HWMod
WS25

e Hardware Modeling [VU] (191.011)
- WS25 —

Introduction to Hardware Design

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:03 (f8a58e9)

Motivation

s m How to go from simple circuits to complex ones?

Motivation

Motivation

Wese. m How to go from simple circuits to complex ones?
m Up to billions of transistors

Motivation

Motivation

e m How to go from simple circuits to complex ones?
m Up to billions of transistors
m Complexity continuously increasing (Moore’s Law)

Motivation

Motivation

e m How to go from simple circuits to complex ones?
m Up to billions of transistors
m Complexity continuously increasing (Moore’s Law)
= Hardware Modeling

Motivation

Motivation

e m How to go from simple circuits to complex ones?
m Up to billions of transistors
m Complexity continuously increasing (Moore’s Law)

= Hardware Modeling
m Tools and techniques to bridge the gap

Motivation

Why bother?

HWMod
WS25

Motivation

m Why should you care about designing
hardware?

Why bother?

HWMod
WS25

Motivation

m Why should you care about designing
hardware?
= Same as for software

Why bother?

HWMod
WS25

Motivation

m Why should you care about designing
hardware?
= Same as for software
m Custom requirements = custom solution

Why bother?

HWMod
WS25

Motivation

m Why should you care about designing
hardware?
= Same as for software

m Custom requirements = custom solution
m Required for niche applications

HWMod
WS25

Motivation

Why bother?

m Why should you care about designing
hardware?
= Same as for software

m Custom requirements = custom solution
m Required for niche applications
m Reduce overhead

HWMod
WS25

Motivation

Why bother?

m Why should you care about designing
hardware?
= Same as for software

m Custom requirements = custom solution
m Required for niche applications
m Reduce overhead

Why bother? (Cont'd)

HWMod
Ws2s m Become a better programmer

Motivation

Why bother? (Cont'd)

HWMod
Ws2s m Become a better programmer

m Understand hardware limits

Motivation

Why bother? (Cont'd)

HWMod
Ws2s m Become a better programmer

m Understand hardware limits

Motivation

m Example: addition and division in same technology

Why bother? (Cont'd)

HWMod

Ws2s m Become a better programmer
m Understand hardware limits
Motation m Know which knobs to turn

m Example: addition and division in same technology

Why bother? (Cont'd)

HWMod

Ws2s m Become a better programmer
m Understand hardware limits
Motation m Know which knobs to turn

m New way of thinking
m Example: addition and division in same technology

Differences to Software Design

HWMod
WS25 m Software

SW Comparison

m Hardware

Differences to Software Design

HWMod
WS25 m Software

m Typically sequential
m Concurrency possible but takes care

SW Comparison

m Hardware

Differences to Software Design

HWMod
WS25 m Software

m Typically sequential
m Concurrency possible but takes care

SW Comparison

m Hardware

m Typically concurrent
m Sequential possible but takes care

Differences to Software Design

HWMod
WS25 m Software

m Typically sequential
m Concurrency possible but takes care
W Gomparison m Asymptotic behavior (mostly)

m Hardware

m Typically concurrent
m Sequential possible but takes care

Differences to Software Design

HWMod
WS25 m Software

m Typically sequential
m Concurrency possible but takes care
W Gomparison m Asymptotic behavior (mostly)

m Hardware
m Typically concurrent
m Sequential possible but takes care
m Details matter

Differences to Software Design

HWMod
WS25 m Software

m Typically sequential

m Concurrency possible but takes care
S Gomprisen m Asymptotic behavior (mostly)

m Easy to update

m Hardware
m Typically concurrent
m Sequential possible but takes care
m Details matter

Differences to Software Design

HWMod
WS25 m Software

m Typically sequential

m Concurrency possible but takes care
S Gomprisen m Asymptotic behavior (mostly)

m Easy to update

m Hardware
m Typically concurrent
m Sequential possible but takes care
m Details matter
m First-time-right paradigm

Differences to Software Design

HWMod
WS25 m Software

m Typically sequential

m Concurrency possible but takes care
S Gomprisen m Asymptotic behavior (mostly)

m Easy to update

m Hardware
m Typically concurrent @J}
m Sequential possible but takes care
m Details matter
m First-time-right paradigm

SPECTRE

Differences to Software Design

HWMod
WS25 m Software

m Typically sequential

m Concurrency possible but takes care
S Gomprisen m Asymptotic behavior (mostly)

m Easy to update

m Hardware

m Typically concurrent @c/

m Sequential possible but takes care
m Details matter
m First-time-right paradigm

This duality makes hardware design hard but also rewarding

SPECTRE

Comparison to Software Design (Cont’d)

HWMod

WS2s m Software m Hardware

SW Comparison

Comparison to Software Design (Cont’d)

HWMod
WS2s m Software m Hardware

SW Comparison

1 1f (x > vy)

2 zZ = X *x y;
3 else

4 z = X ty;
5 return z;

