HWMod
WS25

sy Hardware Modeling [VU] (191.011)

- WS25 -

Generate Statements

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:04 (f8a58e9)

Introduction

HWMod
WS25

m Containers for concurrent statements (like blocks)

Introduction

HWMod
WS25

m Containers for concurrent statements (like blocks)
m Conditional and iterative/repetitive code evaluation/generation

Introduction

HWMod
WS25

m Containers for concurrent statements (like blocks)
m Conditional and iterative/repetitive code evaluation/generation

m Similar to blocks

m However, no block header allowed!
m Can also be nested

Introduction

HWMod
WS25

m Containers for concurrent statements (like blocks)
m Conditional and iterative/repetitive code evaluation/generation

m Similar to blocks

m However, no block header allowed!
m Can also be nested

m Three variants

Introduction

HWMod
WS25

m Containers for concurrent statements (like blocks)
m Conditional and iterative/repetitive code evaluation/generation

m Similar to blocks

m However, no block header allowed!
m Can also be nested

m Three variants
m if, case (activate code based on condition)

Introduction

HWMod
WS25

m Containers for concurrent statements (like blocks)
m Conditional and iterative/repetitive code evaluation/generation

m Similar to blocks

m However, no block header allowed!
m Can also be nested

m Three variants

m if, case (activate code based on condition)
m for (replicate code based on a range)

Introduction

HWMod
WS25

m Containers for concurrent statements (like blocks)
m Conditional and iterative/repetitive code evaluation/generation

m Similar to blocks

m However, no block header allowed!
m Can also be nested

m Three variants
m if, case (activate code based on condition)
m for (replicate code based on a range)

m Condition or range must be static at compile-time

if generate - Syntax

HWMod “ - w
WS25 m “Conditional blocks

Syntax

if generate - Syntax

e m “Conditional blocks”

m Comparable to if-else directives (e.g., #1f, #ifdef) of the C preprocessor

Syntax

if generate - Syntax

HWMod

WS25 m “Conditional blocks”

m Comparable to if-else directives (e.g., #1f, #ifdef) of the C preprocessor
m If-generate syntax
Synax GENERATE_LABEL

if [IF_LABEL :] condition generate

generate_statement_body

{ elsif [ELSIF_LABEL :] condition generate
generate_statement_body }

[else [ELSE_LABEL :] generate
generate_statement_body]

end generate;

if generate - Syntax

HWMod

WS25 m “Conditional blocks”

m Comparable to if-else directives (e.g., #1f, #ifdef) of the C preprocessor
m If-generate syntax
GENERATE_LABEL

if [IF_LABEL :] condition generate

generate_statement_body

{ elsif [ELSIF_LABEL :] condition generate
generate_statement_body }

[else [ELSE_LABEL :] generate
generate_statement_body]

end generate;

if generate - Syntax

HWMod

WS25 m “Conditional blocks”

m Comparable to if-else directives (e.g., #1f, #ifdef) of the C preprocessor
m If-generate syntax
Synax GENERATE_LABEL

if [IF_LABEL :] condition generate

generate_statement_body

{ elsif [ELSIF_LABEL :] condition generate
generate_statement_body }

[else [ELSE_LABEL :] generate
generate_statement_body]

end generate;

if generate - Syntax

HWMod

WS25 m “Conditional blocks”

m Comparable to if-else directives (e.g., #1f, #ifdef) of the C preprocessor
m If-generate syntax
Synax GENERATE_LABEL

if [IF_LABEL :] condition generate

generate_statement_body

{ elsif [ELSIF_LABEL :] condition generate
generate_statement_body }

[else [ELSE_LABEL :] generate
generate_statement_body]

end generate;
m Conditions

m static Boolean expressions (involving e.g., generics, constants)

if generate - Syntax

HWMod

WS25 m “Conditional blocks”

m Comparable to if-else directives (e.g., #1f, #ifdef) of the C preprocessor
m If-generate syntax
Synax GENERATE_LABEL

if [IF_LABEL :] condition generate

generate_statement_body

{ elsif [ELSIF_LABEL :] condition generate
generate_statement_body }

[else [ELSE_LABEL :] generate
generate_statement_body]

