L_|EEE 1164 Package

Hardware Modeling [VU] (191.011)
—ws24—

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

Ws 202425

In this lecture, we will introduce the std_logic_1164 package, that implements the IEEE 1164 standard. It contains the
types that are virtually always used when describing hardware in VHDL.

HWMod
WS24

IEEE 1164 Hardware MOdellng [VU] (1 91.01 1)
- WS24 —

IEEE 1164 Package

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-12, 16:24 (b25118c)

L-|EEE 1164 Package « o s st
LMotivation
LMotivation | Wired-AND

Before we start our discussion about the additional types the package introduces, let us consider two examples that stress
the need for them. The first one is a bus with wired AND topology. This can, for instance, be found in the I2C protocol. The
figure on the slide shows a schematic of such a circuit.

Motivation | Wired-AND

e m Example: Wired-AND circuit

Motivation

Rpullup
bus

ini cee Ny

L-|EEE 1164 Package < s vt
LMotivation
LMotivation | Wired-AND

The pullup resistor ensures that the bus line exhibits a valid logical value at all times, by connecting it to the voltage corre-
sponding to a logical high.

Motivation | Wired-AND

e m Example: Wired-AND circuit
m A pullup resistor pulls bus to HIGH when none of the transistors is active

Motivation

Rpullup
bus

. . >
<€ >

L-|EEE 1164 Package < s vt
L Motivation oS
LMotivation | Wired-AND

he
errdes the pullup

When a bus participant wants to transmit a logical low, it sets the input voltage of its respective bus driver to low, which will
effectively pull the bus voltage to ground, overriding the pullup resistor. Since the bus exhibits a logical low whenever any of
the bus driver inputs is set to low, this type of connection leads to an AND behavior.

Motivation | Wired-AND

e m Example: Wired-AND circuit
m A pullup resistor pulls bus to HIGH when none of the transistors is active
m Setting one of the inputs inq, ..., in, to LOW overrides the pullup

Motivation

Rpullup
bus

. . >
<€ >

L_|EEE 1164 Package
L-Motivation
LMotivation | Wired-AND

Now assume you are to model this circuit using VHDL. How would you do it?

Motivation | Wired-AND

e m Example: Wired-AND circuit
m A pullup resistor pulls bus to HIGH when none of the transistors is active
m Setting one of the inputs inq, ..., in, to LOW overrides the pullup
m How can we model this overriding behavior?

Motivation

Rpullup

L_|EEE 1164 Package
L-Motivation
LMotivation | Wired-AND

We clearly cannot use the basic Boolean type and encode the desired circuit behavior - we would just end up describing an
AND gate since Boolean logic has no concept of driving strength. Therefore, what we need is a means to model this property

of an acitvely driven signal. In particular, we need the weak logical high provided by the pullup resistor, and the strong logical
low provided by the bus drivers.

Motivation | Wired-AND

e m Example: Wired-AND circuit

m A pullup resistor pulls bus to HIGH when none of the transistors is active
m Setting one of the inputs inq, ..., in, to LOW overrides the pullup
m How can we model this overriding behavior?
= To encode this we require more than Boolean values!

Motivation

Rpullup
bus

ini cee Ny

L_|EEE 1164 Package
LMotivation
LMotivation | Tri-State Buffer

= Another example: 1r-state buffer

Our second example for the shortcomings of Boolean logic for describing hardware is a tri-state buffer. This special kind of
buffer circuit, shown on the slide, has two states, controlled via the enable signal, referred to as en.

Motivation | Tri-State Buffer

HWMod
WS24

m Another example: tri-state buffer

Motivation

en

>

m out

L_|EEE 1164 Package
LMotivation
LMotivation | Tri-State Buffer

If the enable signal is high, the buffer will be transparent. This means that it will simply propagate the logical values applied
at its input to its output.

Motivation | Tri-State Buffer

HWMod
WS24

m Another example: tri-state buffer
m Depending on en buffer is either
m transparent: in propagated to out

Motivation

en

>

m out

L_|EEE 1164 Package

L-Motivation
LMotivation | Tri-State Buffer

However, if the buffer is disabled, it will be in a so-called high-impedance state. In this state the buffer input is not connected
to the output, allowing the output to be overridden by active drivers.

HWMod
WS24

Motivation

Motivation | Tri-State Buffer

m Another example: tri-state buffer
m Depending on en buffer is either

m fransparent: in propagated to out
m disabled: high impedance at out = overriding by active driver possible

m ‘ out

L_|EEE 1164 Package
LMotivation
LMotivation | Tri-State Buffer

Similar to the wired AND-topology, this can be used to build a bus that is shared by multiple participants. However, as before,
we face the problem that Boolean logic is not expressive enough to model this additional high-impedance state.

Motivation | Tri-State Buffer

HWMod
WS24

m Another example: tri-state buffer
m Depending on en buffer is either

m fransparent: in propagated to out
m disabled: high impedance at out = overriding by active driver possible

Motivation

= We cannot model this with Boolean values alone!

m ‘ out

L_|EEE 1164 Package
LStandard
LThe IEEE std_logic_1164 package

At this point, you might recall the nine-valued logic from the Digital Design lecture. Instead of the typical Boolean low and
high values, this special logic comes with values for different driver strength and impedance, as well as values useful for
simulation and synthesis.

The IEEE std_logic_1164 package

HWMod
WS24

m Recall from Digital Design lecture: 9-valued logic

m Contains values for different driver strength / impedance
m Also values useful for simulation and synthesis

Package

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86

L_|EEE 1164 Package
LStandard
LThe IEEE std_logic_1164 package

The |IEEE standardized this special value system for VHDL in the 1164 standard in 1993.

The IEEE std_logic_1164 package

HWMod
WS24

m Recall from Digital Design lecture: 9-valued logic

m Contains values for different driver strength / impedance
m Also values useful for simulation and synthesis
m |IEEE 1164 standard for VHDL

Package

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86

L_|EEE 1164 Package
LStandard
LThe IEEE std_logic_1164 package

In addition to defining it, the IEEE also provides an open-source implementation of this standard in the form of the
std_logic_1164 package. You can have a look at this implementation by clicking the icon on the slide.

The IEEE std_logic_1164 package

HWMod
WS24

m Recall from Digital Design lecture: 9-valued logic

m Contains values for different driver strength / impedance
m Also values useful for simulation and synthesis
m |IEEE 1164 standard for VHDL

m Implemented inthe std_logic_1164 package &=

Package

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86

L_|EEE 1164 Package
LStandard
LThe IEEE std_logic_1164 package

Note that, similar to including some standard C header file, or a Java module, the respective library and the package must be
imported before you have access to the additional functionality. As shown on the slide, this first requires to import the IEEE
library and then the particular required package of this library.

The IEEE std_logic_1164 package

HWMod
WS24
m Recall from Digital Design lecture: 9-valued logic

m Contains values for different driver strength / impedance
m Also values useful for simulation and synthesis
m |IEEE 1164 standard for VHDL

m Implemented inthe std_logic_1164 package &=

m Must be imported via
library ieee;

Package

use ieee.std _logic_1164.all;

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86

L_|EEE 1164 Package
LStandard
LThe IEEE std_logic_1164 package

After such an import, you essentially gain access to two new types: std_ulogic and std_logic, as well as to operations
defined for them. While the two types are named similarly, will see shortly that they actually behave quite different from
another, We coin these different behaviors as unresolved and resolved.

The IEEE std_logic_1164 package

HWMod
WS24
m Recall from Digital Design lecture: 9-valued logic

m Contains values for different driver strength / impedance
m Also values useful for simulation and synthesis
m |IEEE 1164 standard for VHDL

m Implemented in the std_logic_1164 package &2

m Must be imported via
library ieee;

Package

use ieee.std _logic_1164.all;
m Essentially introduces two new, 9-valued, types:

m Unresolved std_ulogic &=
m Resolved std_logic &

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86

L_|EEE 1164 Package
L_Standard e
L_|EEE 1164 Value System

Before we continue with the specifics of the two types, let us briefly introduce the nine values which std_ulogic and
std_logic share, as well as the example uses cases the standard mentions for them.

