

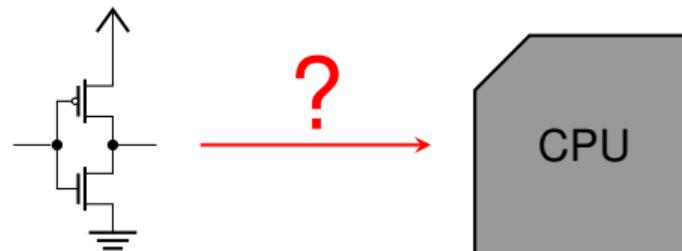
Hardware Modeling [VU] (191.011)

– WS25 –

Introduction to Hardware Design

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

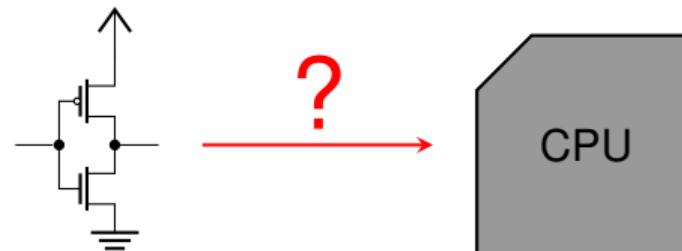


Motivation

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

- How to go from simple circuits to complex ones?
 - Up to **billions** of transistors

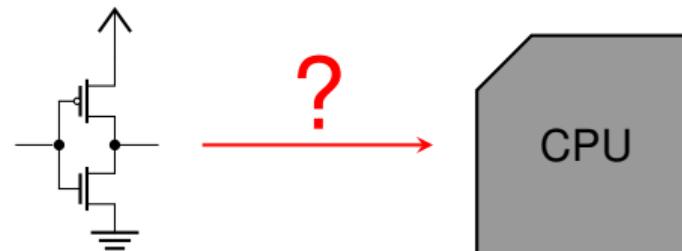

Motivation

HWMod
WS25

HW Design
Motivation

SW Comparison
Hardware Design

- How to go from simple circuits to complex ones?
 - Up to **billions** of transistors
 - Complexity continuously increasing (*Moore's Law*)

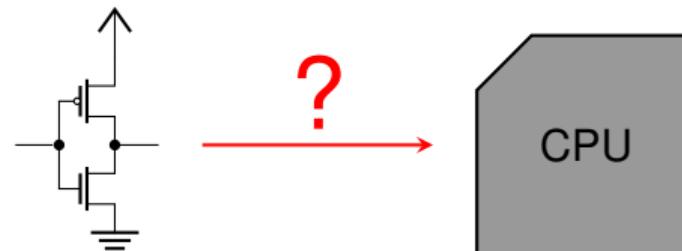

Motivation

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

- How to go from simple circuits to complex ones?
 - Up to **billions** of transistors
 - Complexity continuously increasing (*Moore's Law*)

⇒ Hardware Modeling



Motivation

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

- How to go from simple circuits to complex ones?
 - Up to **billions** of transistors
 - Complexity continuously increasing (*Moore's Law*)
- ⇒ Hardware Modeling
 - Tools and techniques to bridge the gap

Why bother?

HWMod
WS25

HW Design

Motivation

SW Comparison

Hardware Design

- Why should you care about designing hardware?

Why bother?

HWMod
WS25

HW Design

Motivation

SW Comparison

Hardware Design

- Why should you care about designing hardware?
 - ⇒ Same as for software

Why bother?

HWMod
WS25

HW Design

Motivation

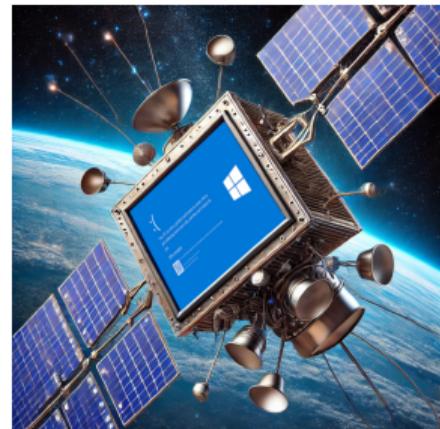
SW Comparison

Hardware Design

- Why should you care about designing hardware?
 - ⇒ Same as for software
 - Custom requirements ⇒ custom solution

Why bother?

HWMod
WS25


HW Design

Motivation

SW Comparison

Hardware Design

- Why should you care about designing hardware?
 - ⇒ Same as for software
 - Custom requirements ⇒ custom solution
 - Required for niche applications

Why bother?

HWMod
WS25


HW Design

Motivation

SW Comparison

Hardware Design

- Why should you care about designing hardware?
 - ⇒ Same as for software
 - Custom requirements ⇒ custom solution
 - Required for niche applications
 - Reduce overhead

Why bother?

