WS25

m When should you use a latch or a flip-flop?

m In this course latches are always undesired

m Often not available as primitive building blocks
m Built from combinational elements instead



Undesired Latches

HWMod
WS25

m When should you use a latch or a flip-flop?

m In this course latches are always undesired

m Often not available as primitive building blocks
m Built from combinational elements instead



Undesired Latches

HWMod
WS25

m When should you use a latch or a flip-flop?

m In this course latches are always undesired

m Often not available as primitive building blocks
m Built from combinational elements instead



Undesired Latches

HWMod
WS25

m When should you use a latch or a flip-flop?

m In this course latches are always undesired
m Often not available as primitive building blocks
m Built from combinational elements instead

D —{>o—" Q



Undesired Latches

HWMod
WS25

m When should you use a latch or a flip-flop?
m In this course latches are always undesired
m Often not available as primitive building blocks

m Built from combinational elements instead
m Delay of feedback path can become high

D —{>o—" Q



Undesired Latches

HWMod
WS25

m When should you use a latch or a flip-flop?
m In this course latches are always undesired
m Often not available as primitive building blocks

m Built from combinational elements instead
m Delay of feedback path can become high
m Feedback path can lead to oscillation

D —{>o—" Q



Pitfalls - Latch Errors (contd)

HWMod
WS25

m How do latches happen?



Pitfalls - Latch Errors (contd)

HWMod
WS25
entity cmp is
m How do latches happen? port (
a, b : in unsigned;
Latches X : out std_ulogic

)i
end entity;

0 N oA WD =

architecture arch of cmp is
begin

©

10 main : process (all) begin
11

12 if a <= b then

13 X <= "1";

14 end if;

15 end process;

(e}

end architecture;



Pitfalls - Latch Errors (contd)

HWMod
WS25
entity cmp is
m How do latches happen? port (
a, b : in unsigned;
Latches X : out std_ulogic

)i
end entity;

0 N oA WD =

architecture arch of cmp is
begin

©

10 main : process (all) begin
11

12 if a <= b then

13 X <= "1";

14 end if;

15 end process;

(e}

end architecture;



Pitfalls - Latch Errors (contd)

HWMod
WS25
entity cmp is
m How do latches happen? port (
a, b : in unsigned;
Latches X : out std_ulogic

)i
end entity;

0 N oA WD =

architecture arch of cmp is
begin

©

10 main : process (all) begin
11

12 if a <= b then

13 €= UV g

14 end if;

15 end process;

(e}

end architecture;



Pitfalls - Latch Errors (contd)

HWMod
WS25
entity cmp is
m How do latches happen? port (
. . a, b : in unsigned;
e m Not all paths write to signal x . out std ulogic

)i
end entity;

0 N oA WD =

architecture arch of cmp is
begin

10 main : process (all) begin
11

©

12 if a <= b then
13 X <= "1";
14 end if;

15 end process;
16 end architecture;



Pitfalls - Latch Errors (contd)

HWMod
WS25
entity cmp is
m How do latches happen? port (
. . a, b : in unsigned;
e m Not all paths write to signal x . out std ulogic

m Holding state infer latch )i

end entity;

0 N oA WD =

architecture arch of cmp is
begin
main : process (all) begin

- o ©

if a <= b then
x <= '1";
end if;
end process;
end architecture;

o g~ w N



HWMod
WS25

Latches

Pitfalls - Latch Errors (contd)

m How do latches happen?

m Not all paths write to signal
m Holding state = infer latch

0 N oA WD =

o g h N = O ©

entity cmp is

port (
a, b : in unsigned;
X : out std_ulogic

)i
end entity;

architecture arch of cmp is
begin
main : process (all) begin

if a <= b then
x <= '1";
end if;
end process;
end architecture;



Pitfalls - Latch Errors (contd)

HWMod
WS25
m How do latches happen?

etz m Not all paths write to signal
m Holding state = infer latch

0 N O WD =

o g h WM = O ©

entity cmp is

port (
a, b : in unsigned;
X : out std_ulogic

)i
end entity;

architecture arch of cmp is
begin
main : process (all) begin

if a <= b then
x <= "'1";
end if;
end process;
end architecture;



Pitfalls - Latch Errors (contd)

HWMod
WS25
m How do latches happen?

etz m Not all paths write to signal
m Holding state = infer latch

m Always cover all paths/cases!

