L Introduction to Hardware Design

Hardware Modeling [VU] (191.011)

Ws 202425

Welcome to the very first lecture of this year's hardware modeling course! | will be the voice guiding you through the lecture
part and in this first lecture we will introduce you to hardware design in general. In this lecture we will discuss what
hardware modeling actually is, what makes it stand apart from writing software and why you need to care about it. After you
have finished this video, you can explain the differences between writing software and programmatically describing hardware
and motivate why it is necessary to design hardware in some cases. Furthermore, you can discuss why general purpose
hardware designs are not suitable for some applications.

HWMod
WS24

HW Design Hardware MOdellng [VU] (1 91 01 1)
— WS24 —

Introduction to Hardware Design

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-08, 00:11 (b25118c)

L Introduction to Hardware Design S ——
LMotivation
LMotivation

So far in your studies, you have learned how to write programs that make general purpose computing devices perform desired
tasks. If we simplify things, such devices consist of a central processing unit and a memory, which are very complex circuits
oftentimes comprising billions of distinct transistors.

Motivation

e m How to go from simple circuits to complex ones?

Motivation

L Introduction to Hardware Design -
LMotivation

L_Motivation
.

In previous courses, you have then been taught how these CPUs, memories and other components operate and how transis-
tors can be used to build simple digital circuits. However, have you ever wondered how the gap between simple and complex
circuits can be bridged? In particular, how a complex system like a CPU can be designed? How do hardware designers

handle the billions of transistors and make them do something meaningful?

Motivation

RIS m How to go from simple circuits to complex ones?
m Up to billions of transistors

Motivation

15— e

L Introduction to Hardware Design
LMotivation
LMotivation

+-

Are these questions important? Certainly! The transistor is easily the most-fabricated thing since the dawn of humankind.
While you were listening to the previous sentence, multiple trillion transistors got manufactured, with hundreds of quintillions
of transistors per year. Furthermore, if we consider the path and current increase in the complexity of digital circuits, it is not
far-fetched to assume that complexity will further grow in the years to come.

Motivation

e m How to go from simple circuits to complex ones?
m Up to billions of transistors
m Complexity continuously increasing (Moore’s Law)

Motivation

15— e

L Introduction to Hardware Design
LMotivation
LMotivation

+-

These dimensions are so far from what we encounter on a daily basis that our brains can hardly comprehend them. And
yet, apparently humans are able to tame these immense quantities, putting the billions of transistors per single chip to use,
driving the technological advancements of humankind for decades. This is exactly, what hardware modeling is about and
what we will be concerned with in this course.

Motivation

e m How to go from simple circuits to complex ones?
m Up to billions of transistors
m Complexity continuously increasing (Moore’s Law)
= Hardware Modeling

Motivation

15— e

L Introduction to Hardware Design
LMotivation
LMotivation

We will teach you tools and techniques to bridge the gap between simple digital circuits, that can easily be designed per
hand, and complex circuits consisting of up to billions of transistors. And after successful completion of this course, you will
be able to tame the myriads of transistors of modern technologies yourself.

Motivation

e m How to go from simple circuits to complex ones?
m Up to billions of transistors
m Complexity continuously increasing (Moore’s Law)

= Hardware Modeling
m Tools and techniques to bridge the gap

Motivation

15— e

L Introduction to Hardware Design
L—Motivation Y ——
I—Why bother?

Although we hope our little motivation sparked your interest in hardware modeling, you still might ask yourself why you should
bother to learn this. After all, there is a plethora of readily-available chips. You do not need to develop your own CPU. You
can simply go out and by the one you fancy. And while that is true, there is a catch.

Why bother?

HWMod
WS24

Motivation

m Why should you care about designing
hardware?

L Introduction to Hardware Design
L—Motivation P S——
|_Why bother? Same s o scftware

In general, the reason for caring about the design of hardware are the same for caring about writing software programs.

Why bother?

HWMod
WS24

Motivation

m Why should you care about designing
hardware?
= Same as for software

L Introduction to Hardware Design
LMotivation
I—Why bother?

In general, the reason for caring about the design of hardware are the same for caring about writing software programs.
When you download a program or piece of software, the developer will have decided about its features and properties.
Usually this means that the program either excels at envisioned average use cases in order to target a broad audience,
or that the program is specifically tailored to the needs of the developer. If the task for which you want to use this software

strongly deviates from the applications for which it was originally created, the readily-available programs might not be suitable
for you.