HWMod
WS25

HW Design

Motivation

SW Comparison

Hardware Design

- Why should you care about designing hardware?
 - ⇒ Same as for software
 - Custom requirements ⇒ custom solution
 - Required for niche applications
 - Reduce overhead

Why bother? (Cont'd)

HWMod
WS25

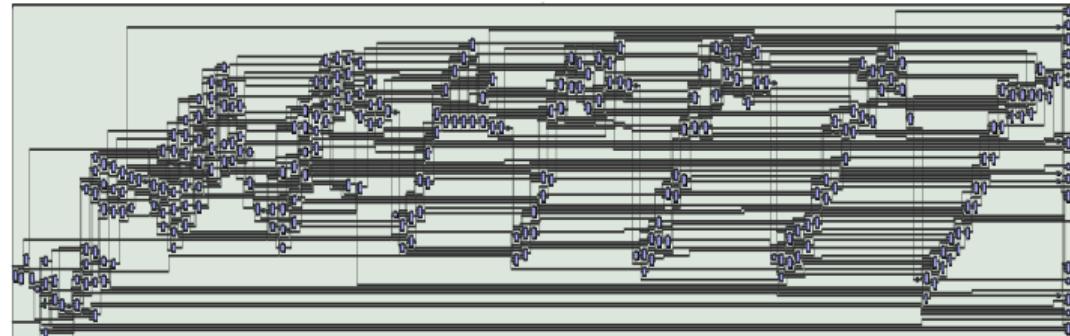
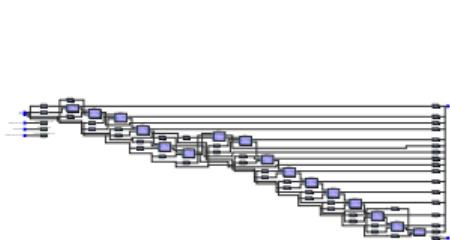
- Become a better programmer

HW Design
Motivation
SW Comparison
Hardware Design

Why bother? (Cont'd)

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

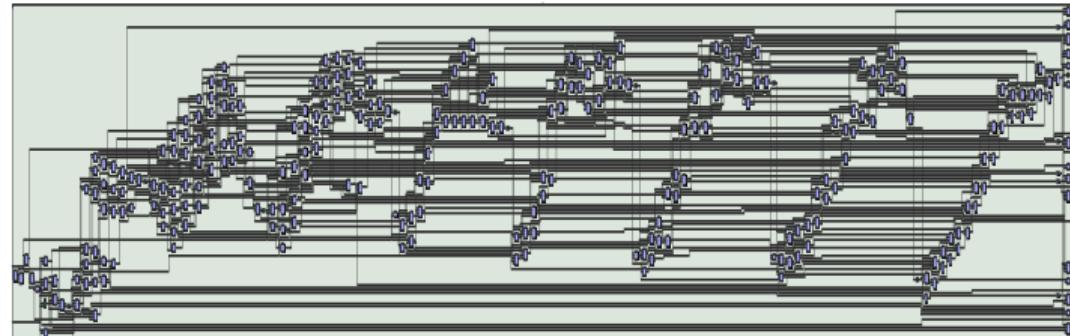
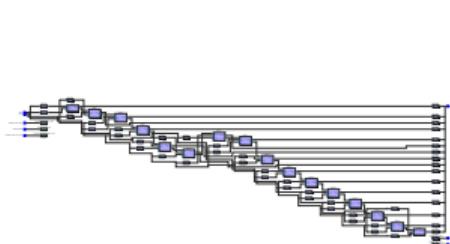


- Become a better programmer
 - Understand hardware limits

Why bother? (Cont'd)

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

- Become a better programmer
 - Understand hardware limits
- Example: addition and division in same technology

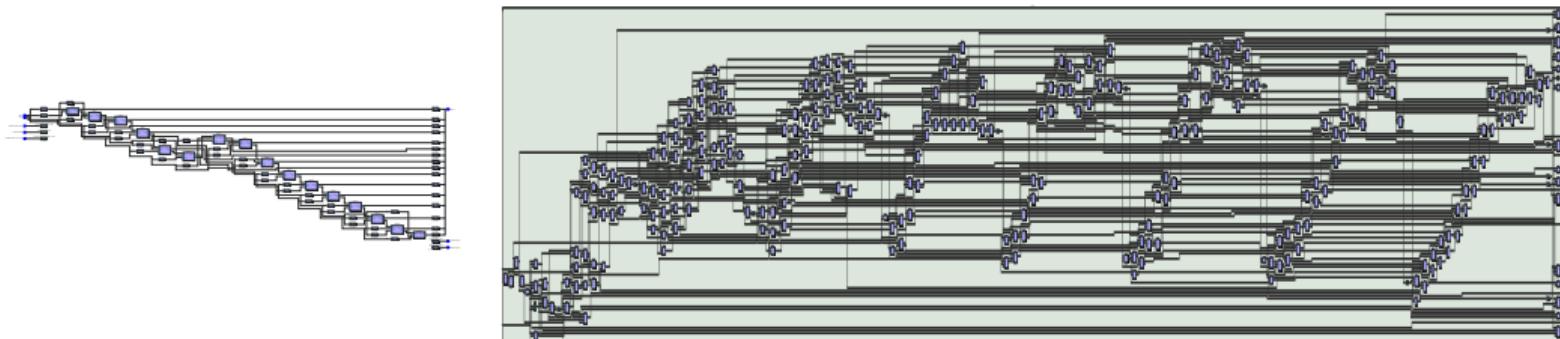



Why bother? (Cont'd)

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

- Become a better programmer
 - Understand hardware limits
 - Know which knobs to turn
- Example: addition and division in same technology



Why bother? (Cont'd)

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

- Become a better programmer
 - Understand hardware limits
 - Know which knobs to turn
 - New way of thinking
- Example: addition and division in same technology

Differences to Software Design

HWMod
WS25

HW Design

Motivation

SW Comparison

Hardware Design

■ Software

■ Hardware

Differences to Software Design

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

- Software
 - Typically sequential
 - Concurrency possible but takes care
- Hardware

