
HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Hardware Modeling [VU] (191.011)
– WS24 –

Generate Statements

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-12, 16:31 (21636bb)

Hardware Modeling [VU] (191.011)
– WS24 –

Generate Statements

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Generate Statements

In this lecture, we will explore another essential class of concurrent statements: the generate statements. They are a vital tool
in creating flexible and parameterized code structures, allowing designers to efficiently replicate or conditionally instantiate
components based on specific parameters.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Introduction 213

Conditional and iterative/repetitive code evaluation/generation
Similar to blocks

However, no block header allowed!
Can also be nested

Three variants
if, case (activate code based on condition)
for (replicate code based on a range)

Condition or range must be static at compile-time

1

Introduction 213

Conditional and iterative/repetitive code evaluation/generation
Similar to blocks

However, no block header allowed!
Can also be nested

Three variants
if, case (activate code based on condition)
for (replicate code based on a range)

Condition or range must be static at compile-time

Generate Statements
Introduction

Introduction

Generate statements – or just generates in short – have some similarities to blocks covered in a previous lecture, as they
also serve as containers for concurrent statements. However, instead of simply encapsulating the statements, generates can
conditionally activate them at compile time or replicate them in a loop-like structure. In combination with generics, generates
are a key ingredient for designing flexible and reusable hardware components. Although generates have some syntactical
and conceptional relation to blocks, they don’t feature block headers. However, similar to blocks, generate statements can
also be nested.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Introduction 213

Conditional and iterative/repetitive code evaluation/generation
Similar to blocks

However, no block header allowed!
Can also be nested

Three variants
if, case (activate code based on condition)
for (replicate code based on a range)

Condition or range must be static at compile-time

1

Introduction 213

Conditional and iterative/repetitive code evaluation/generation
Similar to blocks

However, no block header allowed!
Can also be nested

Three variants
if, case (activate code based on condition)
for (replicate code based on a range)

Condition or range must be static at compile-time

Generate Statements
Introduction

Introduction

VHDL supports three types of generate statements. If- and case-generates can be used to activate or deactivate certain
blocks of code based on one or more conditions. The for-generate statement, on the other hand, is used to replicate a block
of code multiple times, similar to a loop. This type of generate statement is especially useful for creating regular structures,
such as arrays of components or repeated logic, by iterating over a specified range.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Introduction 213

Conditional and iterative/repetitive code evaluation/generation
Similar to blocks

However, no block header allowed!
Can also be nested

Three variants
if, case (activate code based on condition)
for (replicate code based on a range)

Condition or range must be static at compile-time

1

Introduction 213

Conditional and iterative/repetitive code evaluation/generation
Similar to blocks

However, no block header allowed!
Can also be nested

Three variants
if, case (activate code based on condition)
for (replicate code based on a range)

Condition or range must be static at compile-time

Generate Statements
Introduction

Introduction

Note that since we are talking about compile-time evaluated conditions and loops, the condition for if and case-generates, as
well as the loop range for for-generates must be static at compile time.



HWMod
WS24

Generates
Introduction

if generate

Syntax

Example

case generate

for generate

if generate - Syntax 212

“Conditional blocks”

Comparable to if-else directives (e.g., #if, #ifdef) of the C preprocessor
If-generate syntax
GENERATE_LABEL :
if [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body

{ elsif [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body }

[ else [ ALTERNATIVE_LABEL : ] generate
generate_statement_body ]

end generate;

The generate label is mandatory, the alternative labels are optional!

2

if generate - Syntax 212

“Conditional blocks”

Comparable to if-else directives (e.g., #if, #ifdef) of the C preprocessor
If-generate syntax
GENERATE_LABEL :
if [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body

{ elsif [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body }

[ else [ ALTERNATIVE_LABEL : ] generate
generate_statement_body ]

end generate;

The generate label is mandatory, the alternative labels are optional!

Generate Statements
if generate

if generate - Syntax

Let’s start by taking a closer look at if-generate statements. If-generates can be viewed as conditional blocks, that is, blocks
whose content is only active if a specific condition is true.



HWMod
WS24

Generates
Introduction

if generate

Syntax

Example

case generate

for generate

if generate - Syntax 212

“Conditional blocks”
Comparable to if-else directives (e.g., #if, #ifdef) of the C preprocessor

If-generate syntax
GENERATE_LABEL :
if [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body

{ elsif [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body }

[ else [ ALTERNATIVE_LABEL : ] generate
generate_statement_body ]

end generate;

The generate label is mandatory, the alternative labels are optional!

2

if generate - Syntax 212

“Conditional blocks”
Comparable to if-else directives (e.g., #if, #ifdef) of the C preprocessor

If-generate syntax
GENERATE_LABEL :
if [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body

{ elsif [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body }

[ else [ ALTERNATIVE_LABEL : ] generate
generate_statement_body ]

end generate;

The generate label is mandatory, the alternative labels are optional!

