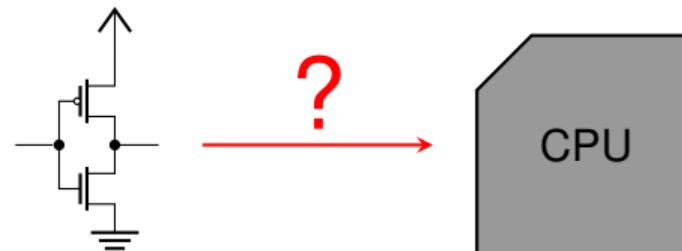


Hardware Modeling [VU] (191.011)

– WS25 –

Introduction to Hardware Design

Florian Huemer & Sebastian Wiedemann & Dylan Baumann


WS 2025/26

Motivation

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

- How to go from simple circuits to complex ones?
 - Up to **billions** of transistors
 - Complexity continuously increasing (*Moore's Law*)
- ⇒ Hardware Modeling
 - Tools and techniques to bridge the gap

Why bother?

HWMod
WS25

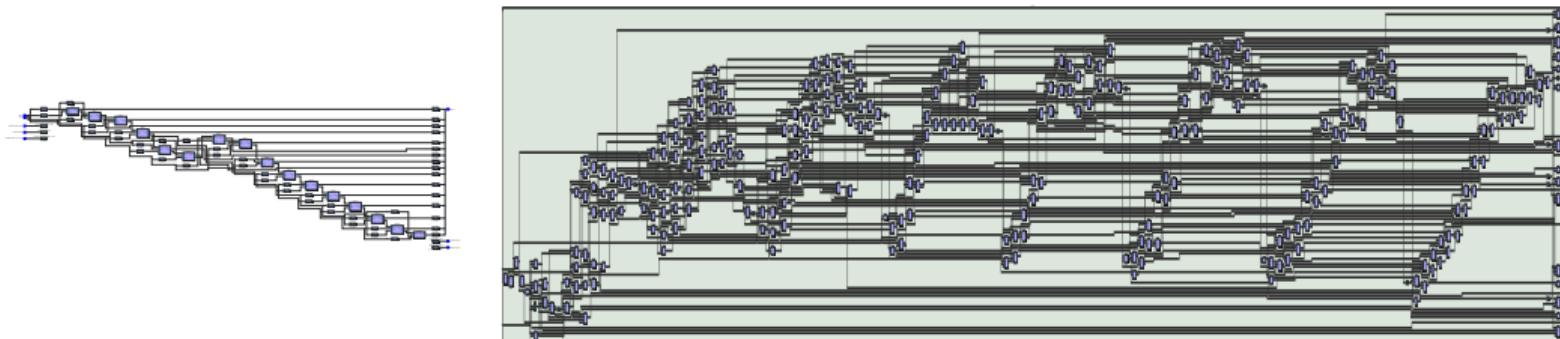
HW Design

Motivation

SW Comparison

Hardware Design

- Why should you care about designing hardware?
 - ⇒ Same as for software
 - Custom requirements ⇒ custom solution
 - Required for niche applications
 - Reduce overhead



Why bother? (Cont'd)

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

- Become a better programmer
 - Understand hardware limits
 - Know which knobs to turn
 - New way of thinking
- Example: addition and division in same technology

Differences to Software Design

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

■ Software

- Typically sequential
- Concurrency possible but takes care
- Asymptotic behavior (mostly)
- Easy to update

■ Hardware

- Typically concurrent
- Sequential possible but takes care
- Details matter
- First-time-right paradigm

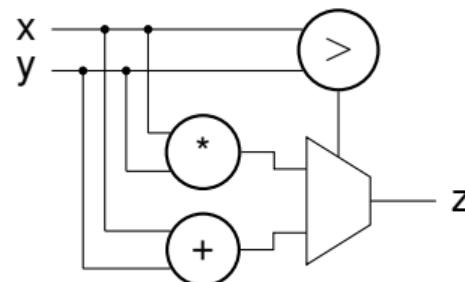
Takeaway

This duality makes hardware design hard but also rewarding

Comparison to Software Design (Cont'd)