Differences to Software Design

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

- Software

- Typically sequential
- Concurrency possible but takes care

- Hardware

- Typically concurrent
- Sequential possible but takes care

Differences to Software Design

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

■ Software

- Typically sequential
- Concurrency possible but takes care
- Asymptotic behavior (mostly)

■ Hardware

- Typically concurrent
- Sequential possible but takes care

Differences to Software Design

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

■ Software

- Typically sequential
- Concurrency possible but takes care
- Asymptotic behavior (mostly)

■ Hardware

- Typically concurrent
- Sequential possible but takes care
- Details matter

Differences to Software Design

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

■ Software

- Typically sequential
- Concurrency possible but takes care
- Asymptotic behavior (mostly)
- Easy to update

■ Hardware

- Typically concurrent
- Sequential possible but takes care
- Details matter

Differences to Software Design

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

■ Software

- Typically sequential
- Concurrency possible but takes care
- Asymptotic behavior (mostly)
- Easy to update

■ Hardware

- Typically concurrent
- Sequential possible but takes care
- Details matter
- First-time-right paradigm

Differences to Software Design

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

■ Software

- Typically sequential
- Concurrency possible but takes care
- Asymptotic behavior (mostly)
- Easy to update

■ Hardware

- Typically concurrent
- Sequential possible but takes care
- Details matter
- First-time-right paradigm

Differences to Software Design

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

■ Software

- Typically sequential
- Concurrency possible but takes care
- Asymptotic behavior (mostly)
- Easy to update

■ Hardware

- Typically concurrent
- Sequential possible but takes care
- Details matter
- First-time-right paradigm

Takeaway

This duality makes hardware design hard but also rewarding

Comparison to Software Design (Cont'd)

HWMod
WS25

■ Software

■ Hardware

HW Design
Motivation
SW Comparison
Hardware Design

Comparison to Software Design (Cont'd)

HWMod
WS25

HW Design

Motivation

SW Comparison

Hardware Design

■ Software

■ Hardware

```
1 if (x > y)
2     z = x * y;
3 else
4     z = x + y;
5 return z;
```

Comparison to Software Design (Cont'd)

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

■ Software

- Sequential execution
- Either multiplication or addition

■ Hardware

```
1 if (x > y)
2     z = x * y;
3 else
4     z = x + y;
5 return z;
```

Comparison to Software Design (Cont'd)

HWMod
WS25


HW Design
Motivation
SW Comparison
Hardware Design

■ Software

- Sequential execution
- Either multiplication or addition

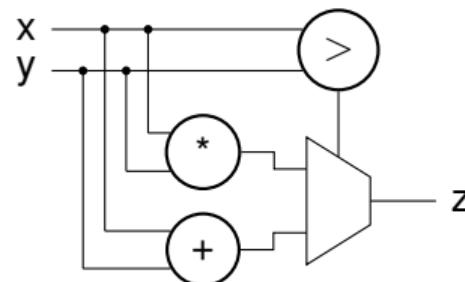
■ Hardware

```
1 if (x > y)
2     z = x * y;
3 else
4     z = x + y;
5 return z;
```


Comparison to Software Design (Cont'd)

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design


Software

- Sequential execution
- Either multiplication or addition

Hardware

- Computations done concurrently
- All operations always active

```
1 if (x > y)
2   z = x * y;
3 else
4   z = x + y;
5 return z;
```


Gajski Y-Chart

HWMod
WS25

■ Abstraction is key

HW Design

Motivation

SW Comparison

Hardware Design

Y-Chart

Y-Table

VHDL Standard

Gajski Y-Chart

HWMod
WS25

HW Design

Motivation

SW Comparison

Hardware Design

Y-Chart

Y-Table

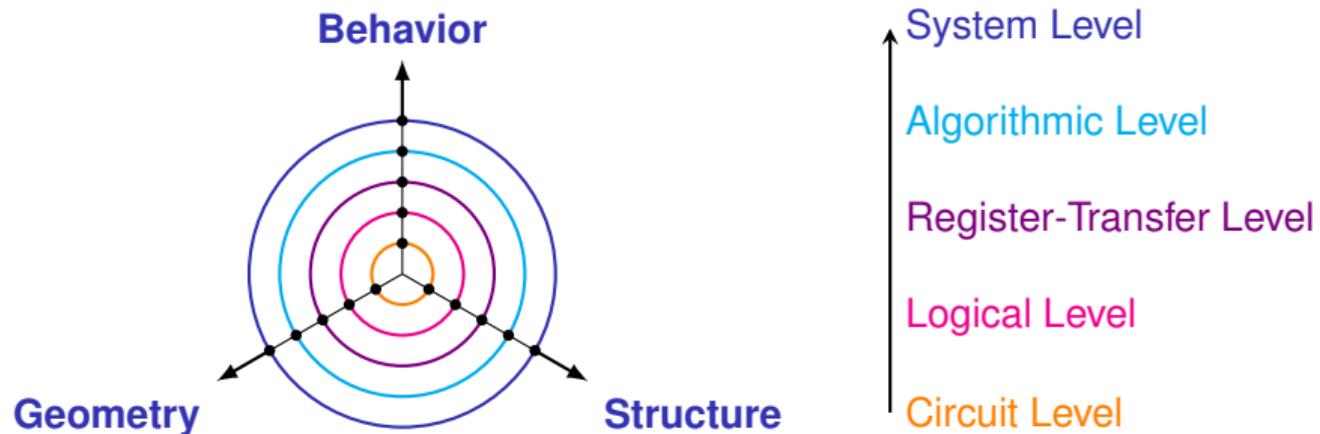
VHDL Standard

- Abstraction is key
 - Start on high abstraction and (automatically) move inwards

