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e m How to go from simple circuits to complex ones?
m Up to billions of transistors
m Complexity continuously increasing (Moore’s Law)

= Hardware Modeling
m Tools and techniques to bridge the gap
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Why bother? (Cont'd)

HWMod

Ws2s m Become a better programmer
m Understand hardware limits
Motation m Know which knobs to turn

m New way of thinking
m Example: addition and division in same technology
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HWMod
WS25 m Software

m Typically sequential

m Concurrency possible but takes care
S Gomprisen m Asymptotic behavior (mostly)

m Easy to update

m Hardware

m Typically concurrent @c/

m Sequential possible but takes care
m Details matter
m First-time-right paradigm

This duality makes hardware design hard but also rewarding

SPECTRE
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Comparison to Software Design (Cont’d)

HWMod

WS2s m Software m Hardware

m Sequential execution m Computations done concurrently
m Either multiplication or addition m All operations always active

SW Comparison

< X
L
V

if (x > vy)

|
2 z =X % y;

3 else -
4

5

z = X + y;

return z;
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Y-Table

Behavior Structure Geometry
Inputs : Keyboard -Memory-cpu n
System Level Output: Display .i-i- @ 'E;atgi-
Function: ... [out)
. . while input _Memory
Algorithmic read English text T = uP | PSP
translate to German PS/2
Level output German Text AIO'CM Interface 10-Ctrl RS232
if A="1" then
i B:= B+1
Register Transfer B - i
Level (RTL) B:=B Counter
end if HDLs!
. B
Logic Level C= (D OR B) AND A A
AlE 4 ol
. . au _pdl 1L A2
Circuit Level dt ~Rar +¢ *lae ‘E =

Tool Support
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We will use VHDL! But why?
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m Verbose code
m Strongly typed
m Harder to make subtle mistakes

m Highly structured and modular
m Different from what you know
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Clickable
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Lecture Complete!

Modified: 2025-12-16, 16:03 (f8a58e9)



	Introduction to Hardware Design
	Motivation
	Comparison to Software Design
	Hardware Design