Why bother?

HWMod
WS24

Motivation

m Why should you care about designing
hardware?

= Same as for software
m Custom requirements = custom solution

L Introduction to Hardware Design
LMotivation
I—Why bother?

For hardware it is essentially the same. If you want to build a satellite you cannot simply buy the next-best consumer-grade
CPU. The requirements of these two applications are completely different. For example, while power and reliability are
paramount for a satellite, they are often just an afterthought for consumer-grade CPUs. Just as with software, if the available
programs do not suit your needs, you either have to create it yourself or hire someone to do that for you. Typically, this is
required for low-volume niche applications.

Why bother?

HWMod
WS24

Motivation

m Why should you care about designing
hardware?
= Same as for software

m Custom requirements = custom solution
m Required for niche applications

L Introduction to Hardware Design
LMotivation
I—Why bother?

Another thing to consider is overhead. While a software that has features you do not need will in its majority only require
more disk space, a chip that has features you do not need draws more power than necessary. In some applications such
behavior is highly undesired.

Why bother?

HWMod
WS24

Motivation

m Why should you care about designing
hardware?
= Same as for software

m Custom requirements = custom solution
m Required for niche applications
m Reduce overhead

L Introduction to Hardware Design
LMotivation
I—Why bother?

In conclusion, while hardware design might sound very niche at the beginning, the reasons to do it are actually not very
different from the ubiquitous software design.

Why bother?

HWMod
WS24

Motivation

m Why should you care about designing
hardware?
= Same as for software

m Custom requirements = custom solution
m Required for niche applications
m Reduce overhead

L Introduction to Hardware Design
LMotivation
L-Why bother? (Cont'd)

= Bocome a better programmer

Another good reason for caring about the design of hardware is that you can become a better programmer. Regardless of
how good you are at programming, the hardware on which your software runs ultimately dictates some of its key properties.

Why bother? (Cont'd)

HWMod
Wsz4 m Become a better programmer

Motivation

L Introduction to Hardware Design
LMotivation
L-Why bother? (Cont'd)

Knowing how hardware is designed allows you to comprehend its limits, which will allow you to understand your computing
platform more intimately. For example, you might already know that some operations in hardware are more expensive in
terms of execution time than others. But do you also know why?

Why bother? (Cont'd)

HWMod
Wsz4 m Become a better programmer

m Understand hardware limits

Motivation

L Introduction to Hardware Design
LMotivation
L-Why bother? (Cont'd)

Consider the two images shown on the slide. The left one shows an addition circuit for an FPGA, whereas the right one
shows a division circuit for the same types of operands and the same FPGA. You can easily see that the division operation
involves significantly more hardware, leading to a longer execution time than for the addition operation.

Why bother? (Cont'd)

HWMod
Wsz4 m Become a better programmer

m Understand hardware limits

Motivation

m Example: addition and division in same technology

L Introduction to Hardware Design
LMotivation
L-Why bother? (Cont'd)

In addition to that, you will become aware of the knobs you can turn in your programming when optimizing it for certain
properties.

Why bother? (Cont'd)

HWMod
Wsz4 m Become a better programmer
m Understand hardware limits
Motation m Know which knobs to turn

m Example: addition and division in same technology

L Introduction to Hardware Design
LMotivation
L-Why bother? (Cont'd)

Furthermore, as we will discuss on the next slide, designing hardware requires a completely different mindset when compared
to writing sequential software. This new mindset will help you to program concurrent software, which is a useful skill to have
with the increasing concurrency of modern general purpose devices.

Why bother? (Cont'd)

HWMod
Wsz4 m Become a better programmer
m Understand hardware limits
Motation m Know which knobs to turn

m New way of thinking
m Example: addition and division in same technology

L Introduction to Hardware Design < s
L-Comparison to Software Design
L Differences to Software Design

On the previous slide we already hinted that designing hardware requires a different way of thinking than designing software.
The reason for that lies in the completely different nature of how software and hardware operate. In particular there is, to
some extent, a certain duality.