Gajski Y-Chart

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

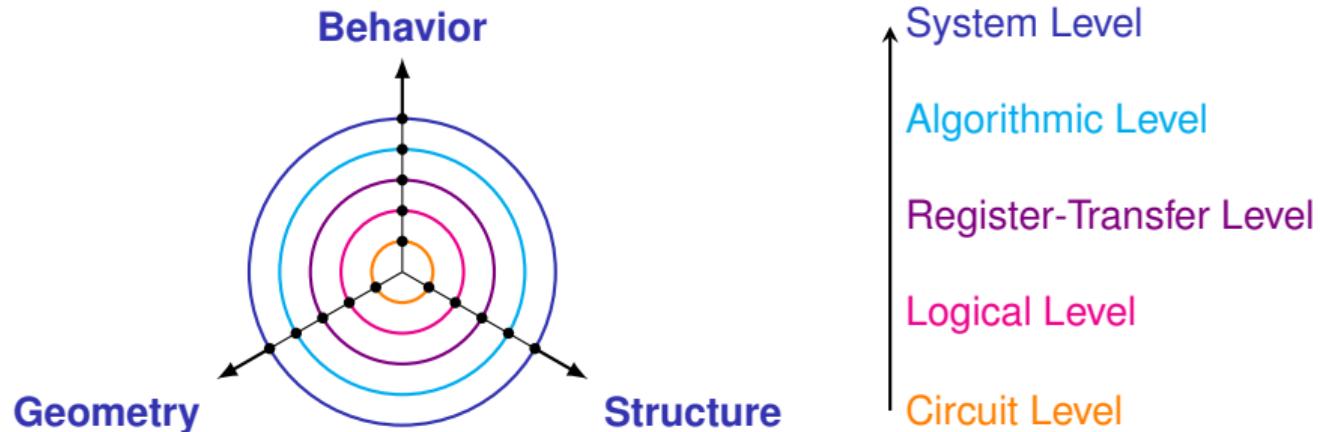

- Abstraction is key
 - Start on high abstraction and (automatically) move inwards
- All points of view describe same circuit

Gajski Y-Chart

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

- Abstraction is key
 - Start on high abstraction and (automatically) move inwards
- All points of view describe same circuit

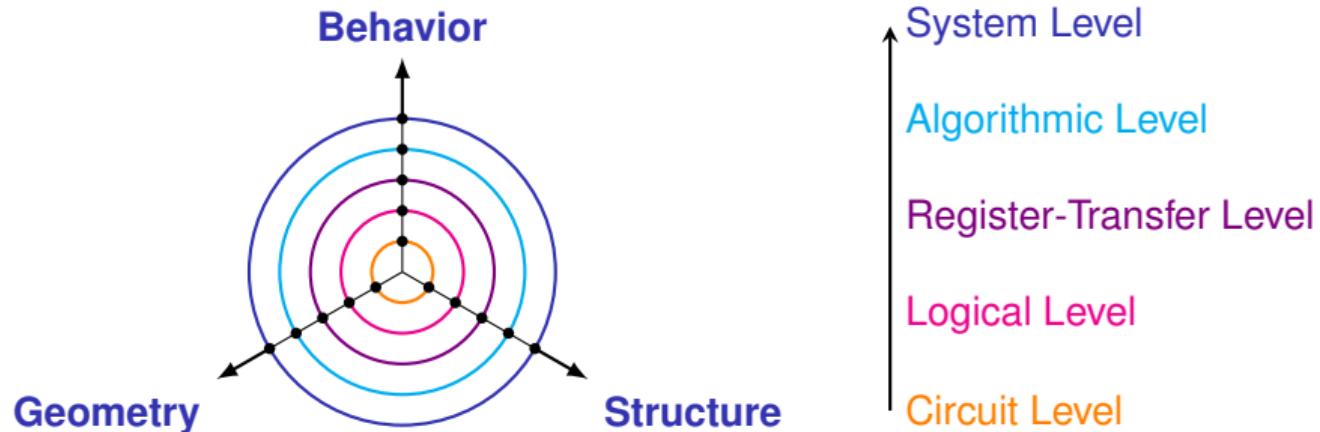


Gajski Y-Chart

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

- Abstraction is key
 - Start on high abstraction and (automatically) move inwards
- All points of view describe same circuit
 - Translate between them as beneficial