end generate;
m Conditions

m static Boolean expressions (involving e.g., generics, constants)

if generate - Syntax

HWMod

WS25 m “Conditional blocks”

m Comparable to if-else directives (e.g., #1f, #ifdef) of the C preprocessor
m If-generate syntax
Synax GENERATE_LABEL

if [IF_LABEL :] condition generate

generate_statement_body

{ elsif [ELSIF_LABEL :] condition generate
generate_statement_body }

[else [ELSE_LABEL :] generate
generate_statement_body]

end generate;
m Conditions

m static Boolean expressions (involving e.g., generics, constants)

if generate - Syntax

HWMod

WS25 m “Conditional blocks”

m Comparable to if-else directives (e.g., #1f, #ifdef) of the C preprocessor
m If-generate syntax
Synax GENERATE_LABEL

if [IF_LABEL :] condition generate

generate_statement_body

{ elsif [ELSIF_LABEL :] condition generate
generate_statement_body }

[else [ELSE_LABEL :] generate
generate_statement_body]

end generate;
m Conditions

m static Boolean expressions (involving e.g., generics, constants)

if generate - Syntax

HWMod

WS25 m “Conditional blocks”

m Comparable to if-else directives (e.g., #1f, #ifdef) of the C preprocessor
m If-generate syntax
Synax GENERATE_LABEL

if [IF_LABEL :] condition generate

generate_statement_body

{ elsif [ELSIF_LABEL :] condition generate
generate_statement_body }

[else [ELSE_LABEL :] generate

generate_statement_body]

end generate;
m Conditions

m static Boolean expressions (involving e.g., generics, constants)
m At most one statement body is active

if generate - Syntax (cont’d)

HWMod
WS25

m Generate statement body
generate_statement_body ::=
[block_declarative_part
begin]
block_statement_part
[end;]

Syntax

if generate - Syntax (cont’d)

HWMod
WS25

m Generate statement body
generate_statement_body ::=
[block_declarative_part
begin]
block_statement_part
[end;]

m Same declarative/statement part as for blocks and architectures

Syntax

if generate - Syntax (cont’d)

HWMod
WS25

m Generate statement body
generate_statement_body ::=
[block_declarative_part
begin]
block_statement_part
[end;]
m Same declarative/statement part as for blocks and architectures
m Same scoping rules as for blocks

Syntax

if generate - Example

HWMod
WS25 1 architecture arch3 of demo is

Example

if generate - Example

HWMod

WS25 1 architecture arch3 of demo is
2 signal a, b, cin, cout, sum : std_ulogic;
3 begin

Example

if generate - Example

HWMod
WS25 1 architecture arch3 of demo is

2 signal a, b, cin, cout, sum : std_ulogic;
3 begin

4 fa_gen : if ADDER_TYPE = "exact" generate
5 fa_inst : entity work.fa

6 port map (

7 a =>a, b =>Db, cin => cin,

8 cout => cout, sum => sum

9)i

Example

if generate - Example

HWMod
WS25 1 architecture arch3 of demo is

2 signal a, b, cin, cout, sum : std_ulogic;
3 begin
4 fa_gen : if ADDER_TYPE = "exact" generate
5 fa_inst : entity work.fa

Example 6 port map (
7 a =>a, b =>Db, cin => cin,
8 cout => cout, sum => sum
9)i
10 elsif ADDER_TYPE = "approximate" generate
11 signal temp, temp2 : std_ulogic;
12 begin
13 temp <= a or b; temp2 <= a and b;
14 sum <= temp xor cin; cout <= temp2 or cin;

if generate - Example

HWMod
WS25 1 architecture arch3 of demo is

2 signal a, b, cin, cout, sum : std_ulogic;
3 begin
4 fa_gen : if ADDER_TYPE = "exact" generate
5 fa_inst : entity work.fa

Example 6 port map (
7 a =>a, b =>Db, cin => cin,
8 cout => cout, sum => sum
9)i
10 elsif ADDER_TYPE = "approximate" generate
11 signal temp, temp2 : std_ulogic;
12 begin
13 temp <= a or b; temp2 <= a and b;
14 sum <= temp xor cin; cout <= temp2 or cin;

15 else generate

16 assert false report "invalid option" severity failure;
17 end generate;

18 [...]