Differences to Software Design

HWMod
W24 m Software

SW Comparison

m Hardware

L Introduction to Hardware Design
L-Comparison to Software Design
L Differences to Software Design

They way we write software is that we consider it to be a sequential problem, with one operation a time being performed.
While there can be concurrency, this is rather the special than the average case and requires particular care and thought.

Differences to Software Design

e m Software

m Typically sequential
m Concurrency possible but takes care

SW Comparison

m Hardware

L Introduction to Hardware Design
L-Comparison to Software Design
L Differences to Software Design

In hardware design, everything is concurrent by default, with operations typically happening in parallel. While sequential
operations and thinking in hardware are not only possible but also vital, this requires more care and thought, somewhat akin
to concurrent software. It is this duality that makes hardware design initially so alien but also rewarding in the end. Mastering

the tools and techniques involved will ultimately teach you how to think concurrently.

Differences to Software Design

it m Software
m Typically sequential
m Concurrency possible but takes care

SW Comparison

m Hardware

m Typically concurrent
m Sequential possible but takes care

L Introduction to Hardware Design
L-Comparison to Software Design
L Differences to Software Design

Another difference between designing software and hardware are the considerations involved. For software, with exceptions,
you are often mostly concerned with the asymptotic execution time or memory requirements. You usually do not care about
single instructions or cycle times.

Differences to Software Design

it m Software
m Typically sequential
m Concurrency possible but takes care
W Gomparison m Asymptotic behavior (mostly)

m Hardware

m Typically concurrent
m Sequential possible but takes care

L Introduction to Hardware Design
L-Comparison to Software Design
L Differences to Software Design

For hardware however, attention to detail is crucial. After all, even marginal imperfections leading to a single clock cycle
difference can severely impede the performance of executed programs.

Differences to Software Design

it m Software
m Typically sequential
m Concurrency possible but takes care
W Gomparison m Asymptotic behavior (mostly)

m Hardware
m Typically concurrent
m Sequential possible but takes care
m Details matter

L Introduction to Hardware Design
L-Comparison to Software Design
L Differences to Software Design

Software and hardware also significantly differ in the design flow. Where software often grows very dynamically, up to the
extent where it only matures at the customer by deploying patches over time, a hardware design is eventually poured in silicon.
Updating such chips is, in general, not possible, meaning that errors that happen during the development are irreversible and
tremendously expensive.

Differences to Software Design

HWMod
W24 m Software

m Typically sequential

m Concurrency possible but takes care
W Gomparison m Asymptotic behavior (mostly)

m Easy to update

m Hardware

m Typically concurrent
m Sequential possible but takes care
m Details matter

L Introduction to Hardware Design
L-Comparison to Software Design
L Differences to Software Design

Therefore, hardware is designed with the, so-called, first-time-right paradigm in mind, where a design needs to be correct
when it is manufactured.

Differences to Software Design

HWMod
W24 m Software

m Typically sequential

m Concurrency possible but takes care
W Gomparison m Asymptotic behavior (mostly)

m Easy to update

m Hardware
m Typically concurrent
m Sequential possible but takes care
m Details matter
m First-time-right paradigm

L Introduction to Hardware Design
L-Comparison to Software Design
L Differences to Software Design

However, this is far from trivial and in the recent years we were able to witness several cases where even leading companies
failed to do so. Examples range from the well-know f-diff bug in the 1990s to more recent cases such as spectre or meltdown.

Differences to Software Design

HWMod
W24 m Software

m Typically sequential

m Concurrency possible but takes care
W Gomparison m Asymptotic behavior (mostly)

m Easy to update

m Hardware
m Typically concurrent @/’
m Sequential possible but takes care o
m Details matter FLTRE

m First-time-right paradigm

L Introduction to Hardware Design
L-Comparison to Software Design
L Differences to Software Design

“This dualty makes hardware design hard but also rewarding

In conclusion, what you should take away from this slide is the duality between software and hardware design and that it is
often the cause why skilled programmers have a hard time to initially get the grip on hardware design. However, this duality
also makes designing hardware so rewarding, as it means that you can use the mindset you will develop in this course also
when writing software.