Generate Statements
if generate

if generate - Syntax

You can compare if-generates loosely to if-else preprocessor directives in the C programming language. Those directives
are evaluated right before the actual compilation and can, thus, be used to instruct the compiler to ignore certain parts of
a source file. However, one big difference is that VHDL does not have a preprocessor and the compiler itself evaluates the
respective conditions.



HWMod
WS24

Generates
Introduction

if generate

Syntax

Example

case generate

for generate

if generate - Syntax 212

“Conditional blocks”
Comparable to if-else directives (e.g., #if, #ifdef) of the C preprocessor
If-generate syntax
GENERATE_LABEL :
if [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body

{ elsif [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body }

[ else [ ALTERNATIVE_LABEL : ] generate
generate_statement_body ]

end generate;

The generate label is mandatory, the alternative labels are optional!

2

if generate - Syntax 212

“Conditional blocks”
Comparable to if-else directives (e.g., #if, #ifdef) of the C preprocessor
If-generate syntax
GENERATE_LABEL :
if [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body

{ elsif [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body }

[ else [ ALTERNATIVE_LABEL : ] generate
generate_statement_body ]

end generate;

The generate label is mandatory, the alternative labels are optional!

Generate Statements
if generate

if generate - Syntax

An if-generate statement is introduced by a mandatory label followed by a colon and the keyword ”if”. Then the actual
condition follows. This condition must be a static expression that returns a boolean value. As already alluded to, in this
context static means that the compiler must be able to determine its value. It can, thus, for example not test the value of
some signal. Oftentimes the condition will involve a generic parameter or some package constant. In any case, after the
condition the ”generate” keyword introduces the actual generate statement body, which will be discussed in more detail on
the next slide. As with regular if statements, after the actual ”if-branch” there can be an arbitrary number of ”else-if-branches”,
followed by a single optional ”else-branch”. It is also fine if none of the conditions evaluate to true and none of the branches
are actually active.



HWMod
WS24

Generates
Introduction

if generate

Syntax

Example

case generate

for generate

if generate - Syntax 212

“Conditional blocks”
Comparable to if-else directives (e.g., #if, #ifdef) of the C preprocessor
If-generate syntax
GENERATE_LABEL :
if [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body

{ elsif [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body }

[ else [ ALTERNATIVE_LABEL : ] generate
generate_statement_body ]

end generate;

The generate label is mandatory, the alternative labels are optional!
2

if generate - Syntax 212

“Conditional blocks”
Comparable to if-else directives (e.g., #if, #ifdef) of the C preprocessor
If-generate syntax
GENERATE_LABEL :
if [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body

{ elsif [ ALTERNATIVE_LABEL : ] condition generate
generate_statement_body }

[ else [ ALTERNATIVE_LABEL : ] generate
generate_statement_body ]

end generate;

The generate label is mandatory, the alternative labels are optional!

Generate Statements
if generate

if generate - Syntax

Note that every alternative-branch of the generate statement can be equipped with an optional label.



HWMod
WS24

Generates
Introduction

if generate

Syntax

Example

case generate

for generate

if generate - Syntax (cont’d) 213

Generate statement body
generate_statement_body ::=

[ block_declarative_part
begin ]
block_statement_part

[ end; ]

Same declarative/statement part as for blocks and architectures
Same scoping rules as for blocks

3

if generate - Syntax (cont’d) 213

Generate statement body
generate_statement_body ::=

[ block_declarative_part
begin ]
block_statement_part

[ end; ]

Same declarative/statement part as for blocks and architectures
Same scoping rules as for blocks

Generate Statements
if generate

if generate - Syntax (cont’d)

The generate-statement-body looks very similar to a block statement. It contains a declarative and a statement part separated
by the ”begin” keyword and can optionally be explicitly terminated by an ”end” keyword. Notice that, if no declarations are
needed, that is, if the body only consists of concurrent statements, the ”begin” keyword may be omitted.



HWMod
WS24

Generates
Introduction

if generate

Syntax

Example

case generate

for generate

if generate - Syntax (cont’d) 213

Generate statement body
generate_statement_body ::=

[ block_declarative_part
begin ]
block_statement_part

[ end; ]

Same declarative/statement part as for blocks and architectures
Same scoping rules as for blocks

3

if generate - Syntax (cont’d) 213

Generate statement body
generate_statement_body ::=

[ block_declarative_part
begin ]
block_statement_part

[ end; ]

Same declarative/statement part as for blocks and architectures
Same scoping rules as for blocks

Generate Statements
if generate

if generate - Syntax (cont’d)

The declarative and statement parts can contain the same objects as blocks or architectures. Moreover, the same scoping
rules apply as for blocks.