0 N O WD =

o g h WM = O ©

entity cmp is

port (
a, b : in unsigned;
X : out std_ulogic

)i
end entity;

architecture arch of cmp is
begin
main : process (all) begin

if a <= b then
x <= "'1";
end if;
end process;
end architecture;



Pitfalls - Latch Errors (contd)

HWMod
WS25
m How do latches happen?

etz m Not all paths write to signal
m Holding state = infer latch

m Always cover all paths/cases!
m Default assignment or others

0 N O WD =

o g h WM = O ©

entity cmp is

port (
a, b : in unsigned;
X : out std_ulogic

)i
end entity;

architecture arch of cmp is
begin
main : process (all) begin

if a <= b then
x <= "'1";
end if;
end process;
end architecture;



Pitfalls - Latch Errors (contd)

HWMod
WS25
m How do latches happen?

etz m Not all paths write to signal
m Holding state = infer latch

m Always cover all paths/cases!
m Default assignment or others

0 N O WD =

o g h WM = O ©

entity cmp is

port (
a, b : in unsigned;
X : out std_ulogic

)i
end entity;

architecture arch of cmp is
begin
main : process (all) begin
x <="'0";
if a <= b then
x <= "'1";
end if;
end process;
end architecture;



Pitfalls - Latch Errors (contd)

HWMod
WS25
m How do latches happen?

etz m Not all paths write to signal
m Holding state = infer latch

m Always cover all paths/cases!

m Default assignment or others
m Detected during synthesis

m Never ignore warnings!

0 N O WD =

o g h WM = O ©

entity cmp is

port (
a, b : in unsigned;
X : out std_ulogic

)i
end entity;

architecture arch of cmp is
begin
main : process (all) begin
x <= "'0";
if a <= b then
x <= "'1";
end if;
end process;
end architecture;



Pitfalls - Combinational Loops

HWMod
WS25

m Feedback loops not exclusive to latches

Comb. Loops



Pitfalls - Combinational Loops

HWMod
WS25

m Feedback loops not exclusive to latches

Comb. Loops

architecture beh of counter is
signal cnt : unsigned(7 downto 0);
begin
comb : process(all) begin
cnt <= cnt + 1;
end process;
end architecture;

N o oA WD =



Pitfalls - Combinational Loops

HWMod
WS25

m Feedback loops not exclusive to latches

Comb. Loops

architecture beh of counter is
signal cnt : unsigned(7 downto 0);
begin
comb : process(all) begin
cnt <= cnt + 1;
end process;
end architecture;

N o oA WD =



Pitfalls - Combinational Loops

HWMod
WS25

m Feedback loops not exclusive to latches

Comb. Loops

architecture beh of counter is
signal cnt : unsigned(7 downto 0);
begin
comb : process(all) begin
cnt <= cnt + 1; + cnt
end process; +1
end architecture;

N o oA WD =



Pitfalls - Combinational Loops

HWMod
WS25

m Feedback loops not exclusive to latches

Comb. Loops

architecture beh of counter is
signal cnt : unsigned(7 downto 0);
begin
comb : process(all) begin
cnt <= cnt + 1; + cnt
end process; +1
end architecture;

N o oA WD =



Pitfalls - Combinational Loops

HWMod
WS25

m Feedback loops not exclusive to latches
m Comb. process must never read and write to same signal

Comb. Loops

architecture beh of counter is
signal cnt : unsigned(7 downto 0);
begin
comb : process(all) begin
cnt <= cnt + 1; + cnt
end process; +1
end architecture;

N o oA WD =



Pitfalls - Combinational Loops

HWMod
WS25

m Feedback loops not exclusive to latches

m Comb. process must never read and write to same signal
m Hard to spot at interfaces

Comb. Loops

architecture beh of counter is
signal cnt : unsigned(7 downto 0);
begin
comb : process(all) begin
cnt <= cnt + 1; + cnt
end process; +1
end architecture;

N o oA WD =



Pitfalls - Combinational Loops

HWMod
WS25

m Feedback loops not exclusive to latches

m Comb. process must never read and write to same signal

m Hard to spot at interfaces
m Feedback paths must contain flip-flops

Comb. Loops

architecture beh of counter is
signal cnt : unsigned(7 downto 0);
begin
comb : process(all) begin
cnt <= cnt + 1; + cnt
end process; +1
end architecture;

N o oA WD =



Pitfalls - Combinational Loops

HWMod
WS25

m Feedback loops not exclusive to latches

m Comb. process must never read and write to same signal
m Hard to spot at interfaces
m Feedback paths must contain flip-flops

m Also reported during synthesis

Comb. Loops

architecture beh of counter is
signal cnt : unsigned(7 downto 0);
begin
comb : process(all) begin
cnt <= cnt + 1; + cnt
end process; +1
end architecture;