Differences to Software Design

HWMod
W24 m Software

m Typically sequential

m Concurrency possible but takes care
W Gomparison m Asymptotic behavior (mostly)

m Easy to update

m Hardware

m Typically concurrent @/
m Sequential possible but takes care
m Details matter

m First-time-right paradigm

This duality makes hardware design hard but also rewarding

SPECTRE

L Introduction to Hardware Design
L-Comparison to Software Design
I—Comparison to Software Design (Cont’d)

Finally, let us finish this comparison by illustrating the different nature of software and hardware.

Comparison to Software Design (Cont’d)

HWMod

wsz4 m Software m Hardware

SW Comparison

L Introduction to Hardware Design
L-Comparison to Software Design
I—Comparison to Software Design (Cont’d)

Consider the code shown on the bottom left. It consists of a simple branch that determines whether the resulting value is the
sum or the product of x and y.

Comparison to Software Design (Cont’d)

HWMod

wsz4 m Software m Hardware

SW Comparison

1 if (x>)

2 zZ = X *x y;
3 else

4 z = X + y;
5 return z;

L Introduction to Hardware Design
L-Comparison to Software Design
I—Comparison to Software Design (Cont’d)

If we look at this program, we typically think about it being executed sequentially. As a result, the CPU will either compute
the addition OR the product, but definitely not both.

Comparison to Software Design (Cont’d)

HWMod

wsz4 m Software m Hardware

m Sequential execution
m Either multiplication or addition

SW Comparison

1 if (x>)

2 zZ = X *x y;
3 else

4 z = X ty;
5 return z;

L Introduction to Hardware Design
I—Comparison to Software Design o
I—Comparison to Software Design (Cont’d) e 5@

Now consider a corresponding circuit on the bottom right. It features an adder and a multiplier feeding a multiplexer and a
comparator that selects the required value. The two arithmetic operations are performed by distinct circuits.

Comparison to Software Design (Cont’d)

HWMod

wsz4 m Software m Hardware

m Sequential execution
m Either multiplication or addition

SW Comparison

if (x > vy)

1
2 zZ = X *x y;

3 else -
4 z = X ty; Z
5 return z;

L—Introduction to Hardware Design e
L-Comparison to Software Design
I—Comparison to Software Design (Cont’d) nh 5@

Therefore, the two values are always computed, regardless which value we actually require. This is obviously in stark contrast
to the way the software performs these computations.

Comparison to Software Design (Cont’d)

HWMod

wsz4 m Software m Hardware

m Sequential execution m Computations done concurrently
m Either multiplication or addition m All operations always active

SW Comparison

if (x > vy)

1
2 zZ = X *x y;

3 else -
4 z = X ty; Z
5 return z;

L Introduction to Hardware Design
LHardware Design
L_Gajski Y-Chart

Now that we convinced you that hardware design is interesting, important and fundamentally distinct from software design, let
us discuss how complex circuits can actually be created systematically. As with programming complex software, abstraction
is vital. We cannot constantly think about every single transistor.

Gajski Y-Chart

HWMod m Abstraction is key
WS24

Y-Chart

L Introduction to Hardware Design
LHardware Design
L_Gajski Y-Chart

Therefore, we need a means to work on a higher level of abstraction than on the one of singular circuit elements. Ideally, we
would than move to lower levels of abstraction automatically using tools. However, more on that later.

Gajski Y-Chart

o m Abstraction is key
m Start on high abstraction and (automatically) move inwards

Y-Chart

L Introduction to Hardware Design
LHardware Design
L_Gajski Y-Chart

In addition to different levels of abstraction, a circuit can be described from different points of view. We can think about our
envisioned circuit's behavior, about its structure in terms of distinct components, and its physical geometry.

Gajski Y-Chart

o m Abstraction is key
m Start on high abstraction and (automatically) move inwards

m All points of view describe same circuit

Y-Chart

L Introduction to Hardware Design
LHardware Design
L_Gajski Y-Chart

A popular illustration of these views and the different levels of abstractions is the Gajski Y-chart as depicted on the slide.
The different rings of the chart correspond to different levels of abstraction, with the outermost level, called the system level,
abstracting the most and the innermost level, referred to as circuit level, the least.