19 end architecture;

case generate

HWMod
WS25

m Activates one of multiple alternatives

case generate

HWMod
WS25

m Activates one of multiple alternatives
m All alternatives must be covered (recall others)!

case generate

HWMod
WS25

m Activates one of multiple alternatives
m All alternatives must be covered (recall others)!

m Case-generate syntax
GENERATE_LABEL
case expression generate
case_generate_alternative
{ case_generate_alternative }
end generate;
m One or more alternatives
case_generate_alternative ::=
when [ALTERNATIVE_LABEL :] choices =>
generate_statement_body

case generate

for generate - Syntax

HWMod
wee m Replicate concurrent statements in a loop

Syntax

for generate - Syntax

HWMod
wee m Replicate concurrent statements in a loop

m For-generate syntax
GENERATE_LABEL
for IDENTIFIER in discrete_range generate
generate_statement_body
end generate;

Syntax

for generate - Syntax

HWMod
wee m Replicate concurrent statements in a loop

m For-generate syntax
GENERATE_LABEL
for IDENTIFIER in discrete_range generate
generate_statement_body
end generate;

Syntax

for generate - Syntax

HWMod
wee m Replicate concurrent statements in a loop

m For-generate syntax
GENERATE_LABEL
for IDENTIFIER in discrete_range generate
generate_statement_body
end generate;

Syntax

for generate - Syntax

HWMod
wee m Replicate concurrent statements in a loop

m For-generate syntax
GENERATE_LABEL
for IDENTIFIER in discrete_range generate
generate_statement_body
end generate;
m The discrete range can be
m a simple integer range expression (e.g., 0 to 7)
B arange obtained via the ’ range attribute
m a discrete (i.e., enum or integer) type (e.g., std_ulogic, natural)
m a discrete type with a range constraint (e.g., natural range 0 to 1)

Syntax

for generate - Syntax

HWMod
wee m Replicate concurrent statements in a loop

m For-generate syntax
GENERATE_LABEL
for IDENTIFIER in discrete_range generate
generate_statement_body
end generate;
m The discrete range can be
m a simple integer range expression (e.g., 0 to 7)
B arange obtained via the ’ range attribute
m a discrete (i.e., enum or integer) type (e.g., std_ulogic, natural)
m a discrete type with a range constraint (e.g., natural range 0 to 1)

Syntax

m Datatype of loop variable depends on discrete range

for generate - Discrete Range Examples

HWMod
WS25

entity for_gen_demo is

1

2 end entity;

3

4 architecture arch of for_gen_demo is
Discrete Ranges 5 type myint_t is range 0 to 42;

6 constant X : string := "demo";

7 begin

8 forgen : for i in [...] generate

9 process

10 begin

11 report to_string(i);

12 wait;

13 end process;
14 end generate;
15 end architecture;

for generate - Discrete Range Examples

HWMod
WS25

entity for_gen_demo is

1

2 end entity;

3

4 architecture arch of for_gen_demo is
Discrete Ranges 5 type myint_t is range 0 to 42;

6 constant X : string := "demo";

7 begin

8 forgen : for i in [...] generate

9 process

10 begin

11 report to_string(i);

12 wait;

13 end process;
14 end generate;
15 end architecture;

for generate - Discrete Range Examples

HWMod
WS25

entity for_gen_demo is

1

2 end entity;

3

4 architecture arch of for_gen_demo is
Discrete Ranges 5 type myint_t is range 0 to 42;

6 constant X : string := "demo";

7 begin

8 forgen : for i in [...] generate

9 process

10 begin

11 report to_string(i);

12 wait;

13 end process;
14 end generate;
15 end architecture;

HWMod
WS25

Discrete Ranges

for generate - Discrete Range Examples

entity for_gen_demo is
end entity;