IEEE 1164 Value System

HWMod
WS24

The standard defines nine values and example use cases

| Value | Name | Example Use Case

Value System

L_|EEE 1164 Package
LStandard

L_|EEE 1164 Value System

‘The standard defines nine values and example use cases

Value Name
"' Unintialized State | Used as default valu

The uninitialized state, " U’ , can be used to detect signals that have not been changed since the simulation start. Per default,
all instances of the std_ulogic and std_logic types are initialized to this value.

IEEE 1164 Value System

HWMod

WS24

Value System

The standard defines nine values and example use cases

Value

Name

Example Use Case

IUI

Uninitialized State

Used as default value

L_|EEE 1164 Package
LStandard
L_|EEE 1164 Value System

The value ’ X’ is used to express conflicting drivers or errors that prevent the simulator from determining one of the other
eight values. An example is the case of multiple drivers of the same strength applying different values to the same signal.
Since the drivers are of equal strength, none will dominate the other one and the resulting value is thus unknown.

IEEE 1164 Value System

HWMod
WS24
The standard defines nine values and example use cases
Value | Name Example Use Case
Velue Sytem Ty’ Uninitialized State | Used as default value

rX’ Strong Unknown | Bus contention, error condition

L_|EEE 1164 Package
LStandard
L_|EEE 1164 Value System

The values " 07 and ’ 1" reflect the classic Boolean logic values.

IEEE 1164 Value System

HWMod
WS24

The standard defines nine values and example use cases

Value | Name Example Use Case
Vel Systom Ty’ Uninitialized State | Used as default value
rX’ Strong Unknown | Bus contention, error condition
0’ Strong LOW Active driver to LOW
r1’ Strong HIGH Active driver to HIGH

L_|EEE 1164 Package
LStandard
L_|EEE 1164 Value System

The value ’ z’ is associated to a high impedance. It is of use in cases like the initial tri-state buffer example.

IEEE 1164 Value System

HWMod
WS24

The standard defines nine values and example use cases

Value | Name Example Use Case
Vel Systom Ty’ Uninitialized State | Used as default value
rX’ Strong Unknown | Bus contention, error condition
0’ Strong LOW Active driver to LOW
r1’ Strong HIGH Active driver to HIGH
Tz’ High Impedance | Tri-state buffer output

L_|EEE 1164 Package
LStandard
L_|EEE 1164 Value System

T Weak HIGH Pullup resistor

Furthermore, there are the weak unknown, low, and high values, referred to as " w’, L.” respectively ’ H’ . These values are
used to model different driver strengths, therefore allowing to express overriding behavior as required in the initial wired AND
example.

IEEE 1164 Value System

HWMod
WS24
The standard defines nine values and example use cases
Value | Name Example Use Case
Vel Systom Ty’ Uninitialized State | Used as default value
rX’ Strong Unknown | Bus contention, error condition
0’ Strong LOW Active driver to LOW
r1’ Strong HIGH Active driver to HIGH

Tz’ High Impedance | Tri-state buffer output
[Weak Unknown Bus terminator

"L’ Weak LOW Pull down resistor
"H’ Weak HIGH Pull up resistor

L_|EEE 1164 Package
LStandard

L_|EEE 1164 Value System

Finally, the standard also defines a don’t care value, referred to via a ’ -’ symbol. This is useful in cases where not all inputs,
or states, of the modelled circuit can actually occur, allowing the synthesis tool to perform some optimizations. Let us now
look at the types provided by the std_logic_1164 package.

IEEE 1164 Value System

"Wszi
The standard defines nine values and example use cases

Value | Name Example Use Case

Vel Systom Ty’ Uninitialized State | Used as default value
rX’ Strong Unknown | Bus contention, error condition
0’ Strong LOW Active driver to LOW
r1’ Strong HIGH Active driver to HIGH
Tz’ High Impedance | Tri-state buffer output
"W’ Weak Unknown Bus terminator
;g Weak LOW Pull down resistor
7 H" Weak HIGH Pull up resistor
r—r Don’t care Useful for synthesis and modeling

L_|EEE 1164 Package
L-VHDL Types
L_IEEE 1164 std_ulogic Type

First we will discuss the std_ulogic type. In principle, this type is nothing more than an enumeration type consisting of
the previously mentioned nine values. Observe how the value U is the enum’s first value, leading to the mentioned default
initialization.

IEEE 1164 std_ulogic Type

HWMod
wsz4 m Simple enumeration type with nine values

type std_ulogic is ('U’, ’x’, '0’, '1', 'z', 'W', 'L’, 'H', '-"); GO

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61

L_|EEE 1164 Package

= Simple enumeration type with ni

L-VHDL Types e
L_IEEE 1164 std_ulogic Type

As we stated before, the std_ulogic type is unresolved, hence the u in its name. This means, that signals of this type only
permit a single driver.

HWMod
WS24

IEEE 1164 std_ulogic Type

m Simple enumeration type with nine values
type std_ulogic is ('U’, ’x’, '0’, '1', 'z', 'W', 'L’, 'H', '-"); GO

m Unresolved: Only supports signals with single driver

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61

L_|EEE 1164 Package
L_VHDL Types v o s s
L_IEEE 1164 std_ulogic Type

' Simple enumeraion type with ine values

A violation of this, meaning multiple drivers for a single signals, will be detected by simulators and reported when elaborating
VHDL code.

IEEE 1164 std_ulogic Type

HWMod
wsz4 m Simple enumeration type with nine values
type std_ulogic is (’U’, ’X’, ’'0’, ’1’, 'z’, 'W, 'L’, 'H', '-'); ERX
m Unresolved: Only supports signals with single driver
m Multiple drivers are detected and reported (during elaboration)

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61

L_|EEE 1164 Package
L_VHDL Types v o s s
L_IEEE 1164 std_ulogic Type

' Simple enumeraion type with ine values

To illustrate this, consider the example on the slide where two drivers share a std_ulogic signal x.

IEEE 1164 std_ulogic Type

HWMod
wsz4 m Simple enumeration type with nine values
type std_ulogic is (’U’, ’X’, ’'0’, ’1’, 'z’, 'W, 'L’, 'H', '-'); ERX
m Unresolved: Only supports signals with single driver
m Multiple drivers are detected and reported (during elaboration)

X
< >
value1 value2

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61

L_|EEE 1164 Package
L_VHDL Types v o s s
L_IEEE 1164 std_ulogic Type ‘

' Simple enumeraion type with ine values

In VHDL this would correspond to a signal x of type std_ulogic being declared first, which will then be shared by the
drivers.

IEEE 1164 std_ulogic Type

it m Simple enumeration type with nine values
type std_ulogic is (‘U’, 'Xx’, '0', '1’, 'z', 'W', ‘L', 'H', '-'); &R
m Unresolved: Only supports signals with single driver
m Multiple drivers are detected and reported (during elaboration)

1 signal x : std_ulogic;

X
< >
value1 value2

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61

L_|EEE 1164 Package
LVHDL Types i
L_IEEE 1164 std_ulogic Type ‘

Said drivers could be implemented as distinct processes, as shown on the slide.

IEEE 1164 std_ulogic Type

HWMod
wsz4 m Simple enumeration type with nine values
type std_ulogic is (’U’, ’X’, ’'0’, ’1’, 'z’, 'W, 'L’, 'H', '-'); ERX
m Unresolved: Only supports signals with single driver
m Multiple drivers are detected and reported (during elaboration)

signal x : std_ulogic;

[...]

driverl : process(all) is
[...]

x <= valuel;

X
end process; h value1 vmmzr
driver2 : process(all) is
o

x <= value2;
end process;

O © N O U A WD =

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61

L_|EEE 1164 Package
LVHDL Types i
L_IEEE 1164 std_ulogic Type ‘

Note how both of the processes contain an assignment to x, thus resulting in conflicting drivers.