Gajski Y-Chart

o m Abstraction is key
m Start on high abstraction and (automatically) move inwards

m All points of view describe same circuit

Y-Chart

Behavior System Level
Algorithmic Level
Register-Transfer Level

Logical Level

Geometry Structure

L Introduction to Hardware Design
LHardware Design
L_Gajski Y-Chart

An interesting observation we can make is that all three points of view ultimately describe the same circuit on each level
of abstraction. This fact can be harnessed when designing, since some viewpoints lend themselves to different levels of
abstraction. In particular, this allows describing a circuit at the highest possible level of abstraction via its desired behavior
and then converting it to a structural description.

Gajski Y-Chart

o m Abstraction is key
m Start on high abstraction and (automatically) move inwards

m All points of view describe same circuit
m Translate between them as beneficial

Y-Chart

Behavior System Level
Algorithmic Level
Register-Transfer Level

Logical Level

Geometry Structure

L Introduction to Hardware Design
LHardware Design
L_Gajski Y-Chart

To translate between these different points of views and levels of abstraction, hardware designers use tools like the ones we
will discuss in later lectures of this course.

Gajski Y-Chart

o m Abstraction is key
m Start on high abstraction and (automatically) move inwards

m All points of view describe same circuit

m Translate between them as beneficial
m Harnessed by tools

Y-Chart

Behavior System Level
Algorithmic Level
Register-Transfer Level

Logical Level

Geometry Structure

L Introduction to Hardware Design
LHardware Design
L_Gajski Y-Chart

Be aware though that the higher the abstraction, the harder it is to perform optimizations. As a result it can sometimes be
necessary that we work on a lower level of abstraction than we would like. For example, this is the case when we need to
match strict requirements regarding timing, power, area or other properties.

Gajski Y-Chart

o m Abstraction is key
m Start on high abstraction and (automatically) move inwards
m Catch: Increasing abstraction = decreased optimization potential
m All points of view describe same circuit
m Translate between them as beneficial
m Harnessed by tools

Y-Chart

Behavior System Level
Algorithmic Level
Register-Transfer Level

Logical Level

Geometry Structure

L Introduction to Hardware Design
LHardware Design
L_Gajski Y-Chart

Note how the Y-chart shows that there are multiple ways to reach a certain circuit description. For example, let us consider
the usual design flow for FPGAs, highlighted in red. It starts with a behavioral description at the register-transfer level and
translate this into a structural description in a step called synthesis.

Gajski Y-Chart

o m Abstraction is key
m Start on high abstraction and (automatically) move inwards
m Catch: Increasing abstraction = decreased optimization potential
m All points of view describe same circuit
m Translate between them as beneficial
m Harnessed by tools

Y-Chart

Behavior System Level
Algorithmic Level
Register-Transfer Level

Logical Level

Geometry Structure

L Introduction to Hardware Design
LHardware Design
L_Gajski Y-Chart

Next, details are introduced, leading to a decrease of the level of abstraction. The respective step is called technology
mapping.

Gajski Y-Chart

o m Abstraction is key
m Start on high abstraction and (automatically) move inwards
m Catch: Increasing abstraction = decreased optimization potential
m All points of view describe same circuit
m Translate between them as beneficial
m Harnessed by tools

Y-Chart

Behavior System Level
Algorithmic Level
Register-Transfer Level

Logical Level

Geometry Structure

L Introduction to Hardware Design
LHardware Design
L_Gajski Y-Chart

Finally, the place and route step converts the structural description into a geometric description on the logic level which we
require as input for an FPGA design.

Gajski Y-Chart

o m Abstraction is key
m Start on high abstraction and (automatically) move inwards
m Catch: Increasing abstraction = decreased optimization potential
m All points of view describe same circuit
m Translate between them as beneficial
m Harnessed by tools

Y-Chart

Behavior System Level
Algorithmic Level
Register-Transfer Level

Logical Level

Geometry Structure

L Introduction to Hardware Design
LHardware Design
L_Gajski Y-Chart

To simply the design flow, making it faster and cheaper, the steps from the circuit level to the logic level are already done by
the manufacturer. We highlighted them in green.