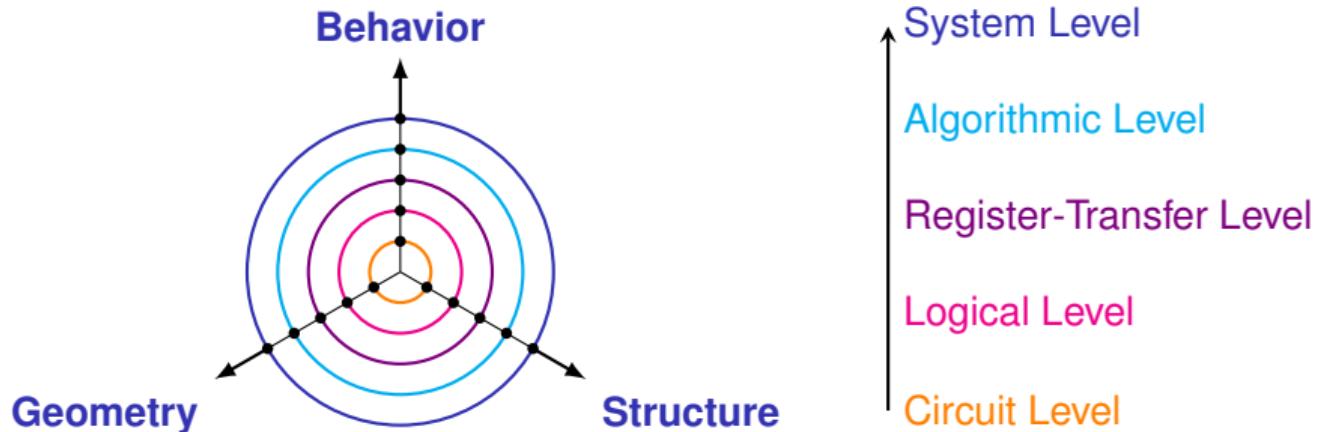


Gajski Y-Chart

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

- Abstraction is key
 - Start on high abstraction and (automatically) move inwards
- All points of view describe same circuit
 - Translate between them as beneficial
 - Harnessed by tools



Gajski Y-Chart

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

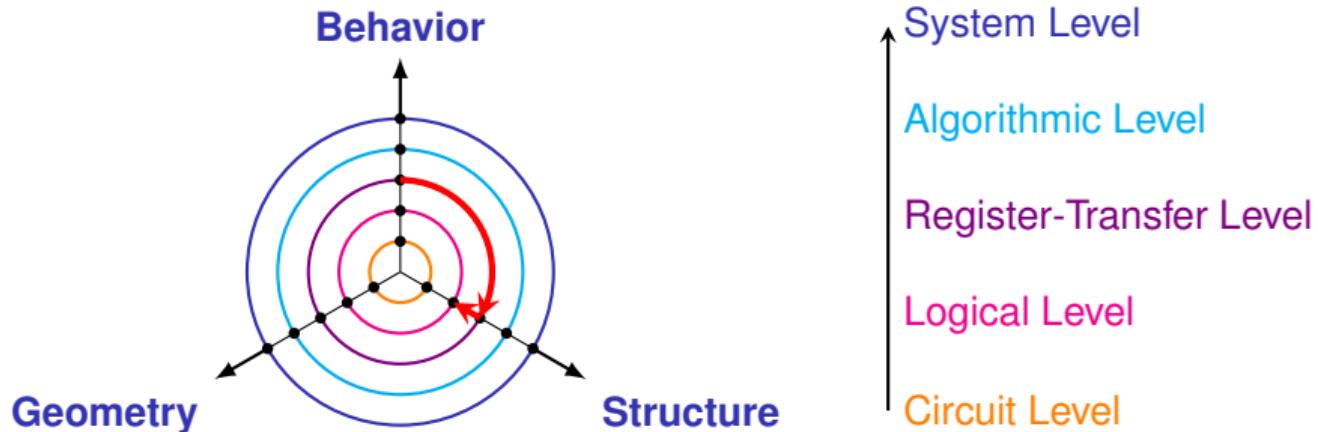
- Abstraction is key
 - Start on high abstraction and (automatically) move inwards
 - Catch: Increasing abstraction \Rightarrow decreased optimization potential
- All points of view describe same circuit
 - Translate between them as beneficial
 - Harnessed by tools

Gajski Y-Chart

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

- Abstraction is key
 - Start on high abstraction and (automatically) move inwards
 - Catch: Increasing abstraction \Rightarrow decreased optimization potential
- All points of view describe same circuit
 - Translate between them as beneficial
 - Harnessed by tools

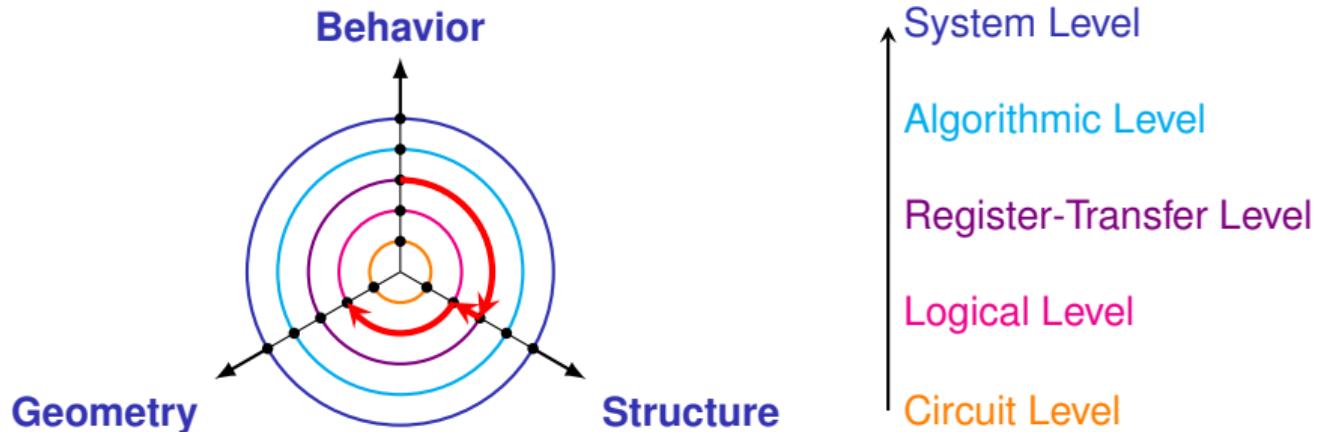


Gajski Y-Chart

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

- Abstraction is key
 - Start on high abstraction and (automatically) move inwards
 - Catch: Increasing abstraction \Rightarrow decreased optimization potential
- All points of view describe same circuit
 - Translate between them as beneficial
 - Harnessed by tools