IEEE 1164 std_ulogic Type

HWMod
wsz4 m Simple enumeration type with nine values
type std_ulogic is (’U’, ’X’, ’'0’, ’1’, 'z’, 'W, 'L’, 'H', '-'); ERX
m Unresolved: Only supports signals with single driver
m Multiple drivers are detected and reported (during elaboration)

signal x : std_ulogic;

[...]

driverl : process(all) is
[...]

x <= valuel;

X
end process; h value1 vmmzr
driver2 : process(all) is
o

X <= value2;
end process;

O © N O U A WD =

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61

L_|EEE 1164 Package
LVHDL Types e
L_IEEE 1164 std_ulogic Type ‘

If you were now to try simulating this circuit, you would observe that the simulator produces an error like the one shown on
the bottom of the slide. As mentioned, the reason is of course that a signal of type std_ulogic does not allow multiple
drivers.

IEEE 1164 std_ulogic Type

it m Simple enumeration type with nine values
type std_ulogic is (‘U’, 'Xx’, '0', '1’, 'z', 'W', ‘L', 'H', '-'); &R
m Unresolved: Only supports signals with single driver
m Multiple drivers are detected and reported (during elaboration)

signal x : std_ulogic;

[...]

driverl : process(all) is
[...]

x <= valuel;

X
end process; h value1 vmmzr
driver2 : process(all) is
o

x <= value2;
end process;

O © N O U A WD =

[...]: error: too many drivers for signal "x"

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L61

L IEEE 1164 Package
|—VH DL Types [
LIEEE 1164 std_logic Type

Let us now come to the resolved pendant of the std_ulogic type, namely std_logic. As shown on the slide, this type is
a special subtype of std_ulogic.

IEEE 1164 std_logic Type

HWMod
WS24

m Special subtype of std_ulogic

subtype std_logic is resolved std_ulogic; &%

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86

L_|EEE 1164 Package
'~ VHDL Types
L_IEEE 1164 std_logic Type

Note that the subtype declaration clearly shows that std_1o0gic comprises all values of std_ulogic.

IEEE 1164 std_logic Type

HWMod
WS24

m Special subtype of std_ulogic

subtype std_logic is resolved std_ulogic; &%

B std_logic hasthe same nine values as std_ulogic

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86

L IEEE 1164 Package
L VvHDL Types S

has the same nine values as

I—lEEE 1164 st d_Iogic Type = Nlows mullpe divers (0., wie AN, i tto b, k)

As already mentioned before, main difference between std_ulogic and std_logic is how the simulator will handle mul-
tiple drivers to a signal of the respective type. Whereas std_ulogic does only permit a single driver and leads to an error
whenever this is violated, std_1ogic allows modelling multiple drivers for the same signal as needed by the wired AND and
tri-state examples.

IEEE 1164 std_logic Type

HWMod
WS24

m Special subtype of std_ulogic

subtype std_logic is resolved std_ulogic; &%

B std_logic hasthe same nine values as std_ulogic
m Allows multiple drivers (e.g., wired-AND, tri-state bus, etc.)

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86

L IEEE 1164 Package
I—VH DL Types W
LIEEE 1164 std_logic Type

Recall the example from the previous slide. If you changed the type of the shared signal x to std_1logic, the simulator
would not produce the shown error.

IEEE 1164 std_logic Type

HWMod
WS24

m Special subtype of std_ulogic

subtype std_logic is resolved std_ulogic; &%

B std_logic hasthe same nine values as std_ulogic

m Allows multiple drivers (e.g., wired-AND, tri-state bus, etc.)

m Changing the type of signal x in the previous example does not result in
the observed error

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86

L IEEE 1164 Package
I—VH DL Types W
LIEEE 1164 std_logic Type

However, the issue of multiple drivers obviously still exists. So, how is this handled with std_1ogic? And what value will x
have in the case of conflicting drivers?

IEEE 1164 std_logic Type

HWMod
WS24

m Special subtype of std_ulogic

subtype std_logic is resolved std_ulogic; &%

B std_logic hasthe same nine values as std_ulogic

m Allows multiple drivers (e.g., wired-AND, tri-state bus, etc.)

m Changing the type of signal x in the previous example does not result in
the observed error

m There are still multiple drivers = What value will x exhibit?

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86

L IEEE 1164 Package
I—VH DL Types W
LIEEE 1164 std_logic Type

The way this is handled is by using a so-called resolution function.
In the case of the std_logic_1164 package this function is called resolved and contained in the shown subtype decla-
ration. We will now continue by discussing resolution functions in more detail.

IEEE 1164 std_logic Type

HWMod
WS24

m Special subtype of std_ulogic

subtype std_logic is resolved std_ulogic; &=

B std_logic hasthe same nine values as std_ulogic

m Allows multiple drivers (e.g., wired-AND, tri-state bus, etc.)

m Changing the type of signal x in the previous example does not result in
the observed error

m There are still multiple drivers = What value will x exhibit?
m Uses a resolution function (resolved)

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L86

L_|EEE 1164 Package

I_ Resol utlon ' Defines resolution of multple drivers' values info single resoived value
L_Resolution Function

A resolution function defines how the conflicting values of multiple drivers to a signal are resolved into a single value. The
result of this function is called the resolved value.

Resolution Function

HWMod
WS24

m Defines resolution of multiple drivers’ values into single resolved value

Overview

L_|EEE 1164 Package
L_Resolution
L_Resolution Function

In general such a resolution function is nothing special. It is merely a pure function, which we will introduce in an upcoming
lecture, that takes a single parameter. This parameter is an array of the type of the target signal and contains the values of
all drivers.

Resolution Function

HWMod
WS24
m Defines resolution of multiple drivers’ values into single resolved value
m Pure function featuring single array parameter (all drivers’ values)

L_|EEE 1164 Package
L_Resolution
L_Resolution Function

During the simulation, this function is invoked to determine a single, effective, signal value from the multiple driven ones.
Note that this has no real meaning for synthesis though, as the resolution of conflicting drivers in real hardware is a result of
physics and cannot simply be defined.

Resolution Function

HWMod
WS24
m Defines resolution of multiple drivers’ values into single resolved value
m Pure function featuring single array parameter (all drivers’ values)

m Invoked during the simulation, no real meaning for synthesis

L_|EEE 1164 Package
L_Resolution
L_Resolution Function

In general such resolution functions can be part of a subtype declaration (like you saw for std_1ogic), in which case all
signals of the respective type are resolved.

Resolution Function

HWMod
WS24

m Defines resolution of multiple drivers’ values into single resolved value
m Pure function featuring single array parameter (all drivers’ values)

m Invoked during the simulation, no real meaning for synthesis
m Resolution functions can be associated to subtypes or signals
m For subtypes: All signals of this subtype are resolved

L_|EEE 1164 Package
L_Resolution
L_Resolution Function

Note that also subtypes of arrays and records can be resolved. For details we refer you to the VHDL standard.

Resolution Function

HWMod
WS24

m Defines resolution of multiple drivers’ values into single resolved value
m Pure function featuring single array parameter (all drivers’ values)
m Invoked during the simulation, no real meaning for synthesis

m Resolution functions can be associated to subtypes or signals

m For subtypes: All signals of this subtype are resolved
m Arrays and records of subtypes are also supported

L_|EEE 1164 Package
L_Resolution
L_Resolution Function

In addition to that, it is also possible to only resolve a single signal by inserting a resolution function name before the type
in a signal declaration. The slide contains an example declaration of a signal x, which uses a resolution function called

resolved.

Resolution Function

HWMod
WS24

m Defines resolution of multiple drivers’ values into single resolved value
m Pure function featuring single array parameter (all drivers’ values)

m Invoked during the simulation, no real meaning for synthesis
m Resolution functions can be associated to subtypes or signals
m For subtypes: All signals of this subtype are resolved
m Arrays and records of subtypes are also supported
m For signals: Only respective signal resolved
Example: signal x : resolved std_ulogic;

L_|EEE 1164 Package
L-Resolution
L-The std_ulogic Resolution Function

= Resolves multiple values into a single one =

Let us now discuss the the resolution function defined in the std_logic_1164 package. The implementation of this partic-
ular resolution function can be accessed at the linked IEEE repository.

The std_ulogic Resolution Function

HWMod
WS24

m Resolves multiple std_ulogic values into a single one &=

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L79
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L79

L_|EEE 1164 Package
L-Resolution
L-The std_ulogic Resolution Function

= Resolves multiple values into a single one =

While we will only cover functions in an upcoming lecture, the function declaration shown on the slide is simple to grasp,
especially if we consider its purpose. In essence, it needs to resolve an array of std_ulogic values, called a vector, into a
single std_ulogic value.