HWMod
WS24

Generates
Introduction

if generate

Syntax

Example

case generate

for generate

if generate - Example

 architecture arch3 of demo is

 signal a, b, cin, cout, sum : std_ulogic;
 begin
 fa_gen : if ADDER_TYPE = "exact" generate
 fa_inst : entity work.fa
 port map(
 a => a, b => b, cin => cin,
 cout => cout, sum => sum
 );

 elsif ADDER_TYPE = "approximate" generate
 signal temp, temp2 : std_ulogic;
 begin
 temp <= a or b; temp2 <= a and b;
 sum <= temp xor cin; cout <= temp2 or cin;
 else generate
 assert false report "invalid option" severity failure;
 end generate;
 [...]
 end architecture;

4

if generate - Example

 architecture arch3 of demo is

 signal a, b, cin, cout, sum : std_ulogic;
 begin
 fa_gen : if ADDER_TYPE = "exact" generate
 fa_inst : entity work.fa
 port map(
 a => a, b => b, cin => cin,
 cout => cout, sum => sum
 );

 elsif ADDER_TYPE = "approximate" generate
 signal temp, temp2 : std_ulogic;
 begin
 temp <= a or b; temp2 <= a and b;
 sum <= temp xor cin; cout <= temp2 or cin;
 else generate
 assert false report "invalid option" severity failure;
 end generate;
 [...]
 end architecture;

Generate Statements
if generate

if generate - Example

After this theoretical introduction to if-generates, let us look at some code to see them in action. In this code example
we have a module that internally uses a full adder. Recall that we have already used a similar example in the lecture
about block statements. However, this time we want to select between an exact version of the full adder circuit and an
approximate one, which produces slightly inaccurate results but requires less hardware. This technique is widely used in
approximate computing and a variety of different approximate adder circuits can be found in literature. In our example, the
selection between the two versions shall be implemented with an if-generate statement, based on a string-type constant
named ADDER TYPE.



HWMod
WS24

Generates
Introduction

if generate

Syntax

Example

case generate

for generate

if generate - Example

 architecture arch3 of demo is
 signal a, b, cin, cout, sum : std_ulogic;
 begin

 fa_gen : if ADDER_TYPE = "exact" generate
 fa_inst : entity work.fa
 port map(
 a => a, b => b, cin => cin,
 cout => cout, sum => sum
 );

 elsif ADDER_TYPE = "approximate" generate
 signal temp, temp2 : std_ulogic;
 begin
 temp <= a or b; temp2 <= a and b;
 sum <= temp xor cin; cout <= temp2 or cin;
 else generate
 assert false report "invalid option" severity failure;
 end generate;
 [...]
 end architecture;

4

if generate - Example

 architecture arch3 of demo is
 signal a, b, cin, cout, sum : std_ulogic;
 begin

 fa_gen : if ADDER_TYPE = "exact" generate
 fa_inst : entity work.fa
 port map(
 a => a, b => b, cin => cin,
 cout => cout, sum => sum
 );

 elsif ADDER_TYPE = "approximate" generate
 signal temp, temp2 : std_ulogic;
 begin
 temp <= a or b; temp2 <= a and b;
 sum <= temp xor cin; cout <= temp2 or cin;
 else generate
 assert false report "invalid option" severity failure;
 end generate;
 [...]
 end architecture;

Generate Statements
if generate

if generate - Example

We start by declaring the usual full adder I/O signals.



HWMod
WS24

Generates
Introduction

if generate

Syntax

Example

case generate

for generate

if generate - Example

 architecture arch3 of demo is
 signal a, b, cin, cout, sum : std_ulogic;
 begin
 fa_gen : if ADDER_TYPE = "exact" generate
 fa_inst : entity work.fa
 port map(
 a => a, b => b, cin => cin,
 cout => cout, sum => sum
 );

 elsif ADDER_TYPE = "approximate" generate
 signal temp, temp2 : std_ulogic;
 begin
 temp <= a or b; temp2 <= a and b;
 sum <= temp xor cin; cout <= temp2 or cin;
 else generate
 assert false report "invalid option" severity failure;
 end generate;
 [...]
 end architecture;

4

if generate - Example

 architecture arch3 of demo is
 signal a, b, cin, cout, sum : std_ulogic;
 begin
 fa_gen : if ADDER_TYPE = "exact" generate
 fa_inst : entity work.fa
 port map(
 a => a, b => b, cin => cin,
 cout => cout, sum => sum
 );

 elsif ADDER_TYPE = "approximate" generate
 signal temp, temp2 : std_ulogic;
 begin
 temp <= a or b; temp2 <= a and b;
 sum <= temp xor cin; cout <= temp2 or cin;
 else generate
 assert false report "invalid option" severity failure;
 end generate;
 [...]
 end architecture;

Generate Statements
if generate

if generate - Example

Next, we introduce the if-generate statement we need for selecting one of the two full adder versions. The if-branch of the
generate statement shall be activated when the ADDER TYPE constant has the value ”exact”. In this case we simply create
an instance, of the full adder entity we are already familiar with.