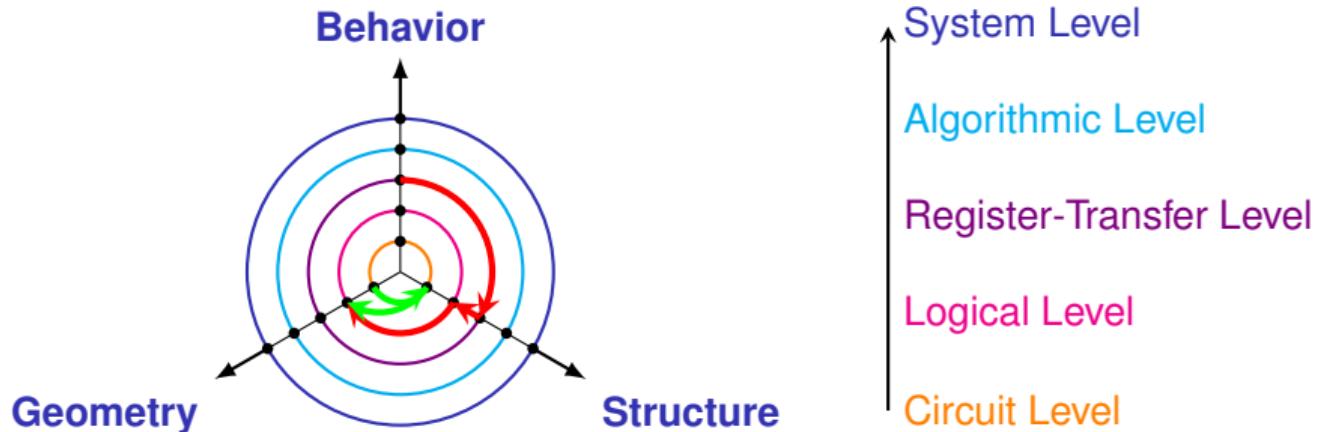


Gajski Y-Chart

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

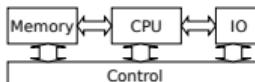
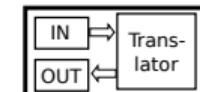
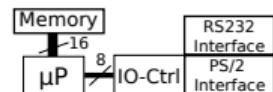
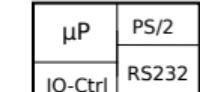
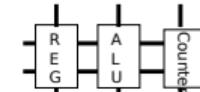
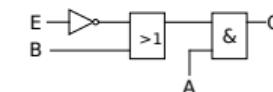
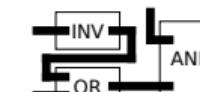
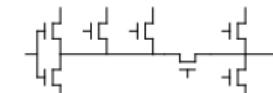
- Abstraction is key
 - Start on high abstraction and (automatically) move inwards
 - Catch: Increasing abstraction \Rightarrow decreased optimization potential
- All points of view describe same circuit
 - Translate between them as beneficial
 - Harnessed by tools



Gajski Y-Chart

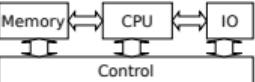
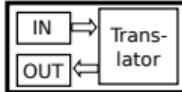
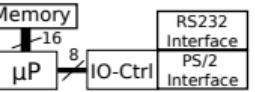
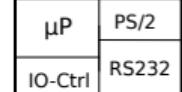
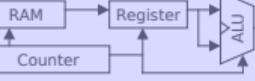
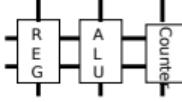
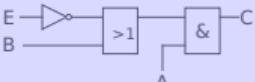
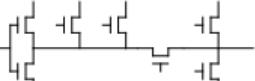
HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard









- Abstraction is key
 - Start on high abstraction and (automatically) move inwards
 - Catch: Increasing abstraction \Rightarrow decreased optimization potential
- All points of view describe same circuit
 - Translate between them as beneficial
 - Harnessed by tools

Y-Table

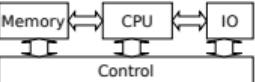
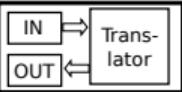
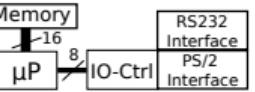
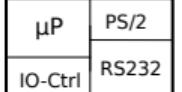
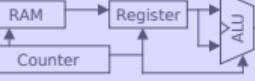
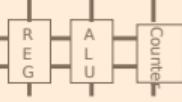
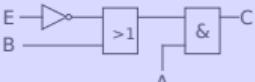
HWMod
WS25









HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

	Behavior	Structure	Geometry
System Level	Inputs : Keyboard Output: Display Function:		
Algorithmic Level	while input read English text translate to German output German Text		
Register Transfer Level (RTL)	if A='1' then B:= B+1 else B:= B end if		
Logic Level	D = NOT E C = (D OR B) AND A		
Circuit Level	$\frac{dU}{dt} = R \frac{dI}{dt} + \frac{1}{C} + L \frac{d^2I}{dt^2}$		