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design

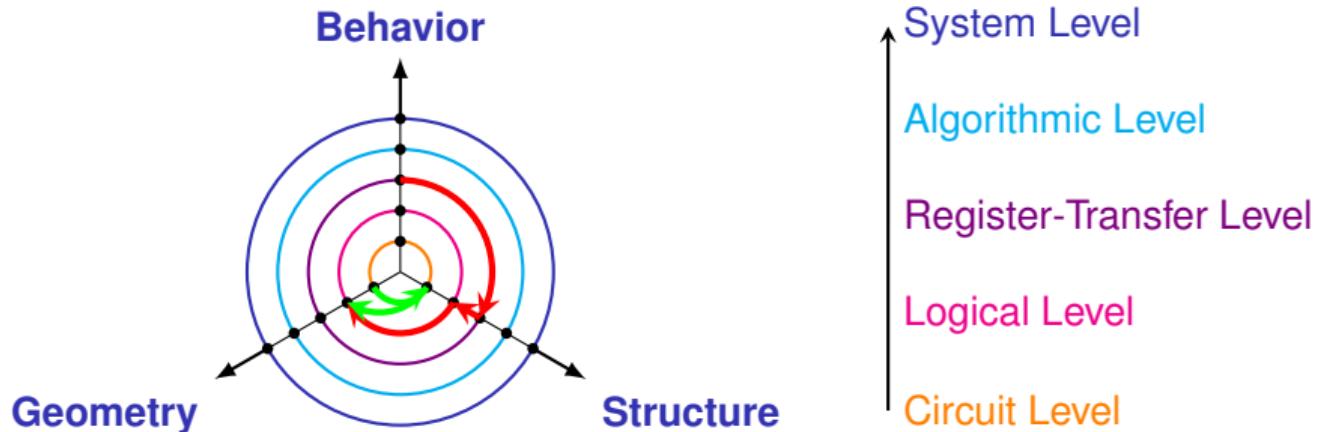

Software

- Sequential execution
- Either multiplication or addition

Hardware

- Computations done concurrently
- All operations always active

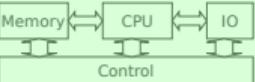
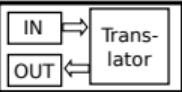
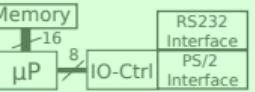
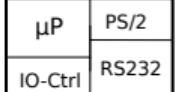
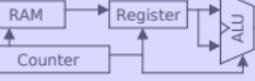
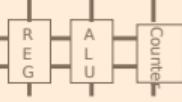
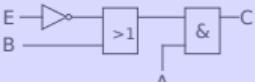
```
1 if (x > y)
2   z = x * y;
3 else
4   z = x + y;
5 return z;
```



Gajski Y-Chart

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard








- Abstraction is key
 - Start on high abstraction and (automatically) move inwards
 - Catch: Increasing abstraction \Rightarrow decreased optimization potential
- All points of view describe same circuit
 - Translate between them as beneficial
 - Harnessed by tools

Y-Table

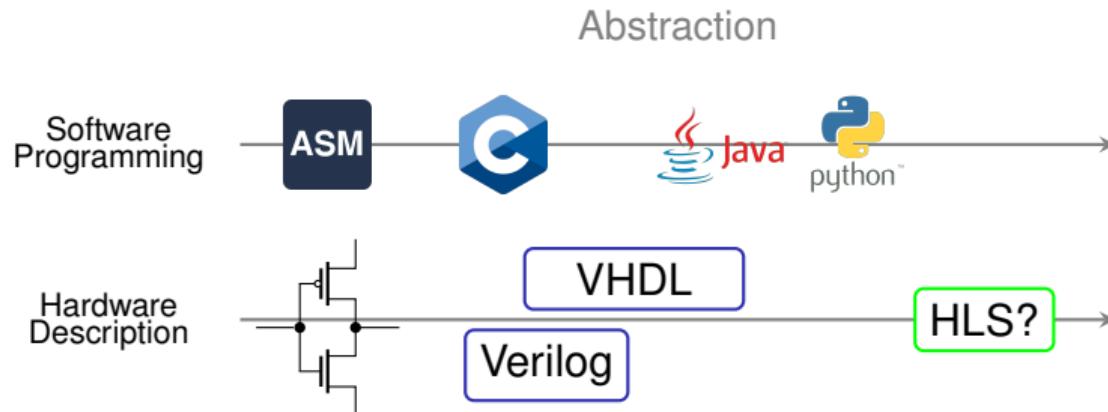
HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

	Behavior	Structure	Geometry
System Level	Inputs : Keyboard Output: Display Function:		
Algorithmic Level	while input read English text translate to German output German Text		
Register Transfer Level (RTL)	if A='1' then B:= B+1 else B:= B end if		
Logic Level	D = NOT E C = (D OR B) AND A		
Circuit Level	$\frac{dU}{dt} = R \frac{dI}{dt} + \frac{1}{C} + L \frac{d^2I}{dt^2}$		

Tool Support

Hardware Description Languages


HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

- Drawing circuits does not scale
 - Require more abstract method

⇒ *Hardware Description Languages (HDLs)*

- Most popular: VHDL, (System)Verilog

We will use VHDL! But why?

HWMod
WS25

HW Design

Motivation

SW Comparison

Hardware Design

Y-Chart

Y-Table

VHDL Standard

- Verbose code
- Strongly typed
 - Harder to make subtle mistakes
- Highly structured and modular
- Different from what you know

VHDL Standard

HWMod
WS25

HW Design
Motivation
SW Comparison
Hardware Design
Y-Chart
Y-Table
VHDL Standard

- The latest VHDL standard (2019) can be found [here](#)
 - Download through the TU network (e.g., via eduroam or VPN connection)
- Watch out for VHDL standard and implementation references

} Clickable

Lecture Complete!