1
2
3
4 architecture arch of for_gen_demo is
5 type myint_t is range 0 to 42;
6 constant X : string := "demo";
7 begin

8 forgen : for i in [...] generate

9 process

10 begin

11 report to_string(i);

12 wait;

13 end process;

14 end generate;

15 end architecture;

3 downto 0

=3,2,1,0

bit

:>IOI’Ill

X’ range

=1,2,3,4

std_ulogic range "0’ to ’Z’
:>IOI,I11’IZI

myint_t

=0,1,..,42

HWMod
WS25

Discrete Ranges

for generate - Discrete Range Examples

entity for_gen_demo is
end entity;

1
2
3
4 architecture arch of for_gen_demo is
5 type myint_t is range 0 to 42;
6 constant X : string := "demo";
7 begin

8 forgen : for i in [...] generate

9 process

10 begin

11 report to_string(i);

12 wait;

13 end process;

14 end generate;

15 end architecture;

3 downto 0

=3,2,1,0

bit

:>IOI’Ill

X’ range

=1,2,3,4

std_ulogic range "0’ to ’Z’
:>IOI,I11’IZI

myint_t

=0,1,..,42

HWMod
WS25

Loop Semantics

for generate - Loop Semantics

N o oA W NN =

forgen:
for i in std_ulogic range 0’ to 'Z’
generate
[declarations]
begin
[statements]
end generate;

HWMod
WS25

Loop Semantics

for generate - Loop Semantics

N o oA W NN =

forgen:
for i in std_ulogic range 0’ to ’'Z’
generate
[declarations]
begin
[statements]
end generate;

for generate - Loop Semantics

HWMod
WS25 \forgen(’0’)\ : block
constant i : std_ulogic := ’'0'";
[declarations]
begin
[statements]
end block;

forgen:
for i in std_ulogic range 0’ to 'Z’
generate

[declarations] =
begin

[statements]
end generate;

N o oA W NN =
0N O AW =

\forgen(’1’)\ : block
constant 1 : std_ulogic := "1’;
[declarations]

begin
[statements]

end block;

Loop Semantics

a b W N = O ©

\forgen(’0’)\ : block
constant 1 : std_ulogic := "Z’;
[declarations]

begin
[statements]

end block;

N = = o
S © ® N o

for generate - Loop Semantics

HWMod
WS25 \forgen(’0’)\ : block
constant i : std_ulogic := ’'0’;
[declarations]
begin
[statements]
end block;

forgen:
for i in std_ulogic range "0’ to 'Z’
generate

[declarations] =
begin

[statements]
end generate;

N o oA W NN =
0N O AW =

\forgen(’1’)\ : block
constant 1 : std_ulogic := "1’;
[declarations]

begin
[statements]

end block;

Loop Semantics

a b W N = O ©

\forgen(’0’)\ : block
constant 1 : std_ulogic := "Z’;
[declarations]

begin
[statements]

end block;

N o= o o
S © ® N o

for generate - Loop Semantics

HWMod
WS25 \forgen(’0’)\ : block
constant i : std_ulogic := ’'0'";
[declarations]
begin
[statements]
end block;

forgen:
for i in std_ulogic range "0’ to 'Z’
generate

[declarations] =
begin

[statements]
end generate;

N o oA W NN =
0N O AW =

\forgen(’1’)\ : block
constant 1 : std_ulogic := "1’;
[declarations]

begin
[statements]

end block;

Loop Semantics

a b W N = O ©

\forgen(’0’)\ : block
constant 1 : std_ulogic := "Z’;
[declarations]

begin
[statements]

end block;

N o= o o
S © ® N o

for generate - Example

HWMod
WS25

Example

0 N O 0o~ 0NN =

entity mux2l is
port (
a, b : in std_ulogic;
c : in std_ulogic;
o : out std_ulogic
)i
end entity;

architecture arch of mux2l is
begin

o0 <= a when ¢ = "0’ else b;
end architecture;

for generate - Example

entity vec_mux2l is

HWMod !
WS25 c 2 generic (
3 N : positive
4);
a 5 port (
@) 6 a, b : in std_ulogic_vector (N-1 downto 0);
b — 7 c : in std_ulogic;
8 o : out std_ulogic_vector (N-1 downto 0)
9)
10 end entity;