Gajski Y-Chart

o m Abstraction is key
m Start on high abstraction and (automatically) move inwards
m Catch: Increasing abstraction = decreased optimization potential
m All points of view describe same circuit
m Translate between them as beneficial
m Harnessed by tools

Y-Chart

Behavior System Level
Algorithmic Level
Register-Transfer Level

Logical Level

Geometry Structure

L Introduction to Hardware Design

LHardware Design
L-Y-Table

[EEARRAE
ey | GiHD

On the previous slide we have talked about the Y-chart and how we can use it to describe the hardware design flow for different
target technologies. However, so far the distinct levels of abstraction and points of view were hardly tangible. Therefore, we

present to you a tabular version of this chart on this slide. This table contains the same three viewing points as before as
columns and the levels of abstraction as rows.

HWMod
ws24 Behavior Structure Geometry
Inputs : Keyboard Memory(—) CPU (=) —>
System Level Output: Display -*-*;n @ ;I'rans-
Fankton: ... I
while input [Memory]
Y-Table Algorithmic Sthei\aI?ng“ " 5 6 |nRt§yZ-f::ie up | PS2]
Level Calulate Euro 10-Ctrl ,n:esrléce 10-ctrl |RS237
Display ,Euro”
Reagist T £ if A="1" then |
eqgister Iransrer B:=B+1 [RaM_|—*{Register] R A]
Level (RTL) eise - Ia Hsfi=f
5= Higlt
end if
D =NOTE > ! c NV
Logic Level C= (DOR B) AND A B AND
A Eor
————
1L 4 4
. . du _pdi L 4% — —
Circuit Level at =Rat ¢ *lae ‘E o = =
B e E—

L Introduction to Hardware Design
LHardware Design
L-Y-Table

Nowadays, hardware design typically starts with a behavioral description on the register-transfer level, abbreviated as RTL.
This programmatic description is done using hardware description languages, or HDL for short. Be noted though that such
HDLs usually support a mixture of behavioral descriptions and structural descriptions on the RTL and logic level, as this

allows for efficient designing. We have highlighted the different circuit description they contain on the slide.

HWMod
ws24 Behavior Structure Geometry
Inputs : Keyboard Memory(—) CPU (=) —>
System Level Output: Display -*-*;n @ ;I'rans-
Funktion: .. [ourk= >
while input [Memory]
Y-Table Algorithmic Sthei\aI?ng“ " 5 6 ,:tz,zéie upP | PS2
Level Calulate Euro 10-Ctrl ,n:esrléce \0-Ctrl RS232
Diselax ,Euro”
. if A="1" then]
Register Transfer B:= B+1 i rHAHE
Level (RTL) elee_ -l e HuHz
B2 HDLg
) D = NOTE > 7 -
Logic Level C= (D OR B) AND A B . AND
i ——
40 4 4
. . du _pdl L d2 = —
Circuit Level at ~Rat * ¢ *loe ‘E . = =

L Introduction to Hardware Design
LHardware Design

LY-Table

After a designer has created a circuit description in such an HDL, tools then take this description and convert it to the desired

target description. This typically involves the incorporation of information about the specific target technology in order to
decrease the level of abstraction.

HWMod
ws24 Behavior Structure Geometry
Inputs : Keyboard Memory(—) CPU (=) —>
System Level Output: Display -*-i;n @ ;I'rans-
Fankton: ... [out ™"
while input [Memory]
Y-Table Algorithmic Sthei{\ilgng“ " 5 6 ,:tz,zéie upP | PS2
Level Calulate Euro 10-Ctrl ,n:esrléce 10-ctrl |RS237
Disglax , Euro”
. if A="1" then
Register Transfer B:= B+1 i
Level (RTL) o]
end if HDLS
D =NOTE E4(>’ 7 c INV
Logic Level C=(DORB)AND A 2 Son o G5l
——
du _ pdl dazl

Circuit Level

JT‘j

A
40 A4 1
T A

L Introduction to Hardware Design
LHardware Design
L-Y-Table

Due to the ever-increasing complexity of circuits, the RTL abstraction that served us well for the past few decades is slowly but
steadily reaching its limit. As a remedy researches are currently working on so-called high-level synthesis or for short HLS.
As the name suggests, the goal is to provide circuit descriptions on a higher behavioral or structural level like the algorithmic

or system one. However, this will be the topic of other courses.