HWMod
WS24

Generates
Introduction

if generate

Syntax

Example

case generate

for generate

if generate - Example

 architecture arch3 of demo is
 signal a, b, cin, cout, sum : std_ulogic;
 begin
 fa_gen : if ADDER_TYPE = "exact" generate
 fa_inst : entity work.fa
 port map(
 a => a, b => b, cin => cin,
 cout => cout, sum => sum
 );

 elsif ADDER_TYPE = "approximate" generate
 signal temp, temp2 : std_ulogic;
 begin
 temp <= a or b; temp2 <= a and b;
 sum <= temp xor cin; cout <= temp2 or cin;

 else generate
 assert false report "invalid option" severity failure;
 end generate;
 [...]
 end architecture;

4

if generate - Example

 architecture arch3 of demo is
 signal a, b, cin, cout, sum : std_ulogic;
 begin
 fa_gen : if ADDER_TYPE = "exact" generate
 fa_inst : entity work.fa
 port map(
 a => a, b => b, cin => cin,
 cout => cout, sum => sum
 );

 elsif ADDER_TYPE = "approximate" generate
 signal temp, temp2 : std_ulogic;
 begin
 temp <= a or b; temp2 <= a and b;
 sum <= temp xor cin; cout <= temp2 or cin;

 else generate
 assert false report "invalid option" severity failure;
 end generate;
 [...]
 end architecture;

Generate Statements
if generate

if generate - Example

In the else-if-branch we use concurrent statements to implement some version of an approximate adder.



HWMod
WS24

Generates
Introduction

if generate

Syntax

Example

case generate

for generate

if generate - Example

 architecture arch3 of demo is
 signal a, b, cin, cout, sum : std_ulogic;
 begin
 fa_gen : if ADDER_TYPE = "exact" generate
 fa_inst : entity work.fa
 port map(
 a => a, b => b, cin => cin,
 cout => cout, sum => sum
 );

 elsif ADDER_TYPE = "approximate" generate
 signal temp, temp2 : std_ulogic;
 begin
 temp <= a or b; temp2 <= a and b;
 sum <= temp xor cin; cout <= temp2 or cin;
 else generate
 assert false report "invalid option" severity failure;
 end generate;
 [...]
 end architecture;

4

if generate - Example

 architecture arch3 of demo is
 signal a, b, cin, cout, sum : std_ulogic;
 begin
 fa_gen : if ADDER_TYPE = "exact" generate
 fa_inst : entity work.fa
 port map(
 a => a, b => b, cin => cin,
 cout => cout, sum => sum
 );

 elsif ADDER_TYPE = "approximate" generate
 signal temp, temp2 : std_ulogic;
 begin
 temp <= a or b; temp2 <= a and b;
 sum <= temp xor cin; cout <= temp2 or cin;
 else generate
 assert false report "invalid option" severity failure;
 end generate;
 [...]
 end architecture;

Generate Statements
if generate

if generate - Example

Should the final else-branch be entered, we use an assertion with the severity level failure to raise a compilation error,
because the adder-type constant did not match any of the two expected values. You might want to pause the video here, to
really understand the presented code.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

case generate

Case-generate syntax
GENERATE_LABEL :
case expression generate
case_generate_alternative
{ case_generate_alternative }

end generate;

One or more alternatives
case_generate_alternative ::=
when [ ALTERNATIVE_LABEL : ] choices =>
generate_statement_body

All alternatives must be covered (recall others)!

5

case generate

Case-generate syntax
GENERATE_LABEL :
case expression generate
case_generate_alternative
{ case_generate_alternative }

end generate;

One or more alternatives
case_generate_alternative ::=
when [ ALTERNATIVE_LABEL : ] choices =>
generate_statement_body

All alternatives must be covered (recall others)!

Generate Statements
case generate

case generate

The case-generate statement is very similar to the if-generate-statement. It evaluates a single expression and then activates
exactly one of the when-clauses.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

case generate

Case-generate syntax
GENERATE_LABEL :
case expression generate
case_generate_alternative
{ case_generate_alternative }

end generate;

One or more alternatives
case_generate_alternative ::=
when [ ALTERNATIVE_LABEL : ] choices =>
generate_statement_body

All alternatives must be covered (recall others)!

5

case generate

Case-generate syntax
GENERATE_LABEL :
case expression generate
case_generate_alternative
{ case_generate_alternative }

end generate;

One or more alternatives
case_generate_alternative ::=
when [ ALTERNATIVE_LABEL : ] choices =>
generate_statement_body

All alternatives must be covered (recall others)!

