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m Containers for concurrent statements (like blocks)
m Conditional and iterative/repetitive code evaluation/generation

m Similar to blocks

m However, no block header allowed!
m Can also be nested

m Three variants
m if, case (activate code based on condition)
m for (replicate code based on a range)

m Condition or range must be static at compile-time
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m Comparable to if-else directives (e.g., #1f, #ifdef) of the C preprocessor
m If-generate syntax
Synax GENERATE_LABEL

if [ IF_LABEL : ] condition generate

generate_statement_body

{ elsif [ ELSIF_LABEL : ] condition generate
generate_statement_body }

[ else [ ELSE_LABEL : ] generate

generate_statement_body ]

end generate;
m Conditions

m static Boolean expressions (involving e.g., generics, constants)
m At most one statement body is active
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m Generate statement body
generate_statement_body ::=
[ block_declarative_part
begin ]
block_statement_part
[ end; ]
m Same declarative/statement part as for blocks and architectures
m Same scoping rules as for blocks

Syntax
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2 signal a, b, cin, cout, sum : std_ulogic;
3 begin
4 fa_gen : if ADDER_TYPE = "exact" generate
5 fa_inst : entity work.fa

Example 6 port map (
7 a =>a, b =>Db, cin => cin,
8 cout => cout, sum => sum
9 )i
10 elsif ADDER_TYPE = "approximate" generate
11 signal temp, temp2 : std_ulogic;
12 begin
13 temp <= a or b; temp2 <= a and b;
14 sum <= temp xor cin; cout <= temp2 or cin;

15 else generate

16 assert false report "invalid option" severity failure;
17 end generate;

18 [...]

19 end architecture;
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m Activates one of multiple alternatives
m All alternatives must be covered (recall others)!

m Case-generate syntax
GENERATE_LABEL
case expression generate
case_generate_alternative
{ case_generate_alternative }
end generate;
m One or more alternatives
case_generate_alternative ::=
when [ ALTERNATIVE_LABEL : ] choices =>
generate_statement_body

case generate
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generate_statement_body
end generate;
m The discrete range can be
m a simple integer range expression (e.g., 0 to 7)
B arange obtained via the ’ range attribute
m a discrete (i.e., enum or integer) type (e.g., std_ulogic, natural)
m a discrete type with a range constraint (e.g., natural range 0 to 1)

Syntax

m Datatype of loop variable depends on discrete range
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entity for_gen_demo is
end entity;

1
2
3
4 architecture arch of for_gen_demo is
5 type myint_t is range 0 to 42;
6 constant X : string := "demo";
7 begin

8 forgen : for i in [...] generate

9 process

10 begin

11 report to_string(i);

12 wait;

13 end process;

14 end generate;

15 end architecture;

3 downto 0
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0 N O 0o~ 0NN =

entity mux2l is
port (
a, b : in std_ulogic;
c : in std_ulogic;
o : out std_ulogic
)i
end entity;

architecture arch of mux2l is
begin

o0 <= a when ¢ = "0’ else b;
end architecture;
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entity mux2l is

port (
a, b : in std_ulogic;
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end entity;
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