HWMod
ws24 Behavior Structure Geometry
Inputs : Keyboard Memory—) CPU [—) 10 —>
System Level Output: Display -'i-i- @ ;I'rans-
Funkcion: ... (o=t =
while input HLS
. . -M m
V-Table Algorithmic Sjﬁiﬁﬁng“ For ’ S22z uP | PSi2
Level Calulate Euro 10-Ctrl[P52 oot |RS232
Dﬂala , Euro”
. if A="1" then
Register Transfer B:= B+1 i
Level (RTL) "5 e s
end if HDLS
D = NOTE > 7 c T
Logic Level C= (D OR B) AND A B . AND
i ————
A0 4 4
. . du _pdl L a2l — —
Circuit Level dt ~Rat *¢ *lae {é—q—qﬁﬁ% i —

L Introduction to Hardware Design
LHardware Design
LHardware Description Languages

As mentioned before, hardware description languages are typically used to describe circuits. As the name already suggests,
these are languages created for describing hardware. But why do we need specific languages for that? Let us again draw
a comparison to software development. Ff you are writing object-oriented code, you prefer an object-oriented language like
Java or C# that has the notion of objects built in. Nevertheless, you still could write your code also in C or even assembly. You
will mostly combat the language instead of creating the desired program, impeding your efficiency and reducing the possible
complexity of your programs. When designing hardware things are essentially the same. We could simply draw circuits by

hand and that’s it. However, much as with writing assembly code you would be limited to rather small circuits. Just imagine
drawing a modern CPU by hand.

Hardware Description Languages

o m Drawing circuits does not scale

Y-Table

Abstraction

Software 4@
Programming

Hardware

vaage [
escription T_{ [:‘h

L Introduction to Hardware Design < g
LHardware Design
LHardware Description Languages

As a remedy, we need to increase the level of abstraction. Software engineers also discovered the need for more abstraction
some time ago, and ended up with languages like Pascal or C. Over time, with computers becoming more powerful, more
specialized and even more abstract programming languages like Java or Haskell came up.

Hardware Description Languages

it m Drawing circuits does not scale
m Require more abstract method

Y-Table

Abstraction

Software «
Programming =>)avd

Hardware

vaage [
escription T_{ [:‘h

L Introduction to Hardware Design
LHardware Design
LHardware Description Languages

Hardware designers had similar problems and desires and ended up in a similar spot. From drawing circuit schematics by
hand, they moved to drawing them using computer assistance and then to describing them programmatically. This is also
where we are currently at with hardware description languages, with VHDL and System-Verilog arguably being the most
popular ones.

Hardware Description Languages

HWMod m Drawing circuits does not scale
WS24 .
m Require more abstract method
= Hardware Description Languages (HDLs)
m Most popular: VHDL, (System)Verilog

Y-Table

Abstraction

Software «
Programming =>Java

s, Eﬁ
i

L Introduction to Hardware Design
LHardware Design
LHardware Description Languages

o S

In the past few years we could observe the growing popularity of languages that are even more abstract than Java, C#,
Haskell and consorts. A prominent example is certainly Python, allowing to easily harness the increasing available power of
computers and top deal with the complexity of modern computing devices. Hardware designers are still working on something
similar in the form of the mentioned high level synthesis.

Hardware Description Languages

HWMod m Drawing circuits does not scale
WS24 .
m Require more abstract method
= Hardware Description Languages (HDLs)
m Most popular: VHDL, (System)Verilog

Y-Table

Abstraction

Software « F
Programming —=>Java
= python

S Eéﬁ - HLs?)
-erl og

L Introduction to Hardware Design
LHardware Design
LHardware Description Languages

Nevertheless, as stated before moving up on the abstraction ladder comes at a cost as the loss of information and detail
prohibits intricate optimizations. Therefore, low-level programming languages and hardware description languages will likely
never stop to be of use.

Hardware Description Languages

it m Drawing circuits does not scale
m Require more abstract method
= Hardware Description Languages (HDLs)
m Most popular: VHDL, (System)Verilog

Y-Table

Abstraction

Software « F
Programming —=>Java
= python

S Eéﬁ - HLs?)
-erl og

L Introduction to Hardware Design
LHardware Design
L-We will use VHDL! But why?

In this lecture we will use the hardware description language VHDL. However, as we just heard there is also Verilog as a
notable alternative. So why did we choose VHDL? In general the reason is that we believe that VHDL is a great language for
beginners.

We will use VHDL! But why?