Generate Statements
case generate

case generate

Just as regular case statements used in processes, case-generates must also cover all possible alternatives to which the
expression can evaluate. For that purpose the last when-clause may use the ”others” keyword. Note that we just want to
quickly show you its syntax definition here, without going into too much detail, as by now it should be quite clear how it works.
Feel free to pause the video to study the syntax.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Syntax

Replicate concurrent statements in a loop

For-generate syntax
GENERATE_LABEL :
for IDENTIFIER in discrete_range generate
generate_statement_body

end generate;

The discrete range can be
a simple integer range expression (e.g., 0 to 7)
a range obtained via the ’range attribute
a discrete (i.e., enum or integer) type (e.g., std_ulogic, natural)
a discrete type with a range constraint (e.g., natural range 0 to 1)

Datatype of loop variable depends on discrete range

6

for generate - Syntax

Replicate concurrent statements in a loop

For-generate syntax
GENERATE_LABEL :
for IDENTIFIER in discrete_range generate
generate_statement_body

end generate;

The discrete range can be
a simple integer range expression (e.g., 0 to 7)
a range obtained via the ’range attribute
a discrete (i.e., enum or integer) type (e.g., std_ulogic, natural)
a discrete type with a range constraint (e.g., natural range 0 to 1)

Datatype of loop variable depends on discrete range

Generate Statements
for generate

for generate - Syntax

Finally, let us discuss the for-generate statement. As already mentioned, in VHDL the for-generate statement is used to
create multiple instances of a design component or to replicate hardware structures systematically within a design. It allows
for repetitive generation of components or logic constructs by having a variable loop over a defined range, which is especially
useful when you need a large number of similar components, such as in cases where you are creating multiple bits of a
register or implementing an array of identical processing elements.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Syntax

Replicate concurrent statements in a loop
For-generate syntax
GENERATE_LABEL :
for IDENTIFIER in discrete_range generate
generate_statement_body

end generate;

The discrete range can be
a simple integer range expression (e.g., 0 to 7)
a range obtained via the ’range attribute
a discrete (i.e., enum or integer) type (e.g., std_ulogic, natural)
a discrete type with a range constraint (e.g., natural range 0 to 1)

Datatype of loop variable depends on discrete range

6

for generate - Syntax

Replicate concurrent statements in a loop
For-generate syntax
GENERATE_LABEL :
for IDENTIFIER in discrete_range generate
generate_statement_body

end generate;

The discrete range can be
a simple integer range expression (e.g., 0 to 7)
a range obtained via the ’range attribute
a discrete (i.e., enum or integer) type (e.g., std_ulogic, natural)
a discrete type with a range constraint (e.g., natural range 0 to 1)

Datatype of loop variable depends on discrete range

Generate Statements
for generate

for generate - Syntax

The for-generate syntax is quite straight-forward. As with the other generate variants, it starts with a mandatory label which
is then followed by a colon and the keyword ”for”. Then an identifier has to be specified which represents the loop variable
and is accessible within the body of the generate statement.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Syntax

Replicate concurrent statements in a loop
For-generate syntax
GENERATE_LABEL :
for IDENTIFIER in discrete_range generate
generate_statement_body

end generate;

The discrete range can be
a simple integer range expression (e.g., 0 to 7)
a range obtained via the ’range attribute
a discrete (i.e., enum or integer) type (e.g., std_ulogic, natural)
a discrete type with a range constraint (e.g., natural range 0 to 1)

Datatype of loop variable depends on discrete range

6

for generate - Syntax

Replicate concurrent statements in a loop
For-generate syntax
GENERATE_LABEL :
for IDENTIFIER in discrete_range generate
generate_statement_body

end generate;

The discrete range can be
a simple integer range expression (e.g., 0 to 7)
a range obtained via the ’range attribute
a discrete (i.e., enum or integer) type (e.g., std_ulogic, natural)
a discrete type with a range constraint (e.g., natural range 0 to 1)

Datatype of loop variable depends on discrete range

Generate Statements
for generate

for generate - Syntax

After the keyword ”in”, a discrete range must be specified for the for-generate statement to loop over. There are quite a lot of
ways to specify a range here. However, most often you will probably use the simple integer range or the range attribute.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Syntax

Replicate concurrent statements in a loop
For-generate syntax
GENERATE_LABEL :
for IDENTIFIER in discrete_range generate
generate_statement_body

end generate;

The discrete range can be
a simple integer range expression (e.g., 0 to 7)
a range obtained via the ’range attribute
a discrete (i.e., enum or integer) type (e.g., std_ulogic, natural)
a discrete type with a range constraint (e.g., natural range 0 to 1)

Datatype of loop variable depends on discrete range

6

for generate - Syntax

Replicate concurrent statements in a loop
For-generate syntax
GENERATE_LABEL :
for IDENTIFIER in discrete_range generate
generate_statement_body

end generate;