The std_ulogic Resolution Function

HWMod
WS24

m Resolves multiple std_ulogic values into a single one &=

1 function resolved (s : std uloagic vector) return std ulogic is

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L79
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L79

L_|EEE 1164 Package
L-Resolution
L-The std_ulogic Resolution Function

= Resolves multiple

Next, we can observe a temporary variable being declared which will hold the final resolved value. This variable is initialized
to the high impedance value, as this is the weakest driving state.

The std_ulogic Resolution Function

HWMod
WS24

m Resolves multiple std_ulogic values into a single one &=

1 function resolved (s : std_ulogic_vector) return std_ulogic is
2 variable result : std_ulogic := 'Z’;

3 begin

4 if (s’length = 1) then return s(s’low);

5 else

6 for 1 in s’range loop

7
8

res := RES_TABLE (result, s(i));
end loop;
9 end if;
10 return result;

11 end function;

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L79
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L79

L_|EEE 1164 Package
L-Resolution
L-The std_ulogic Resolution Function

= Resolves multiple

In case of a single driving value, there is nothing to resolve and the function simply returns this driving value.

The std_ulogic Resolution Function

HWMod
WS24

m Resolves multiple std_ulogic values into a single one &=

1 function resolved (s : std_ulogic_vector) return std_ulogic is
2 variable result : std_ulogic := 'Z’;

3 begin

4 if (s’length = 1) then return s(s’low);

5 else

6 for 1 in s’range loop

7
8

res := RES_TABLE (result, s(i));
end loop;
9 end if;
10 return result;

11 end function;

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L79
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L79

L_|EEE 1164 Package
L-Resolution
L-The std_ulogic Resolution Function

= Resolves multiple

When there are multiple drivers, instead runs over all driving values and iteratively applies a special look-up table, the
resolution table. Essentially, the resolution is done on consecutive pairs of drivers. We will now discuss this table.

The std_ulogic Resolution Function

HWMod
WS24

m Resolves multiple std_ulogic values into a single one &=

1 function resolved (s : std_ulogic_vector) return std_ulogic is
2 variable result : std_ulogic := 'Z’;

3 begin

4 if (s’length = 1) then return s(s’low);

5 else

6 for i in s’range loop

7
8

res := RES_TABLE (result, s(i));
end loop;
9 end if;
10 return result;

11 end function;

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L79
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164-body.vhdl#L79

L_|EEE 1164 Package
L_Resolution
LThe std_ulogic Resolution Function (cont’d)

As you just heard, the task of the resolution table for std_ulogic is to act as a look-up table that provides a resolved value
for each pair of std_ulogic values.

The std_ulogic Resolution Function (contd)

HWMod
WS24

m The RES_TABLE defines how two values are resolved into one

L_|EEE 1164 Package
L_Resolution :
LThe std_ulogic Resolution Function (cont’d) -

' The &es_TABLE defines how two values are resolved ino one

On the bottom of the slide, you can find this table as defined in the std_logic_1164 package. Observe how this is really
just a two-dimensional array of std_ulogic values. While this table might appear a bit arbitrary, the resolved value for all
pairs actually follows some reasoning.

The std_ulogic Resolution Function (contd)

HWMod
wS24 . .
m The RES_TABLE defines how two values are resolved into one
1 constant RES_TABLE: stdlogic_table := (
2 U X 0 1 Zz W L H
N
RES.TABLE
LU, U, U, U, U, U, U, T,), e U
5 (IUI,IX!,!XI,IXI,IXI,!XI,IXI,IXI,IX!), — X
6 (,U,,,X,,’O’,’X’,’O’,’O’,’O’,’O’,,X,), R g
7 (’U’,’X’,’X',’l’,’l’,’1,,,1,,,1,,’X’), l
8 ('U','X',’O','l','Z','W','L','H','X'), R 7\
9 (’U','X’,'O','l','W’,’W','W',’W’,'X’), 7\7
10 (IUI,IXI,!OI,IlI,lLl,lWl,lLl,lWl,le)’ P T‘
U R T T TH TR R TRy
IX!) PR —

12 (IUI,IXI,VXI,IXI,IXI,!XI,IXI,IXI,
13)5

L_|EEE 1164 Package
L_Resolution
LThe std_ulogic Resolution Function (cont’d)

' The &es_TABLE defines how two values are resolved ino one

For example, consider the content of the first row, referring to the case where a value must be resolved with an unitialized one.
Since the unitialized value can be anything, nothing can be inferred about the outcome. It is hence defined to be unitialized
as well. The definition is this way in order for ’ U’ values to propagate in the simulation, simplifying it to spot them.

The std_ulogic Resolution Function (contd)

HWMod
ws24 . .
m The RES_TABLE defines how two values are resolved into one
1 constant RES_TABLE: stdlogic_table := (
2 U X 0 1 Z W L H
N
RES.TABLE
4 (UL, TUT, IO, U, U, U, U, U,), = U
5 (IUI,IX!,!XI,IXI,IXI,!XI,IXI,IXI,IX!), — X
6 (,U,,,X,,’O’,’X’,’O’,’O’,’O’,’O’,,X,), R f:
7 (,U,,,X’,’X',’l’,’l’,’1,,,1,,,1,,’X’), l
8 ('U','X',’O','l','Z','W','L','H','X'), R 7\
9 (’U','X’,'O','l','W’,’W','W',’W’,'X’), 77
10 (IUI,IXI,!OI,IlI,lLl,lWl,lLl,lWl,le), P T‘
U R T T TH TR R TRy
IX!) PR —

12 (IUI,IXI,VXI,IXI,IXI,!XI,IXI,IXI,
13)5

L_|EEE 1164 Package
L_Resolution :
LThe std_ulogic Resolution Function (cont’d) -

' The &es_TABLE defines how two values are resolved ino one

Now consider the row for the weak unknown value. We already know why the first value entry is * U’ . Therefore, let’s look at
the second entry.

The std_ulogic Resolution Function (contd)

HWMod
WS24
m The RES_TABLE defines how two values are resolved into one

1 constant RES_TABLE: stdlogic_table := (
2 u x 0 1 7z W L H
B

IR 4 (ryr,ruy’,’uy’,ry’, "y’ , 'y, ry vy, 'uYy, —— U
5 (,U,,,X’,’X’,,X,,,X,,’X,,’X,,,X,,,X’), S X
6 ("U’,’X’,’07,7X",707,707,70",70","X"), —— O
7 (’U’,’X’,'X',’l’,’l’,’1','1’,’1’,’){’), l
8 ("U’,’X’,'0","1",'2" "W ,'L',"H','X"), —— %
9 (’U’,VXV’lol”l’,VWVIVWI,IW’,’WVIVXV), 7\7
10 (PU’,’X,707, 1, L, W LW, TXT), - L
11 (’U',’X’,'O’,’l’,'H’,’W',’W’,'H’,’X’), S H

IXV) R —

12 (IUI,IXI,VXI,IXI,IXI,!XI,IXI,IXI,
13)5

L_|EEE 1164 Package
L_Resolution :
LThe std_ulogic Resolution Function (cont’d) -

' The &es_TABLE defines how two values are resolved ino one

In this case the strong and the weak unknown value must be resolved. Since the strong unknown is associated with a
stronger driver strength, it will dominate the weaker driver.

The std_ulogic Resolution Function (contd)

HWMod
wS24 . .
m The RES_TABLE defines how two values are resolved into one
1 constant RES_TABLE: stdlogic_table := (
2 U X 0 1 Zz W L H
N
RES.TABLE
LU, U, U, U, U, U, U, T,), e U
5 (IUI,IX!,!XI,IXI,IXI,!XI,IXI,IXI,IX!), — X
6 (,U,,,X,,’O’,’X’,’O’,’O’,’O’,’O’,,X,), R g
7 (’U’,’X’,’X',’l’,’l’,’1,,,1,,,1,,’X’), l
8 ('U','X',’O','l','Z','W','L','H','X'), R 7\
9 (’U','X’,'O','l','W’,’W','W',’W’,'X’), 7\7
10 (IUI,IXI,!OI,IlI,lLl,lWl,lLl,lWl,le)’ P T‘
U R T T TH TR R TRy
IX!) PR —

12 (IUI,IXI,VXI,IXI,IXI,!XI,IXI,IXI,
13)5

L_|EEE 1164 Package
L_Resolution :
LThe std_ulogic Resolution Function (cont’d) -

' The &es_TABLE defines how two values are resolved ino one

Conversely, the weak unknown will dominate a high impedance values since this corresponds to the weakest driver strength.