N o oA WD =



Pitfalls - Combinational Loops (cnt'd)

HWMod

WS25
i architecture sync of counter is
2 signal cnt, cnt_next : unsigned(7 downto 0);
3 begin

Comb. Loops 4

5
6
7
8
9
10
11
12
13
14

15 end architecture;



Pitfalls - Combinational Loops (cnt'd)

HWMod

WS25
i architecture sync of counter is
2 signal cnt, cnt_next : unsigned(7 downto 0);
3 begin

Comb. Loops 4

5
6
7
8
9
10
11
12
13
14

15 end architecture;



Pitfalls - Combinational Loops (cnt'd)

HWMod

WS25
i architecture sync of counter is
2 signal cnt, cnt_next : unsigned(7 downto 0);
3 begin

Comb. Loops 4

5
6
7
8
9
10
11
12 comb : process(all) begin
13 cnt_next <= cnt + 1;

14 end process;
15 end architecture;



Pitfalls - Combinational Loops (cnt'd)

HWMod

WS25
i architecture sync of counter is
2 signal cnt, cnt_next : unsigned(7 downto 0);
3 begin

B 4 sync : process(clk, res_n) begin

5 if res_n = 0’ then
6 cnt <= (others => "0');
7 elsif rising_edge (clk) then
8 cnt <= cnt_next;
9 end if;
10 end process;
11
12 comb : process(all) begin
13 cnt_next <= cnt + 1;

14 end process;
15 end architecture;



Pitfalls - Combinational Loops (cnt'd)

HWMod

WS25
i architecture sync of counter is
2 signal cnt, cnt_next : unsigned(7 downto 0);
3 begin

B 4 sync : process(clk, res_n) begin

5 if res_n = 0’ then
6 cnt <= (others => "0’);
7 elsif rising_edge (clk) then
8 cnt <= cnt_next;
9 end if;
10 end process;
11
12 comb : process(all) begin
13 cnt_next <= cnt + 1;

14 end process;
15 end architecture;



Pitfalls - Combinational Loops (cnt'd)

HWMod

WS25
i architecture sync of counter is
2 signal cnt, cnt_next : unsigned(7 downto 0);
3 begin

B 4 sync : process(clk, res_n) begin

5 if res_n = 0’ then
6 cnt <= (others => "0’);
7 elsif rising_edge (clk) then
8 cnt <= cnt_next;
9 end if;
10 end process;
11
12 comb : process(all) begin
13 cnt_next <= cnt + 1;

14 end process;
15 end architecture;



Pitfalls - Combinational Loops (cnt'd)

HWMod

WS25
1 architecture sync of counter is
2 signal cnt, cnt_next : unsigned(7 downto 0);
3 begin

B 4 sync : process(clk, res_n) begin

5 if res_n = 0’ then
6 cnt <= (others => "0’);
7 elsif rising_edge (clk) then
8 cnt <= cnt_next; D Q cnt
9 end if; +1
10 end process; RST
11
12 comb : process(all) begin
13 cnt_next <= cnt + 1; o
14 end process; Oj& 5;0

15 end architecture;



Pitfalls - Combinational Loops (cnt'd)

HWMod

WS25
1 architecture sync of counter is
2 signal cnt, cnt_next : unsigned(7 downto 0);
3 begin

B 4 sync : process(clk, res_n) begin

5 if res_n = 0’ then
6 cnt <= (others => "0’);
7 elsif rising_edge (clk) then
8 cnt <= cnt_next; D Q cnt
9 end if; +1
10 end process; RST
11
12 comb : process(all) begin
13 cnt_next <= cnt + 1; o
14 end process; Oj& 5;0

15 end architecture;



Summary

HWMod
WS25

m Latches
m Often due to missing default values



Summary

HWMod
WS25

m Latches

m Often due to missing default values
m Comb. loops

m Never read and write same signal

Summary



Summary

HWMod
WS25
m Latches
. m Often due to missing default values

m Comb. loops
m Never read and write same signal

m Never ignore tool warnings!

10631 VHDL Process Statement warning at top_arch.vhd(13): inferring latch(es) for signal or variable "abc”, which holds its previous value in one or more paths through the process

332125 Found combinational loop of 2 nodes



Lecture Complete!



	Latches and combinational loops
	Undesired Latches
	Comb. Loops
	Summary