The discrete range can be
a simple integer range expression (e.g., 0 to 7)
a range obtained via the ’range attribute
a discrete (i.e., enum or integer) type (e.g., std_ulogic, natural)
a discrete type with a range constraint (e.g., natural range 0 to 1)

Datatype of loop variable depends on discrete range

Generate Statements
for generate

for generate - Syntax

Please note that the datatype of the loop variable depends on the discrete range. However, most of the time it will be an
integer.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Discrete Range Examples

 entity for_gen_demo is
 end entity;


 architecture arch of for_gen_demo is
 type myint_t is range 0 to 42;
 constant X : string := "demo";
 begin
 forgen : for i in [...] generate
 process

 begin
 report to_string(i);
 wait;
 end process;
 end generate;
 end architecture;

3 downto 0
⇒ 3, 2, 1, 0

bit
⇒ ’0’, ’1’

X’range
⇒ 1, 2, 3, 4

std_ulogic range ’0’ to ’Z’
⇒ ’0’, ’1’, ’Z’

myint_t
⇒ 0, 1, ..., 42

7

for generate - Discrete Range Examples

 entity for_gen_demo is
 end entity;


 architecture arch of for_gen_demo is
 type myint_t is range 0 to 42;
 constant X : string := "demo";
 begin
 forgen : for i in [...] generate
 process

 begin
 report to_string(i);
 wait;
 end process;
 end generate;
 end architecture;

3 downto 0
⇒ 3, 2, 1, 0

bit
⇒ ’0’, ’1’

X’range
⇒ 1, 2, 3, 4

std_ulogic range ’0’ to ’Z’
⇒ ’0’, ’1’, ’Z’

myint_t
⇒ 0, 1, ..., 42

Generate Statements
for generate

for generate - Discrete Range Examples

This slide shows some examples of how the discrete range can look in practice. For that purpose, consider the for gen demo

module containing a for-generate statement that utilizes a single process in its statement part to print the value of the loop
variable. Notice that we have replaced the discrete range with a placeholder represented by three dots.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Discrete Range Examples

 entity for_gen_demo is
 end entity;


 architecture arch of for_gen_demo is
 type myint_t is range 0 to 42;
 constant X : string := "demo";
 begin
 forgen : for i in [...] generate
 process

 begin
 report to_string(i);
 wait;
 end process;
 end generate;
 end architecture;

3 downto 0
⇒ 3, 2, 1, 0

bit
⇒ ’0’, ’1’

X’range
⇒ 1, 2, 3, 4

std_ulogic range ’0’ to ’Z’
⇒ ’0’, ’1’, ’Z’

myint_t
⇒ 0, 1, ..., 42

7

for generate - Discrete Range Examples

 entity for_gen_demo is
 end entity;


 architecture arch of for_gen_demo is
 type myint_t is range 0 to 42;
 constant X : string := "demo";
 begin
 forgen : for i in [...] generate
 process

 begin
 report to_string(i);
 wait;
 end process;
 end generate;
 end architecture;

3 downto 0
⇒ 3, 2, 1, 0

bit
⇒ ’0’, ’1’

X’range
⇒ 1, 2, 3, 4

std_ulogic range ’0’ to ’Z’
⇒ ’0’, ’1’, ’Z’

myint_t
⇒ 0, 1, ..., 42

Generate Statements
for generate

for generate - Discrete Range Examples

The right side of the slide now shows the code’s output when running it in a simulator using different discrete ranges. The
comma-separated lists after the arrows show the string output lines as produced by the report statements in the different
processes of the generate body. However, note that, depending on the execution order of the processes in the simulator, the
sequence of the output values might be different. You may want to pause the video at this point, to really understand all the
shown outputs.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Loop Semantics

 forgen:
 for i in std_ulogic range ’0’ to ’Z’
 generate
 [declarations]
 begin
 [statememts]
 end generate;

 \forgen(’0’)\ : block
 constant i : std_ulogic := ’0’;
 [declarations]
 begin
 [statements]
 end block;


 \forgen(’1’)\ : block
 constant i : std_ulogic := ’1’;

 [declarations]
 begin
 [statements]
 end block;


 \forgen(’Z’)\ : block
 constant i : std_ulogic := ’Z’;
 [declarations]
 begin
 [statements]
 end block;

8

for generate - Loop Semantics

 forgen:
 for i in std_ulogic range ’0’ to ’Z’
 generate
 [declarations]
 begin
 [statememts]
 end generate;

 \forgen(’0’)\ : block
 constant i : std_ulogic := ’0’;
 [declarations]
 begin
 [statements]
 end block;


 \forgen(’1’)\ : block
 constant i : std_ulogic := ’1’;

 [declarations]
 begin
 [statements]
 end block;


 \forgen(’Z’)\ : block
 constant i : std_ulogic := ’Z’;
 [declarations]
 begin
 [statements]
 end block;