The std_ulogic Resolution Function (contd)

HWMod
WS24
m The RES_TABLE defines how two values are resolved into one

1 constant RES_TABLE: stdlogic_table := (
2 u x 0 1 7z W L H
B

IR 4 (ryr,ruy’,’uy’,ry’, "y’ , 'y, ry vy, 'uYy, —— U
5 (,U,,,X’,’X’,,X,,,X,,’X,,’X,,,X,,,X’), S X
6 ("U’,’X’,’07,7X",707,707,70",70","X"), —— O
7 (’U’,’X’,'X',’l’,’l’,’1','1’,’1’,’){’), l
8 ("U’,’X’,’0","1",'2" W 'L, TH','X"), —— %
9 (’U’,VXV’lol”l’,VWVIVWIIIW’,’WVIVXV), 7\7
10 (PU’,’X,700, 1, LW LT W, TXT), - L
11 (’U',’X’,'O’,’l’,'H’,’W',’W’,'H’,’X’), S H

IXV) R —

12 (IUI,IXI,VXI,IXI,IXI,!XI,IXI,IXI,
13)5

L_|EEE 1164 Package
L_Resolution
LThe std_ulogic Resolution Function (cont’d)

The sis_TaLE defines how Wo values are resolved nlo one.
Example: pulup ("), active (*0°) and inactive (" 2*) driver

To illustrate how multiple driving values are resolved using this table, let us consider an example. For that, recall the initial
wired AND example, where we had multiple drivers and a pullup resistor connected to a shared bus. Assume that we have
two drivers, one active and one inactive. We can model this using the values "H’, 70’ and ’ z’ being applied to a shared
signal.

The std_ulogic Resolution Function (contd)

HWMod
WS24
m The RES_TABLE defines how two values are resolved into one
Example: pullup (* 5”), active (* 07) and inactive (’ z’) driver
1 constant RES_TABLE: stdlogic_table := (
2 9] X 0 1 Z W L H
o
S 4 ('u’,’u’,’u’,’u’,’u’, 'Y, MU, MU, - U resolve ("HOZ") :
5 (lUl,er,rXI,le,le,er,IXl,le,er), - X
6 ("U’,'X’',’0’,’X",’0",70",70",70",'X"), — O
7 (lUl’lxl’lellll’llll!1/,/1!,!1!,!){!)’ 1
s ('u’,'x’','0",’1",'z','W ,'L','H','X"), —— 7
9 (IUI,!X!,IOI,III,!W!,!wl,lwl,lw!,!x!), 77
10 (U, X, T00, LWL W, TX), L
11 (IU!,!X!’IOI,IIIIVH!’VWI,IWI,!H!’!X!), R H
IX!) R —

12 (IUI,IXI,VXI,IXI,IXI,!XI,IXI,IXI,
13)5

L_|EEE 1164 Package

IR Eesolution il s st o
L-The std_ulogic Resolution Function (cont'd) s

In a first step, the values " H’ and ’ z’ are resolved. Since ’ H’ is associated with a stronger driving strength, it is the return
resolved value.

The std_ulogic Resolution Function (contd)

HWMod
WS24
m The RES_TABLE defines how two values are resolved into one
Example: pullup (* 5”), active (* 07) and inactive (’ z’) driver
1 constant RES_TABLE: stdlogic_table := (
2 9] X 0 1 Z W L H
o
S 4 ('u’,’u’,’u’,’u’,’u’, 'Y, MU, MU, - U resolve ("HOZ") :
5 (lUl,er,rXI,le,le,er,IXl,le,er), - X .) r oy Vs
6 (TUT, TR, 07,7, 07,707,707,707, 7Ky, —— 0 i} RES_TABLE('H’, ’'z’) ='H
7 (IUI,IX!’lellll’llfl!1/,/1’,!1!,!){!)’ l
8 ("U’,'X’,'0", 17,7, W L, TH,TR), G
9 (IUI,!X!’Iolllll,!W!,!wl,lwl,lw!,!x!), 77
100 (U, X, T00, L, L WL TW X)), L
11 (IU!,!X!’IOI,IIIIVH!’VWI,IWI,!H!’!X!), R H
IX!) R —

12 (IUI,IXI,VXI,IXI,IXI,!XI,IXI,IXI,
13)5

L_|EEE 1164 Package

IR Eesolution il s st o
L-The std_ulogic Resolution Function (cont'd) . TF

Next, this intermediate result must be resolved with 7 07 . The result if of course ’ 0”.

The std_ulogic Resolution Function (contd)

HWMod
WS24
m The RES_TABLE defines how two values are resolved into one
Example: pullup (" B”), active (* 07) and inactive (* z”) driver
1 constant RES_TABLE: stdlogic_table := (
2 9] X 0 1 Z W L H
S
S 4 ('u’,’u’,’u’,’u’,’u’, 'Y, MU, MU, - U resolve ("HOZ") :
5 (lUl,er,rXI,le,le,er,IXl,le,er), -— X
6 (TTf IR TOT IR 0TI IO ORIy —— Bl reEs_TABLE('H’, 'Z’) = 'H’
7 (Fu’ X IR, L L, 1, T XYy, 1 RESiTABLE(’H’, "o’y = "0’
8 (YU’,'X',T07, "1, 2 TW LY TH X)), —— 4
9 (IUI,!X!’Iolllll,!W!,!wl,lwl,lw!,!x!), W
10 (YU, IR0, 7L T WL TW X)L
11 (’U',’X’,'O',’l’,'H’,’W',’W’,'H’,’X’), -— H
lxl) IR

12 (IUI,IXI,VXI,IXI,IXI,!XI,IXI,IXI,
13)5

L_|EEE 1164 Package
L_Resolution
LThe std_ulogic Resolution Function (cont’d)

The sis_TaLE defines how Wo values are resolved nlo one.
Example: pulup ("), active (*0°) and inactive (" 2*) driver

Finally, the pair 7 0’ and ’ z’ requires resolutions. AS mentioned before, with 7 z’ having the least driving strength, 7 07 will
be the result.

The std_ulogic Resolution Function (contd)

HWMod
WS24
m The RES_TABLE defines how two values are resolved into one
Example: pullup (* 5”), active (* 07) and inactive (’ z’) driver
1 constant RES_TABLE: stdlogic_table := (
2 u x 0 1 z W L H
S
e 4 ('v’,’u’,’u’,’u’,’u’,’u’ "0’ "0’ ,"0"), —— U resolve ("HOZ") :
5 (IUI,IX!,!XI,IXI,IXI,!XI,IXI,IXI,IX!), — X . , , , , , ,
6 (TUT, TR, 07, T, 07,707,707,707, 7Ky, —— 0 i RES_TABLE('H’, 'Z’) = 'H
7 (Fu’ XX, L L, 1,1, 1 T XYy, 1 RESiTABLE(’H’, "o’y = "0’
8 ('U’,'X",707,71, 2, WL, TR TXY), - 2 K res_TaBLE('0’, 'z’) = 0’
9 (IUI,!X!’IOI’Ill,!W!,!wl,lwl,lw!,!x!), 77
10 ("U’, X ,T07, 7L T WL TW XY, - L
11 (IUV,!X!,IOI,II’,VH!’VWI,IWI,VH!’!X!), R H
IX!) R —

12 (IUI,IXI,VXI,IXI,IXI,!XI,IXI,IXI,
13)5

L_|EEE 1164 Package

IR Eesolution il s st o
L-The std_ulogic Resolution Function (cont'd) . F

This is also the final result of this driver conflict. Thus, the shared signal will exhibit the value of 7 0.