Y-Table

HWMod
WS25

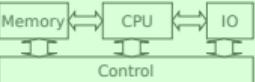
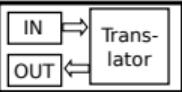
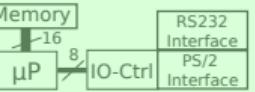
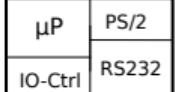
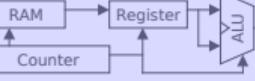
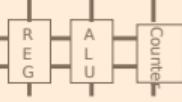
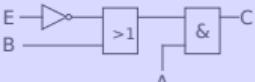

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

	Behavior	Structure	Geometry
System Level	Inputs : Keyboard Output: Display Function:		
Algorithmic Level	while input read English text translate to German output German Text		
Register Transfer Level (RTL)	if A='1' then B:= B+1 else B:= B end if		
Logic Level	D = NOT E C = (D OR B) AND A		
Circuit Level	$\frac{dU}{dt} = R \frac{dI}{dt} + \frac{1}{C} + L \frac{d^2I}{dt^2}$		

Y-Table

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard








	Behavior	Structure	Geometry
System Level	Inputs : Keyboard Output: Display Function:		
Algorithmic Level	while input read English text translate to German output German Text		
Register Transfer Level (RTL)	if A='1' then B:= B+1 else B:= B end if		
Logic Level	D = NOT E C = (D OR B) AND A		
Circuit Level	$\frac{dU}{dt} = R \frac{dI}{dt} + \frac{1}{C} + L \frac{d^2I}{dt^2}$		

Tool Support

Y-Table

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

	Behavior	Structure	Geometry
System Level	Inputs : Keyboard Output: Display Function:		
Algorithmic Level	while input read English text translate to German output German Text		
Register Transfer Level (RTL)	if A='1' then B:= B+1 else B:= B end if		
Logic Level	D = NOT E C = (D OR B) AND A		
Circuit Level	$\frac{dU}{dt} = R \frac{dI}{dt} + \frac{1}{C} + L \frac{d^2I}{dt^2}$		

Tool Support

Hardware Description Languages

HWMod
WS25

HW Design

Y-Table

The diagram illustrates the concept of abstraction levels. At the top, the word "Abstraction" is centered. Below it, a horizontal line with arrows at both ends represents the spectrum of abstraction levels. On the left side of this line, the text "Software Programming" is aligned with a dark blue rectangular box containing the acronym "ASM". On the right side, a logic circuit diagram consisting of two AND gates and an OR gate is aligned with the line. The logic circuit has two inputs on the left and one output on the right, with small black dots at the connection points.