Generate Statements
for generate

for generate - Loop Semantics

In order to illustrate the semantics of the for-generate statement, let us pick one of the discrete ranges of the previous slide
and see how the loop is unrolled and interpreted. For that purpose we will convert the for-generate into an equivalent piece
of code consisting of block statements. In our example we will consider the range 0 to Z of the std_ulogic enumeration
type. Recall that this range comprises the three values 0, 1 and Z.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Loop Semantics

 forgen:
 for i in std_ulogic range ’0’ to ’Z’
 generate
 [declarations]
 begin
 [statememts]
 end generate;

 \forgen(’0’)\ : block
 constant i : std_ulogic := ’0’;
 [declarations]
 begin
 [statements]
 end block;


 \forgen(’1’)\ : block
 constant i : std_ulogic := ’1’;

 [declarations]
 begin
 [statements]
 end block;


 \forgen(’Z’)\ : block
 constant i : std_ulogic := ’Z’;
 [declarations]
 begin
 [statements]
 end block;

8

for generate - Loop Semantics

 forgen:
 for i in std_ulogic range ’0’ to ’Z’
 generate
 [declarations]
 begin
 [statememts]
 end generate;

 \forgen(’0’)\ : block
 constant i : std_ulogic := ’0’;
 [declarations]
 begin
 [statements]
 end block;


 \forgen(’1’)\ : block
 constant i : std_ulogic := ’1’;

 [declarations]
 begin
 [statements]
 end block;


 \forgen(’Z’)\ : block
 constant i : std_ulogic := ’Z’;
 [declarations]
 begin
 [statements]
 end block;

Generate Statements
for generate

for generate - Loop Semantics

Since the specified range consists of three values, we need three blocks to represent it. You can think of the loop variable
”i” as an additional constant declared in the beginning of each of those blocks. The declaration and statement part of for-
generate body is simply copied to each of the blocks. The block names are chosen according to how QuestaSim would
identify them in simulation.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Example

o
a

b

c

 entity mux21 is
 port (
 a, b, c : in std_ulogic;
 o : out std_ulogic
 );
 end entity;


 architecture arch of mux21 is
 begin

 o <= a when c = ’0’ else b;
 end architecture;

 entity vec_mux21 is
 generic (
 N : positive
 );
 port (
 a, b : in std_ulogic_vector(N-1 downto 0);
 c : in std_ulogic;
 o : out std_ulogic_vector(N-1 downto 0)
 );

 end entity;



 architecture arch of vec_mux21 is
 begin
 mux_gen : for i in 0 to N-1 generate
 begin
 mux21_inst : entity work.mux21
 port map (
 c => c, a => a(i), b => b(i), o => o(i)
 );
 end generate;
 end architecture;

9

for generate - Example

o
a

b

c

 entity mux21 is
 port (
 a, b, c : in std_ulogic;
 o : out std_ulogic
 );
 end entity;


 architecture arch of mux21 is
 begin

 o <= a when c = ’0’ else b;
 end architecture;

 entity vec_mux21 is
 generic (
 N : positive
 );
 port (
 a, b : in std_ulogic_vector(N-1 downto 0);
 c : in std_ulogic;
 o : out std_ulogic_vector(N-1 downto 0)
 );

 end entity;



 architecture arch of vec_mux21 is
 begin
 mux_gen : for i in 0 to N-1 generate
 begin
 mux21_inst : entity work.mux21
 port map (
 c => c, a => a(i), b => b(i), o => o(i)
 );
 end generate;
 end architecture;

Generate Statements
for generate

for generate - Example

Finally, let’s look at a real-world example where a for-generate statement comes in handy. Let’s say we have a simple 2-to-1
multiplexer, such as the one shown on the left side of the slide. Both of its data inputs ”a” and ”b”, as well as its data output
”o” are single bit signals of type std_ulogic. We now want to use this module to create a multiplexer that can multiplex
between input signals of width ”N”.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Example

o
a

b

c

 entity mux21 is
 port (
 a, b, c : in std_ulogic;
 o : out std_ulogic
 );
 end entity;


 architecture arch of mux21 is
 begin

 o <= a when c = ’0’ else b;
 end architecture;

 entity vec_mux21 is
 generic (
 N : positive
 );
 port (
 a, b : in std_ulogic_vector(N-1 downto 0);
 c : in std_ulogic;
 o : out std_ulogic_vector(N-1 downto 0)
 );

 end entity;


 architecture arch of vec_mux21 is
 begin
 mux_gen : for i in 0 to N-1 generate
 begin

 mux21_inst : entity work.mux21
 port map (
 c => c, a => a(i), b => b(i), o => o(i)
 );
 end generate;
 end architecture;