Comparison to Software Design (Cont’d)

HWMod

Wezs m Software m Hardware
m Sequential execution
m Either multiplication or addition

1 1f (x > vy)

2 zZ = X *x y;
3 else

4 z = X ty;
5 return z;

Comparison to Software Design (Cont’d)

HWMod
Wezs m Software m Hardware
m Sequential execution
m Either multiplication or addition
SW Comparison

< X
L
V

if (x > vy)

1
2 zZ = X *x y;

3 else >
4 z = X ty;

5 return z;

Comparison to Software Design (Cont’d)

HWMod

WS2s m Software m Hardware

m Sequential execution m Computations done concurrently
m Either multiplication or addition m All operations always active

SW Comparison

< X
L
V

if (x > vy)

|
2 z =X % y;

3 else -
4

5

z = X + y;

return z;

Gajski Y-Chart

Huiod m Abstraction is key

Y-Chart

Gajski Y-Chart

e m Abstraction is key
m Start on high abstraction and (automatically) move inwards

Y-Chart

Gajski Y-Chart

e m Abstraction is key
m Start on high abstraction and (automatically) move inwards

m All points of view describe same circuit

Y-Chart

Gajski Y-Chart

HWMod m Abstraction is key
WS25

m Start on high abstraction and (automatically) move inwards

m All points of view describe same circuit

Y-Chart

Behavior

Geometry

Structure

System Level
Algorithmic Level
Register-Transfer Level
Logical Level

Circuit Level

Gajski Y-Chart

HWMod m Abstraction is key
WS25

m Start on high abstraction and (automatically) move inwards

m All points of view describe same circuit
m Translate between them as beneficial

Y-Chart

Behavior

Geometry

Structure

System Level
Algorithmic Level
Register-Transfer Level
Logical Level

Circuit Level

Gajski Y-Chart

HWMod m Abstraction is key
WS25

m Start on high abstraction and (automatically) move inwards

m All points of view describe same circuit
m Translate between them as beneficial

Y Cnart m Harnessed by tools
Behavior

Geometry

Structure

System Level
Algorithmic Level
Register-Transfer Level
Logical Level

Circuit Level

Gajski Y-Chart

HWMod m Abstraction is key
WS25

m Start on high abstraction and (automatically) move inwards

m Catch: Increasing abstraction = decreased optimization potential
m All points of view describe same circuit

m Translate between them as beneficial

Y Cnart m Harnessed by tools
Behavior

Geometry

Structure

System Level
Algorithmic Level
Register-Transfer Level
Logical Level

Circuit Level

Gajski Y-Chart

HWMod m Abstraction is key
WS25

m Start on high abstraction and (automatically) move inwards

m Catch: Increasing abstraction = decreased optimization potential
m All points of view describe same circuit

m Translate between them as beneficial

Y Cnart m Harnessed by tools
Behavior

Geometry

Structure

System Level
Algorithmic Level
Register-Transfer Level
Logical Level

Circuit Level

Gajski Y-Chart

HWMod m Abstraction is key
WS25

m Start on high abstraction and (automatically) move inwards

m Catch: Increasing abstraction = decreased optimization potential
m All points of view describe same circuit

m Translate between them as beneficial

Y Cnart m Harnessed by tools
Behavior

Geometry

Structure

System Level
Algorithmic Level
Register-Transfer Level
Logical Level

Circuit Level

Gajski Y-Chart

HWMod m Abstraction is key
WS25

m Start on high abstraction and (automatically) move inwards

m Catch: Increasing abstraction = decreased optimization potential
m All points of view describe same circuit

m Translate between them as beneficial

Y Cnart m Harnessed by tools
Behavior

Geometry

Structure

System Level
Algorithmic Level
Register-Transfer Level
Logical Level

Circuit Level

Gajski Y-Chart

HWMod m Abstraction is key
WS25

m Start on high abstraction and (automatically) move inwards

m Catch: Increasing abstraction = decreased optimization potential
m All points of view describe same circuit

m Translate between them as beneficial

Y Cnart m Harnessed by tools
Behavior

Geometry

Structure

System Level
Algorithmic Level
Register-Transfer Level
Logical Level

Circuit Level

HWMod
WS25

Y-Table

Behavior Structure Geometry
Inputs : Keyboard Memory(—) CPU K=}
SyStem Level Output: Display - -i- @ 'I;rans-
Function; .. [outA ="
. . while input
Algorithmic read English text T e uP | PSP
translate to German PS/2
Level output German Text 10-Ctrl Interface 10-Ctrl RS232
if A="1" then
Register Transfer B:=B+1
gister Trans o2 [—fregmatr]
B~
end i
H B
Logic Level C= (D ORB)AND A I =T AND
n———
40 4 B —
. . au _pdl 1 A2
Circuit Level at =Rat * ¢ *loe ‘Ejjj_‘#% —_—]

HWMod
WS25

Y-Table

Behavior Structure Geometry
Inputs : Keyboard Memory(—) CPU K=}
SyStem Level Output: Display -*-i;n @ 'I;rans-
Functon: .. oot =
. . while input RS232 PS/2
Algorithmic read English text 1 Interface uP /
translate to German PS/2
Level output German Text 10-Ctrl Interface 10-Ctrl RS232

if A="1" then
Register Transfer B:= B+1

|

Level (RTL) e ﬂ‘
end if HDLs

. B
Logic Level C=(DORB)AND A A
40 4
o du _di 1 g j § § 5
Circuit Level dt =Rat T ¢ *lae ‘E .