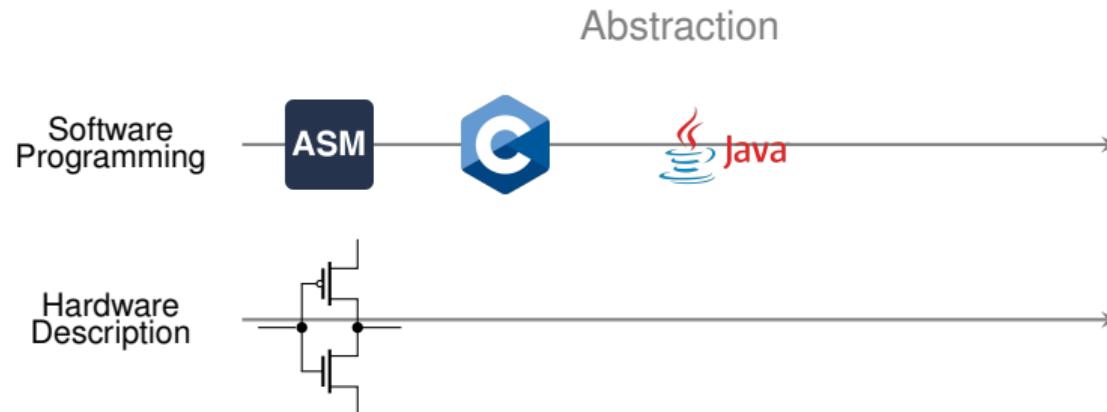
Hardware Description Languages

HWMod
WS25

HW Design

Motivation

SW Comparison


Hardware Design

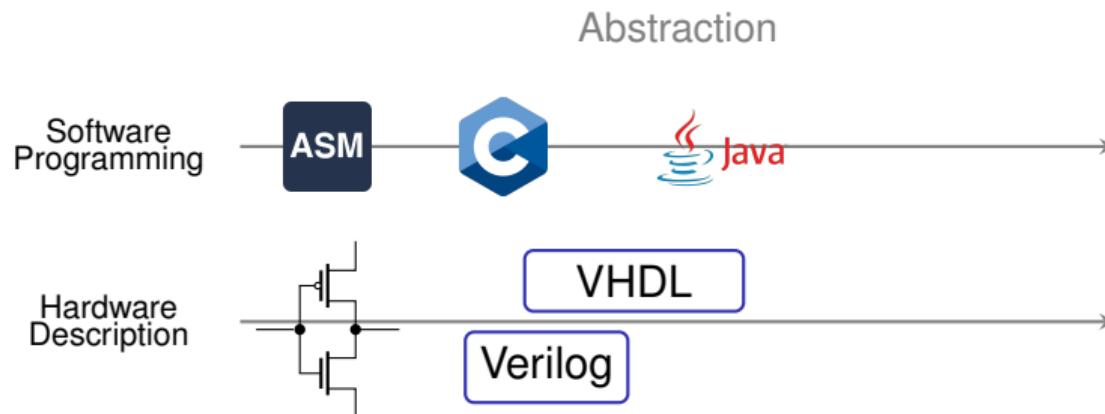
Y-Chart

Y-Table

VHDL Standard

- Drawing circuits does not scale
 - Require more abstract method

Hardware Description Languages


HWMod
WS25

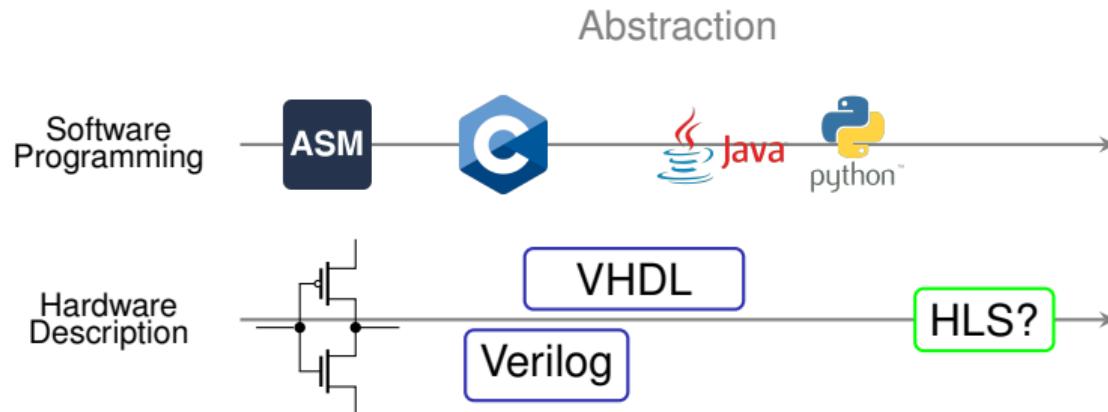
HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

- Drawing circuits does not scale
 - Require more abstract method

⇒ *Hardware Description Languages (HDLs)*

- Most popular: VHDL, (System)Verilog

Hardware Description Languages


HWMod
WS25

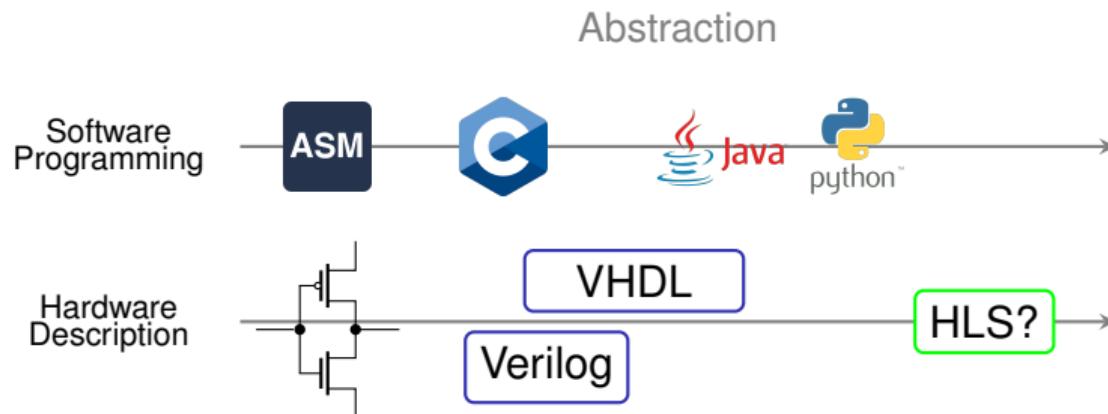
HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

- Drawing circuits does not scale
 - Require more abstract method

⇒ *Hardware Description Languages (HDLs)*

- Most popular: VHDL, (System)Verilog

Hardware Description Languages


HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

- Drawing circuits does not scale
 - Require more abstract method

⇒ *Hardware Description Languages (HDLs)*

- Most popular: VHDL, (System)Verilog

We will use VHDL! But why?

HWMod
WS25

HW Design

Motivation

SW Comparison

Hardware Design

Y-Chart

Y-Table

VHDL Standard

We will use VHDL! But why?

HWMod
WS25

HW Design

Motivation

SW Comparison

Hardware Design

Y-Chart

Y-Table

VHDL Standard

- Verbose code

We will use VHDL! But why?

HWMod
WS25

HW Design

Motivation

SW Comparison

Hardware Design

Y-Chart

Y-Table

VHDL Standard

- Verbose code
- Strongly typed
 - Harder to make subtle mistakes

We will use VHDL! But why?

- Verbose code
- Strongly typed
 - Harder to make subtle mistakes
- Highly structured and modular

We will use VHDL! But why?

HWMod
WS25

HW Design

Motivation

SW Comparison

Hardware Design

Y-Chart

Y-Table

VHDL Standard

- Verbose code
- Strongly typed
 - Harder to make subtle mistakes
- Highly structured and modular
- Different from what you know

VHDL Standard

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

- The latest VHDL standard (2019) can be found [here](#)

VHDL Standard

HWMod
WS25

HW Design

Motivation

SW Comparison

Hardware Design

Y-Chart

Y-Table

VHDL Standard

- The latest VHDL standard (2019) can be found [here](#)
 - Download through the TU network (e.g., via eduroam or VPN connection)

VHDL Standard

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

- The latest VHDL standard (2019) can be found [here](#)
 - Download through the TU network (e.g., via eduroam or VPN connection)
- Watch out for VHDL standard and implementation references

VHDL Standard

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

- The latest VHDL standard (2019) can be found [here](#)
 - Download through the TU network (e.g., via eduroam or VPN connection)
- Watch out for VHDL standard and implementation references

Lecture Complete!