9

for generate - Example

o
a

b

c

 entity mux21 is
 port (
 a, b, c : in std_ulogic;
 o : out std_ulogic
 );
 end entity;


 architecture arch of mux21 is
 begin

 o <= a when c = ’0’ else b;
 end architecture;

 entity vec_mux21 is
 generic (
 N : positive
 );
 port (
 a, b : in std_ulogic_vector(N-1 downto 0);
 c : in std_ulogic;
 o : out std_ulogic_vector(N-1 downto 0)
 );

 end entity;


 architecture arch of vec_mux21 is
 begin
 mux_gen : for i in 0 to N-1 generate
 begin

 mux21_inst : entity work.mux21
 port map (
 c => c, a => a(i), b => b(i), o => o(i)
 );
 end generate;
 end architecture;

Generate Statements
for generate

for generate - Example

The resulting module shall be called vec mux21. Its entity declaration should not look too surprising, as we have already
encountered this module in a previous lecture. It has the same input and output signals as the single-bit multiplexer on the
left, with the difference that the data signals ”a”, ”b” and ”o” are now ”N”-bit wide vectors.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Example

o
a

b

c

 entity mux21 is
 port (
 a, b, c : in std_ulogic;
 o : out std_ulogic
 );
 end entity;


 architecture arch of mux21 is
 begin

 o <= a when c = ’0’ else b;
 end architecture;

 entity vec_mux21 is
 generic (
 N : positive
 );
 port (
 a, b : in std_ulogic_vector(N-1 downto 0);
 c : in std_ulogic;
 o : out std_ulogic_vector(N-1 downto 0)
 );

 end entity;


 architecture arch of vec_mux21 is
 begin
 mux_gen : for i in 0 to N-1 generate
 begin
 mux21_inst : entity work.mux21
 port map (
 c => c, a => a(i), b => b(i), o => o(i)
 );
 end generate;
 end architecture;

9

for generate - Example

o
a

b

c

 entity mux21 is
 port (
 a, b, c : in std_ulogic;
 o : out std_ulogic
 );
 end entity;


 architecture arch of mux21 is
 begin

 o <= a when c = ’0’ else b;
 end architecture;

 entity vec_mux21 is
 generic (
 N : positive
 );
 port (
 a, b : in std_ulogic_vector(N-1 downto 0);
 c : in std_ulogic;
 o : out std_ulogic_vector(N-1 downto 0)
 );

 end entity;


 architecture arch of vec_mux21 is
 begin
 mux_gen : for i in 0 to N-1 generate
 begin
 mux21_inst : entity work.mux21
 port map (
 c => c, a => a(i), b => b(i), o => o(i)
 );
 end generate;
 end architecture;

Generate Statements
for generate

for generate - Example

In its architecture we are now going to create ”N” instances of the mux21 entity – one for each of the ”N” bits in the input and
output signals. For that purpose we use a range from 0 to ”N” minus 1.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Example

o
a

b

c

 entity mux21 is
 port (
 a, b, c : in std_ulogic;
 o : out std_ulogic
 );
 end entity;


 architecture arch of mux21 is
 begin

 o <= a when c = ’0’ else b;
 end architecture;

 entity vec_mux21 is
 generic (
 N : positive
 );
 port (
 a, b : in std_ulogic_vector(N-1 downto 0);
 c : in std_ulogic;
 o : out std_ulogic_vector(N-1 downto 0)
 );

 end entity;


 architecture arch of vec_mux21 is
 begin
 mux_gen : for i in 0 to N-1 generate
 begin
 mux21_inst : entity work.mux21
 port map (
 c => c, a => a(i), b => b(i), o => o(i)
 );
 end generate;
 end architecture;

9

for generate - Example

o
a

b

c

 entity mux21 is
 port (
 a, b, c : in std_ulogic;
 o : out std_ulogic
 );
 end entity;


 architecture arch of mux21 is
 begin

 o <= a when c = ’0’ else b;
 end architecture;

 entity vec_mux21 is
 generic (
 N : positive
 );
 port (
 a, b : in std_ulogic_vector(N-1 downto 0);
 c : in std_ulogic;
 o : out std_ulogic_vector(N-1 downto 0)
 );

 end entity;


 architecture arch of vec_mux21 is
 begin
 mux_gen : for i in 0 to N-1 generate
 begin
 mux21_inst : entity work.mux21
 port map (
 c => c, a => a(i), b => b(i), o => o(i)
 );
 end generate;
 end architecture;

Generate Statements
for generate

for generate - Example

During instantiation we can then use the loop-variable ”i” to access the individual bits of the vector signals ”a”, ”b” and ”o”.
Hence, in total the for-generate statement create ”N” instances of the single-bit multiplexer.



HWMod
WS24

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example Lecture Complete!

Modified: 2025-03-12, 16:31 (21636bb)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.


	Generate Statements
	Introduction
	if generate
	case generate
	for generate