HWMod
WS25

Y-Table

Behavior Structure Geometry
Inputs : Keyboard Memory(—) CPU K=}
SyStem Level Output: Display -*-i;n @ 'I;ratns-
Function: ... [out]e >
. . while input
Algorithmic read English text T e uP | PSP
translate to German PS/2
Level output German Text 10-Ctrl Interface 10-Ctrl RS232

if A="1" then
Register Transfer IB:= B+1 i

else

Level (RTL) iy “
end if HDLs

. B
Logic Level C=(DORB)AND A A
1L 4 4
. . du | 1 az
Circuit Level dt =Rdr ¢ * e { '—H‘—H‘—L%T .

Tool Support

HWMod
WS25

Y-Table

Behavior Structure Geometry
Inputs : Keyboard -Memory-cpu n
System Level Output: Display .i-i- @ 'E;atgi-
Function: ... [out)
. . while input _Memory
Algorithmic read English text T = uP | PSP
translate to German PS/2
Level output German Text AIO'CM Interface 10-Ctrl RS232
if A="1" then
i B:= B+1
Register Transfer B - i
Level (RTL) B:=B Counter
end if HDLs!
. B
Logic Level C= (D OR B) AND A A
AlE 4 ol
. . au _pdl 1L A2
Circuit Level dt ~Rar +¢ *lae ‘E =

Tool Support

Hardware Description Languages

e m Drawing circuits does not scale

Y-Table

Abstraction

Software 4@
Programming

Hardware

=
escription T_{ [:‘h

Hardware Description Languages

e m Drawing circuits does not scale
m Require more abstract method

Y-Table

Abstraction

Software &,
Programming =>)avd

Hardware F‘*[i

Description *L{ [:‘h

Hardware Description Languages

e m Drawing circuits does not scale
m Require more abstract method
= Hardware Description Languages (HDLs)
m Most popular: VHDL, (System)Verilog

Y-Table

Abstraction

Software &,
Programming =>)avd

Hardware

Description EE‘F

Hardware Description Languages

e m Drawing circuits does not scale
m Require more abstract method
= Hardware Description Languages (HDLs)
m Most popular: VHDL, (System)Verilog

Y-Table

Abstraction

Software &, F
Programming =>Jdvd
= python

Hardware

Description EE‘F

Hardware Description Languages

e m Drawing circuits does not scale
m Require more abstract method
= Hardware Description Languages (HDLs)
m Most popular: VHDL, (System)Verilog

Y-Table

Abstraction

Software &, F
Programming =>Jdvd
= python

Hardware

Description EE‘F

We will use VHDL! But why?

HWMod
WS25

We will use VHDL! But why?

HWMod
WS25

m Verbose code

Y-Table

We will use VHDL! But why?

HWMod
WS25

m Verbose code
m Strongly typed
m Harder to make subtle mistakes

We will use VHDL! But why?

HWMod
WS25

m Verbose code
m Strongly typed
m Harder to make subtle mistakes

m Highly structured and modular

We will use VHDL! But why?

HWMod
WS25

m Verbose code
m Strongly typed
m Harder to make subtle mistakes

m Highly structured and modular
m Different from what you know

VHDL Standard

HWMod
WS25

m The latest VHDL standard (2019) can be found here

VHDL Standard

https://standards.ieee.org/ieee/1076/5179/
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019

VHDL Standard

HWMod
WS25

m The latest VHDL standard (2019) can be found here
m Download through the TU network (e.g., via eduroam or VPN connection)

VHDL Standard

https://standards.ieee.org/ieee/1076/5179/
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019

VHDL Standard

HWMod
WS25

m The latest VHDL standard (2019) can be found here
m Download through the TU network (e.g., via eduroam or VPN connection)

i m Watch out for VHDL standard and implementation references

&

https://standards.ieee.org/ieee/1076/5179/
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019

VHDL Standard

HWMod
WS25

m The latest VHDL standard (2019) can be found here
m Download through the TU network (e.g., via eduroam or VPN connection)

i m Watch out for VHDL standard and implementation references

&

IEEE SA
OFEN

Clickable

https://standards.ieee.org/ieee/1076/5179/
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019

HWMod
WS25

VHDL Standard

Lecture Complete!

Modified: 2025-12-16, 16:03 (f8a58e9)

	Introduction to Hardware Design
	Motivation
	Comparison to Software Design
	Hardware Design