The std_ulogic Resolution Function (contd)

HWMod
wS24 i .
m The RES_TABLE defines how two values are resolved into one
Example: pullup (* 5”), active (* 07) and inactive (’ z’) driver
1 constant RES_TABLE: stdlogic_table := (
2 9] X 0 1 Z W L H
8
B B 4 (IU!,!U!’IUI,IUII!U!,!UI,IUI,IU!’!U!), I U resolve("HOZ");
5 (IUI,IX!,!XI,IXI,IXI,!XI,IXI,IXI,IX!), S X
I} RES_TABLE('H’, ’z’) = 'H'
6 (TTf IR TOT IR 0TI IO ORIy —— H res_ ("H', 727)
7 (Fu’ X IR, L L, 1, T XYy, 1 RESiTABLE(’H’, "o’y = "0’
8 (IUI’IXI’IOI,IlI,IZI’IWI,ILI,lHl’IXI), —-— 7 RESiTABLE(’O', ’Z’) - rqr
9 (IUI,!X!’IOI,Ill,!W!,!wl,lwl,lw!,!x!), 7\7
1 "HOZ" = rQ’
10 (TU’, XY ,T0N, LWL, W, X)), —— L = resolve ()
U, X, T0, T, H W W, TR, X, —— T
IX!) R —

12 (IUI,IXI,VXI,IXI,IXI,!XI,IXI,IXI,
13)5

L-|EEE 1164 Package S
|—Ope rators
L Logical Operators

In addition to the introduced types, std_logic_1164 package also provides implementations for some operators on them.
Since std_logic is a subtype of std_ulogic we will limit our considerations to std_ulogic.

Logical Operators

o m Common logical operators are defined for std_ulogic

Operators

L_|EEE 1164 Package
|—Operators
L Logical Operators

In particular, the package implements the common logical operators listed on the slide.

Logical Operators

o m Common logical operators are defined for std_ulogic
m NOT, AND, OR, XOR, NAND, NOR, XNOR

Operators

L_|EEE 1164 Package
|—Operators
L Logical Operators

‘Gommon logical operators are defined for
& NOT. AND, OR, XOR, NAND, NOR, XNOR
= Must respect different semantics o diforent values

Naturally, the logical operators on std_ulogic signals must respect the different semantics of the type’s values. For exam-
ple, consider an AND operation. Regardless of the other input values, a logical low on any input, regardless of its driving
strength, must always result in a logical low of the output.

Logical Operators

o m Common logical operators are defined for std_ulogic
m NOT, AND, OR, XOR, NAND, NOR, XNOR
m Must respect different semantics of different values

Operators

L_|EEE 1164 Package
|—Operators
L Logical Operators

To express such behavior the implementation provided by the IEEE uses lookup-tables. Similar to the previously discussed
resolution table, such operator look-up tables define the operator's outcome for each possible pair of std_ulogic input
values.

Logical Operators

o m Common logical operators are defined for std_ulogic
m NOT, AND, OR, XOR, NAND, NOR, XNOR
m Must respect different semantics of different values
m Implemented by simple lookup tables

Operators

L_|EEE 1164 Package
|—Operators
L Logical Operators

The table on the slide shows such a lookup-table for an AND operator.

Logical Operators

o m Common logical operators are defined for std_ulogic
m NOT, AND, OR, XOR, NAND, NOR, XNOR
m Must respect different semantics of different values
m Implemented by simple lookup tables
Example: and operator

Operators

1 constant and_table : stdlogic_table := (

2 —— U X 0 1 Z W L H -

B
4 (’U’,’U’,’O’,’U",U,[,U,,’O’,,U,’,U,)[

5 (U, IR, T00 TR IRT X0, TR, TR, - X
6 (!OI,IOI,VO!,!O!,IOI,IO!,!O!’IOI,IOI), O
7 (IUI,IXI,IOI,ll!,IXI,IXI,lOl,!1I,IXI), P
8 (!UI,IX’,’O!’!X!,IXI,’X’,!O!’IXI,’XI), J— Z
9 (!UI,IXI,IOI,IX!,IXI,IXIIIO!,!XI,IXI), B T“T
o ("0",’0",’0","0",’0","0",’0","’0",’0"), — L
11 (!UI,IXI,IOI,!1!’IXI,IXIIVO!’III,IXI)’ }1
120 (P00 TR TR X0, TR, TR e

13);

L_|EEE 1164 Package
|—Operators
L Logical Operators

Observe how a weak low value will always result in a strong low result.

Logical Operators

o m Common logical operators are defined for std_ulogic
m NOT, AND, OR, XOR, NAND, NOR, XNOR
m Must respect different semantics of different values
m Implemented by simple lookup tables
Example: and operator

Operators

1 constant and_table : stdlogic_table := (

2 —— U X 0 1 Z W L H -

B
4 (’U’,’U’,’O’,’U",U,[,U,,’O’,,U,’,U,)[

5 (U, IR, T00 TR IRT X0, TR, TR, - X
6 (!OI,IOI,VO!,!O!,IOI,IO!,!O!’IOI,IOI), O
7 (IUI,IXI,IOI,ll!,IXI,IXI,lOl,!1I,IXI), P
8 (!UI,IX’,’O!’!X!,IXI,’X’,!O!’IXI,’XI), J— Z
9 (!UI,IXI,IOI,IX!,IXI,IXIIIO!,!XI,IXI), B T“T
o (*0",’0",’0’,’0",’0",’0",’0",’0",’0"), — L
11 (!UI,IXI,IOI,!1!’IXI,IXIIVO!’III,IXI)’ }1
120 (P00 TR TR X0, TR, TR e

13);

L_|EEE 1164 Package @

L-Vector Types
I—std_[u]logic_vector Types

' The standard also defines arrays of the new types, called vectors.

As we briefly saw before, the IEEE 1164 standard also defines array types for std_ulogic and std_logic. These array
types are referred to as std_ulogic_vector respectively std_logic vector.

std_[u]logic_vector Types

HWMod
WS24

m The standard also defines arrays of the new types, called vectors

Bit Strings

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92

©

' The standard also defines arrays of the new types, called vectors.

L_|EEE 1164 Package
L-Vector Types
I—std_[u]logic_vector Types

The slide shows the declaration of these two types. Note how std_logic_vector is a resolved type of its unresolved
pendant. Since the two vector types are just arrays, we use them in declarations and initialize them just as any other array
type. However, instances of these vectors are often used for addresses or data words, therefore often holding numerical
values and being quite long.

std_[u]logic_vector Types

HWMod
WS24

m The standard also defines arrays of the new types, called vectors

type std_ulogic_vector is array (natural range <>) of std_ulogic; &

subtype std_logic_vector is (resolved) std_ulogic_vector; &%

Bit Strings

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92

L_|EEE 1164 Package @

L-Vector Types
I—std_[u]logic_vector Types

= The standard also defines arrays of the new types, called vectors

' Vectors can be assigned bit string ferals

In order to make it easier to assign long, possibly numerical, values to these vectors, VHDL features bit string literals.

std_[u]logic_vector Types

HWMod
WS24

m The standard also defines arrays of the new types, called vectors

type std_ulogic_vector is array (natural range <>) of std_ulogic; &

subtype std_logic_vector is (resolved) std_ulogic_vector; &%

m Vectors can be assigned bit string literals

Bit Strings

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92

L_|EEE 1164 Package
L-Vector Types
I—std_[u]logic_vector Types

Such bit string literals allow it to concisely encode strings in different numeral systems.

std_[u]logic_vector Types

HWMod
WS24

m The standard also defines arrays of the new types, called vectors

type std_ulogic_vector is array (natural range <>) of std_ulogic; &

subtype std_logic_vector is (resolved) std_ulogic_vector; &%

m Vectors can be assigned bit string literals
m Concise encoding of strings in different numeral systems

Bit Strings

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92

©

' The standard also defines arrays of the new types, called vectors.

L_|EEE 1164 Package
L-Vector Types
I—std_[u]logic_vector Types

On the slide you are provided with the syntax of such a bit string literal. Its characters are limited to the ones of the respective
numeral system, plus the ones of std_ulogic.

std_[u]logic_vector Types

HWMod
WS24

m The standard also defines arrays of the new types, called vectors

type std_ulogic_vector is array (natural range <>) of std _ulogic; &%

subtype std_logic_vector is (resolved) std_ulogic_vector; &%

m Vectors can be assigned bit string literals

m Concise encoding of strings in different numeral systems
bit_string_literal::=[integer]base_specifier" [bit_value]"

Bit Strings

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92

©

' The standard also defines arrays of the new types, called vectors.