Example

entity mux2l is

port (
a, b : in std_ulogic;
c : in std_ulogic;
out std_ulogic

)i
end entity;

® N U A W N =
o

9 architecture arch of mux2l is

10 begin

11 o <= a when c¢c = 0’ else b;

12 end architecture; 9

for generate - Example

entity vec_mux2l is

HWMod !
WS25 c 2 generic (
3 N : positive
4)
a 5 port (
@) 6 a, b : in std_ulogic_vector (N-1 downto 0);
b — 7 c : in std_ulogic;
8 o : out std_ulogic_vector (N-1 downto 0)
9)
iy . ‘ 10 end entity;
1 entity mux2l is 11
2 port (12 architecture arch of vec_mux2l is
3 a, b : in std_ulogic; 13 begin
4 c : in std_ulogic; 14 mux_gen : for i in 0 to N-1 generate
5 ¢} out std_ulogic 15 begin
6)
7 end entity;
8
9 architecture arch of mux2l is
10 begin
11 o <= a when c¢c = 0’ else b;

12 end architecture; 9

for generate - Example

entity vec_mux2l is

HWMod !
WS25 c 2 generic (
3 N : positive
4)
a 5 port (
@) 6 a, b : in std_ulogic_vector (N-1 downto 0);
b — 7 c : in std_ulogic;
8 o : out std_ulogic_vector (N-1 downto 0)
9)
iy . ‘ 10 end entity;
1 entity mux2l is 11
2 port (12 architecture arch of vec_mux2l is
3 a, b : in std_ulogic; 13 begin
4 c : in std_ulogic; 14 mux_gen : for i in 0 to N-1 generate
5 ¢} out std_ulogic 15 begin
6)
7 end entity;
8
9 architecture arch of mux2l is
10 begin
11 o <= a when c¢c = 0’ else b;

12 end architecture; 9

for generate - Example

entity vec_mux2l is

HWMod ! .
WS25 c 2 generic (
3 N : positive
4)i
a 5 port (
@) 6 a, b : in std_ulogic_vector (N-1 downto 0);
b — 7 c : in std_ulogic;
8 o : out std_ulogic_vector (N-1 downto 0)
9)i
- 10 end entity;
e 1 entity mux2l is 11
2 port (12 architecture arch of vec_mux2l is
3 a, b : in std_ulogic; 13 begin
4 ¢ : in std_ ulogic; 14 mux_gen : for i in 0 to N-1 generate
5 ¢} out std_ulogic 15 begin
6) 16 mux21_inst : entity work.mux21
7 end entity; 17 port map (
8 18 c =>2c¢, a=>a(i), b =>Db(i), o => o(i)
9 architecture arch of mux2l is g);
10 begin 20 end generate;
1 o <= a when c = "0’ else b; 21 end architecture;

12 end architecture; 9

for generate - Example

entity vec_mux2l is

HWMod ! .
WS25 c 2 generic (
3 N : positive
4)i
a 5 port (
@) 6 a, b : in std_ulogic_vector (N-1 downto 0);
b — 7 c : in std_ulogic;
8 o : out std_ulogic_vector (N-1 downto 0)
9)i
- 10 end entity;
e 1 entity mux2l is 11
2 port (12 architecture arch of vec_mux2l is
3 a, b : in std_ulogic; 13 begin
4 ¢ : in std_ ulogic; 14 mux_gen : for i in 0 to N-1 generate
5 ¢} out std_ulogic 15 begin
6) 16 mux21_inst : entity work.mux21
7 end entity; 17 port map (
8 18 c =>2c¢c, a=>a(i), b =>Db(i), o => o(i)
9 architecture arch of mux2l is g);
10 begin 20 end generate;
1 o <= a when c = "0’ else b; 21 end architecture;

12 end architecture; 9

HWMod
WS25

Lecture Complete!

Modified: 2025-12-16, 16:04 (f8a58e9)

	Generate Statements
	Introduction
	if generate
	case generate
	for generate