HWMod
WS24

Y-Table

L Introduction to Hardware Design
LHardware Design et
L-We will use VHDL! But why?

First, VHDL is very verbose. While this makes you write a bit more code than you would need in other languages, VHDL is
easily comprehensible once you got the hang of it.

We will use VHDL! But why?

HWMod
WS24

m Verbose code

Y-Table

L Introduction to Hardware Design
LHardware Design
L-We will use VHDL! But why?

Furthermore, VHDL is a strongly typed language. Getting it to compile can sometimes be a bit more demanding than for
example Verilog code, but on the other hand you get much better feedback from the tools about the issues with your code.
Furthermore, this strong typing makes it harder to introduce subtle mistakes.

We will use VHDL! But why?

HWMod
WS24

m Verbose code
m Strongly typed
m Harder to make subtle mistakes

L Introduction to Hardware Design
LHardware Design
L-We will use VHDL! But why?

Due to its similarity to the Ada programming language VHDL is highly structural and modular, which also contributes to VHDL
programs being easily comprehensible.

We will use VHDL! But why?

HWMod
WS24

m Verbose code
m Strongly typed
m Harder to make subtle mistakes

m Highly structured and modular

L Introduction to Hardware Design
LHardware Design
L-We will use VHDL! But why?

= Difforent from what you know.

Finally, we believe VHDL is a good starting language for you in particular, as it does not resemble any programming language
you have been taught in university so far. This explicitly emphasizes that hardware design is not just software design.

We will use VHDL! But why?

HWMod
WS24

m Verbose code
m Strongly typed
m Harder to make subtle mistakes

m Highly structured and modular
m Different from what you know

L Introduction to Hardware Design
LHardware Design R
L-VHDL Standard

Finally, let us end this lecture by pointing you towards the VHDL standard, to which we will often refer in the lectures. The
standard is maintained and distributed by the IEEE. You can find it using the clickable link on the slide.

VHDL Standard

HWMod
WS24

m The latest VHDL standard (2019) can be found here

VHDL Standard

https://standards.ieee.org/ieee/1076/5179/
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019
https://standards.ieee.org/ieee/1076/5179/
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019

L Introduction to Hardware Design
LHardware Design
L_VHDL Standard

However, be aware that the standard is not openly available for everyone, but as a student of TU Vienna you can access
it free of charge. To do so, you have to access the provided link from within the TU network. Hence, either connect to, for
example, the Eduroam wireless network or use the TU VPN service.

VHDL Standard

HWMod
WS24

m The latest VHDL standard (2019) can be found here
m Download through the TU network (e.g., via eduroam or VPN connection)

VHDL Standard

https://standards.ieee.org/ieee/1076/5179/
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019
https://standards.ieee.org/ieee/1076/5179/
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019

L Introduction to Hardware Design
L—Hardware Design
L-VHDL Standard

(2019) can be found here

In this lecture videos, we refer to the standard in two ways. One is the diamond shape you can see on the slide. This refers to
the depicted page in the VHDL standard, in this case page one is referenced. If you click this shape, and the VHDL standard
is in the same directory as the slides with the exact same name as when you downloaded it, the standard will be opened at
the respective page.

VHDL Standard

HWMod
WS24

m The latest VHDL standard (2019) can be found here
m Download through the TU network (e.g., via eduroam or VPN connection)

VHOL St m Watch out for VHDL standard and implementation references

&

https://standards.ieee.org/ieee/1076/5179/
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019
https://standards.ieee.org/ieee/1076/5179/
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019

L Introduction to Hardware Design
LHardware Design
L-VHDL Standard

The other type of reference is to the openly available implementation of the standard libraries by the IEEE. Clicking the
respective logo will open up the referenced part of the implementation in your browser.

VHDL Standard
HWMod
WS24
m The latest VHDL standard (2019) can be found here
m Download through the TU network (e.g., via eduroam or VPN connection)
VHOL St m Watch out for VHDL standard and implementation references
S Clickable
N

https://standards.ieee.org/ieee/1076/5179/
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019
https://standards.ieee.org/ieee/1076/5179/
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

HWMod
WS24

VHDL Standard

Lecture Complete!

Modified: 2025-03-08, 00:11 (b25118c)

	Introduction to Hardware Design
	Motivation
	Comparison to Software Design
	Hardware Design