L_|EEE 1164 Package
L-Vector Types
I—std_[u]logic_vector Types

The string literal itself, referred to as bit_value, is enclosed by double quotation marks and preceded by a

base_specifier.

std_[u]logic_vector Types

HWMod
WS24

m The standard also defines arrays of the new types, called vectors

type std_ulogic_vector is array (natural range <>) of std_ulogic; &

subtype std_logic_vector is (resolved) std_ulogic_vector; &%

m Vectors can be assigned bit string literals

m Concise encoding of strings in different numeral systems
bit_string_literal::=[integer]base_specifier" [bit_value]"

Bit Strings

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92

©

' The standard also defines arrays of the new types, called vectors.

L_|EEE 1164 Package
L Vector Types
I—std_[u]logic_vector Types

This base specifier defines in which numeral system the bit string is to be interpreted. The specifiers b, x, o and d are used
for the binary, hexadecimal, octal, decimal systems, respectively.

std_[u]logic_vector Types

HWMod
WS24

m The standard also defines arrays of the new types, called vectors

type std_ulogic_vector is array (natural range <>) of std _ulogic; &%

subtype std_logic_vector is (resolved) std_ulogic_vector; &%

m Vectors can be assigned bit string literals
m Concise encoding of strings in different numeral systems
bit_string_literal::=[integer]base_specifier" [bit_value]"
m Base specifiers: binary, hexadecimal, octal, decimal

Bit Strings

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92

L_|EEE 1164 Package
L Vector Types
I—std_[u]logic_vector Types

In general, the string literal corresponding to the bit string must have the same length as the target on the left-hand-side of
the assignment. If this is not the case, an error will be raised. However, by providing an optional integer that specifies the
target length, it is possible to also give shorter or longer bit strings that are than extended or truncated to fit the target of an
assignment. In the case the resulting right-hand side string is shorter than the left-hand side target, the string must be
extended. Per default, this extension happens by adding zeros to the left of the string. If the right-hand side string is longer,
it must be truncated. This is done by removing leading zeros. If the required truncation to match the length of the left-hand
side would lead to non-zero values being truncated, an error will be raised.

std_[u]logic_vector Types

HWMod
WS24

m The standard also defines arrays of the new types, called vectors
type std_ulogic_vector is array (natural range <>) of std_ulogic; &%

subtype std_logic_vector is (resolved) std_ulogic_vector; &%

m Vectors can be assigned bit string literals
m Concise encoding of strings in different numeral systems
bit_string_literal::=[integer]base_specifier" [bit_value]"
m Base specifiers: binary, hexadecimal, octal, decimal
m Optional integer length can be given

Bit Strings

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92

©

' The standard also defines arrays of the new types, called vectors.

L_|EEE 1164 Package
L-Vector Types
I—std_[u]logic_vector Types

 Vect ed b

However, by using the signed base specifiers, indicated by a leading s, the extension and truncation consider the left-most
bit of the bit string rather than simply zero. Therefore, if a bit string literal that is too short starts with a one, it will be extended
by ones. For truncation either only ones or only zeros will be removed, depending on the left-most bit. Let us consider some
examples.

std_[u]logic_vector Types

HWMod
WS24

m The standard also defines arrays of the new types, called vectors

type std_ulogic_vector is array (natural range <>) of std_ulogic; &%

subtype std_logic_vector is (resolved) std_ulogic_vector; &%

m Vectors can be assigned bit string literals
m Concise encoding of strings in different numeral systems
bit_string_literal::=[integer]base_specifier" [bit_value]"
m Base specifiers: binary, hexadecimal, octal, decimal
m Optional integer length can be given = “signed” specifiers: sb, sx, so

Bit Strings

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92

©

' The standard also defines arrays of the new types, called vectors.

L_|EEE 1164 Package
L-Vector Types
I—std_[u]logic_vector Types

ed b

 Vect

The first example shows a binary bit string comprising eight ones. This is shorter then the target of the assignment. However,
since the length is explicitly declared to be eight via the specifier, this bit-string will be extended with zeros accordingly. The
comment next to the assignment shows the result. Also observe that the _ sign can be used to format bit strings.

std_[u]logic_vector Types

HWMod
WS24

m The standard also defines arrays of the new types, called vectors
type std_ulogic_vector is array (natural range <>) of std_ulogic; &%

subtype std_logic_vector is (resolved) std_ulogic_vector; &%

m Vectors can be assigned bit string literals
m Concise encoding of strings in different numeral systems
bit_string_literal::=[integer]base_specifier" [bit_value]"
m Base specifiers: binary, hexadecimal, octal, decimal
m Optional integer length can be given = “signed” specifiers: sb, sx, so

Bit Strings

1 variable u : std_ulogic_vector (7 downto 0) := 8b"11_1111"; 00111111

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92

L_|EEE 1164 Package
L Vector Types s
I—std_[u]logic_vector Types

The second example is very similar, but uses a signed base specifier. Since the left-most bit is 1 the resulting value will be

extended by 1s as well.

std_[u]logic_vector Types

"Wszi
m The standard also defines arrays of the new types, called vectors
type std_ulogic_vector is array (natural range <>) of std _ulogic; &%
subtype std_logic_vector is (resolved) std_ulogic_vector; &%
m Vectors can be assigned bit string literals
Ee m Concise encoding of strings in different numeral systems

bit_string_literal::=[integer]base_specifier" [bit_value]"
m Base specifiers: binary, hexadecimal, octal, decimal
m Optional integer length can be given = “signed” specifiers: sb, sx, so

i variable u : std_ulogic_vector (7 downto 0) := 8b"11_1111"; 00111111
2 variable s : std_ulogic_vector (7 downto 0) 8sb"11_1111"; —— 111111

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92

L_|EEE 1164 Package @
L Vector Types s st e ot
I—std_[u]logic_vector Types

The third example does not feature a base specifier. Since the bit string literal is too short for the left-hand side this will
therefore result in an error during compilation. ~ Keep bit strings in mind, as they are quite handy when initializing long,
heterogeneous vectors.

std_[u]logic_vector Types

"Wszi
m The standard also defines arrays of the new types, called vectors
type std_ulogic_vector is array (natural range <>) of std_ulogic; &2
subtype std_logic_vector is (resolved) std_ulogic_vector; &
m Vectors can be assigned bit string literals

m Concise encoding of strings in different numeral systems
bit_string_literal::=[integer]base_specifier" [bit_value]"

m Base specifiers: binary, hexadecimal, octal, decimal

m Optional integer length can be given = “signed” specifiers: sb, sx, so

i variable u : std_ulogic_vector (7 downto 0) := 8b"11_1111"; 00111111
2 variable s : std_ulogic_vector (7 downto 0) 8sb"11_1111"; —— 111111
3 variable e : std_ulogic_vector (7 downto 0) := b"11_1111"; —- error

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92

L_|EEE 1164 Package @
L Vector Types e o e
I—std_[u]logic_vector Types

Finally, the last example shows a bit string literal with hexadecimal base. Observe how only the 3 in the string literal is actually
a valid hexadecimal digit, corresponding to the four-bit sequence 0011. However, recall that we said that the string literals
can also contain the nine values of the 1164 standard. This is the case for W. Since each digit in a string of hexadecimal
string corresponds to four bits, the respective bit sequence is four succeeding Ws.

std_[u]logic_vector Types

HWMod
WS24

m The standard also defines arrays of the new types, called vectors

type std_ulogic_vector is array (natural range <>) of std_ulogic; &%

subtype std_logic_vector is (resolved) std_ulogic_vector; &%

m Vectors can be assigned bit string literals
m Concise encoding of strings in different numeral systems
bit_string_literal::=[integer]base_specifier" [bit_value]"
m Base specifiers: binary, hexadecimal, octal, decimal
m Optional integer length can be given = “signed” specifiers: sb, sx, so

Bit Strings

1 variable u : std_ulogic_vector (7 downto 0) := 8b"11_1111"; 00111111
2 variable s std_ulogic_vector (7 downto O0) = 8sb"11_1111"; —— 111111

3 variable e std_ulogic_vector (7 downto 0) := b"11l 1111"; —-- error

4 variable h std_ulogic_vector (7 downto 0) = x"3W"; -- 0011

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L75
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/ieee/std_logic_1164.vhdl#L92

L_|EEE 1164 Package
L-Vector Types
I—std_[u]logic_vector Logical Operators

= Common logical operators ar

Just as for the std_ulogic type, the std_logic_1164 package also provides implementations for vector operations. In
particular, the package implements the same logical operators as for std_ulogic in a bit-wise manner. These bit-wise
logical operators take two vector operands of the same length as parameters. They return a vector of identical length as the

inputs where each element is determined by performing the logical operation on the respective elements of the parameter
vectors.

std_[u]logic_vector Logical Operators

HWMod
WS24

m Common logical operators are defined in a bit-wise manner for
std_ulogic_vector/std_logic_vector

Operators

L_|EEE 1164 Package
I_ Ve Cto r Types " Cﬂlm:::yl::\l:a\ Dperam’vs are defined in a bit-wise manner for
I—std_[u]logic_vector Logical Operators

For illustration, consider the example of a AND of two std_ulogic_vectors on the slide. You can easily determine the
result yourself by using the previous AND table.

std_[u]logic_vector Logical Operators

HWMod
WS24

m Common logical operators are defined in a bit-wise manner for
std_ulogic_vector/std_logic_vector

m Example: "UX0011" and "01XOLW" = "0X000X"

Operators

L_|EEE 1164 Package
L-Vector Types
I—std_[u]logic_vector Logical Operators

Furthermore, there are also overloads of four shift operators for std_ulogic_vector. The s11 and srl operators are
simple logical left, respectively right, shifts They simply shift a vector operand by an integer amount of digits in the respective
direction, inserting zeros for the resulting vacant digits.

std_[u]logic_vector Logical Operators

HWMod
WS24

m Common logical operators are defined in a bit-wise manner for
std_ulogic_vector/std_logic_vector
m Example: "UX0011" and "01XOLW" = "0X000X"
m Shift operators: s11, srl

Operators

L_|EEE 1164 Package
L-Vector Types
I—std_[u]logic_vector Logical Operators

Consider the examples on the slide where the vector 1101 is shifted left, respectively right, by two places.

std_[u]logic_vector Logical Operators

HWMod
WS24

m Common logical operators are defined in a bit-wise manner for
std_ulogic_vector/std_logic_vector

m Example: "UX0011" and "01XOLW" = "0X000X"
m Shift operators: s11, srl
m Examples: "1101" s11 2 = "0100","1101 srl 2 = "0011"

Operators

L_|EEE 1164 Package
L-Vector Types
I—std_[u]logic_vector Logical Operators

The rol and rol operators, are left and right rotation operators. Here the vacant places at one end of the shifting operation
are replaced by the digits moved out at the other end.

std_[u]logic_vector Logical Operators

HWMod
WS24

m Common logical operators are defined in a bit-wise manner for
std_ulogic_vector/std_logic_vector

m Example: "UX0011" and "01XOLW" = "0X000X"
m Shift operators: s11, srl
m Examples: "1101" s11 2 = "0100","1101 srl 2 = "0011"

Operators

m Rotate operators: rol, ror

L_|EEE 1164 Package
L-Vector Types
I—std_[u]logic_vector Logical Operators

On the slides these two operations are illustrated via the same 1101 vector from before. Note the difference to the shifting
operations.

std_[u]logic_vector Logical Operators

HWMod
WS24

m Common logical operators are defined in a bit-wise manner for
std_ulogic_vector/std_logic_vector

m Example: "UX0011" and "01XOLW" = "0X000X"
m Shift operators: s11, srl
m Examples: "1101" s11 2 = "0100","1101 srl 2 = "0011"
. m Rotate operators: rol, ror
m Example: "1101" rol 2 = "0111","1101" ror 2 = "1110"

L_|EEE 1164 Package
L-Vector Types
I—std_[u]logic_vector Logical Operators

In addition to that, there are also conversion functions to and from the bit_vector type, as well as conversion functions to
strings encoded with different numerical bases.

std_[u]logic_vector Logical Operators

HWMod
WS24

m Common logical operators are defined in a bit-wise manner for
std_ulogic_vector/std_logic_vector

m Example: "UX0011" and "01XOLW" = "0X000X"
m Shift operators: s11, srl
m Examples: "1101" s11 2 = "0100","1101 srl 2 = "0011"
. m Rotate operators: rol, ror
m Example: "1101" rol 2 = "0111","1101" ror 2 = "1110"

m Conversion functions

m Fromandtobit vector
m To differently encoded strings:
to_bstring, to_ostring, to_hstring

L_|EEE 1164 Package
'—Conclusion
Lstd_ulogic vs. std_logic

Finally, let us end this lecture by a final concluding comparison of the std_ulogic and std_logic types. In particular, we
want to address the question which type should be used when.

std_ulogic vs. std_logic

HWMod
WS24

m When should which type be used?

Conclusion

L_|EEE 1164 Package
L—Conclusion
Lstd_ulogic vs. std_logic

= When should which type be used?
' Use unresolved types whenever modelled circuit has a single driver

The VHDL standard recommends the use of the unresolved type whenever possible. The resolved type should only be used
when the modelled circuit does indeed have multiple drivers.

std_ulogic vs. std_logic

HWMod
WS24

m When should which type be used?
m Use unresolved types whenever modelled circuit has a single driver

Conclusion

L_|EEE 1164 Package
L—Conclusion
Lstd_ulogic vs. std_logic

This allows the tools to detect and report erroneous multiple drivers, which might lead to undesired behavior.

std_ulogic vs. std_logic

HWMod
WS24

m When should which type be used?
m Use unresolved types whenever modelled circuit has a single driver
m Allow tools to detect undesired multiple drivers

Conclusion

L_|EEE 1164 Package
L—Conclusion
Lstd_ulogic vs. std_logic

However, virtually all other resources you will find online, and also most tool-generated code, exclusively use std_logic.
But why? To the best of our knowledge, the reason for that is a historical one.

std_ulogic vs. std_logic

HWMod
WS24

m When should which type be used?

m Use unresolved types whenever modelled circuit has a single driver
m Allow tools to detect undesired multiple drivers

m Most tool generated code and resources use the resolved types

Conclusion

L_|EEE 1164 Package
L—Conclusion
Lstd_ulogic vs. std_logic

The initial version of the 1164 standard did not define std logic _vector as a resolved subtype of

std_ulogic_vector.

std_ulogic vs. std_logic

HWMod
WS24

m When should which type be used?
m Use unresolved types whenever modelled circuit has a single driver
m Allow tools to detect undesired multiple drivers
m Most tool generated code and resources use the resolved types
B std_logic_vector subtype of std_ulogic_vector since VHDL 2008

Conclusion

L_|EEE 1164 Package
L—Conclusion
Lstd_ulogic vs. std_logic

As a result, unpleasant type casts between the vector types were required, leading to designers taking the easy route of
simply always using std_logic vector. Since std_logic is a resolved subtype of std_ulogic thatis more permissive
regarding multiple drivers, this works fine in most cases. Nevertheless, we do not recommend discarding the safety of the
stricter std_ulogic type. Since you will learn proper hardware design in this course, we will only use std_logic when
we actually model multiple drivers.

std_ulogic vs. std_logic

HWMod
WS24

m When should which type be used?

m Use unresolved types whenever modelled circuit has a single driver
m Allow tools to detect undesired multiple drivers

m Most tool generated code and resources use the resolved types

B std_logic_vector subtype of std_ulogic_vector since VHDL 2008
m VHDL 1998 required unpleasant type casts

Conclusion

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

HWMod
WS24

Lecture Complete!

Modified: 2025-03-12, 16:24 (b25118c)

	IEEE 1164 Package
	Motivation
	Standard
	VHDL Types
	Resolution
	Operators
	Vector Types
	Conclusion

