
HWMod
WS25

Generates
Introduction

if generate

case generate

for generate

Hardware Modeling [VU] (191.011)
– WS25 –

Generate Statements

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:10 (f8a58e9)

HWMod
WS25

Generates
Introduction

if generate

case generate

for generate

Introduction 213

Containers for concurrent statements (like blocks)
Conditional and iterative/repetitive code evaluation/generation
Similar to blocks

However, no block header allowed!
Can also be nested

Three variants
if, case (activate code based on condition)
for (replicate code based on a range)

Condition or range must be static at compile-time

1

HWMod
WS25

Generates
Introduction

if generate

Syntax

Example

case generate

for generate

if generate - Syntax 212

“Conditional blocks”
Comparable to if-else directives (e.g., #if, #ifdef) of the C preprocessor
If-generate syntax
GENERATE_LABEL :
if [IF_LABEL :] condition generate
generate_statement_body

{ elsif [ELSIF_LABEL :] condition generate
generate_statement_body }

[else [ELSE_LABEL :] generate
generate_statement_body]

end generate;
Conditions

static Boolean expressions (involving e.g., generics, constants)
At most one statement body is active

2

HWMod
WS25

Generates
Introduction

if generate

Syntax

Example

case generate

for generate

if generate - Syntax (cont’d) 213

Generate statement body
generate_statement_body ::=

[block_declarative_part
begin]
block_statement_part

[end;]

Same declarative/statement part as for blocks and architectures
Same scoping rules as for blocks

3

HWMod
WS25

Generates
Introduction

if generate

Syntax

Example

case generate

for generate

if generate - Example

 architecture arch3 of demo is
 signal a, b, cin, cout, sum : std_ulogic;
 begin
 fa_gen : if ADDER_TYPE = "exact" generate
 fa_inst : entity work.fa
 port map(
 a => a, b => b, cin => cin,
 cout => cout, sum => sum
);

 elsif ADDER_TYPE = "approximate" generate
 signal temp, temp2 : std_ulogic;
 begin
 temp <= a or b; temp2 <= a and b;
 sum <= temp xor cin; cout <= temp2 or cin;
 else generate
 assert false report "invalid option" severity failure;
 end generate;
 [...]
 end architecture;

4

HWMod
WS25

Generates
Introduction

if generate

case generate

for generate

case generate

Activates one of multiple alternatives
All alternatives must be covered (recall others)!
Case-generate syntax
GENERATE_LABEL :
case expression generate
case_generate_alternative
{ case_generate_alternative }

end generate;

One or more alternatives
case_generate_alternative ::=
when [ALTERNATIVE_LABEL :] choices =>
generate_statement_body

5

HWMod
WS25

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Syntax

Replicate concurrent statements in a loop
For-generate syntax
GENERATE_LABEL :
for IDENTIFIER in discrete_range generate
generate_statement_body

end generate;

The discrete range can be
a simple integer range expression (e.g., 0 to 7)
a range obtained via the ’range attribute
a discrete (i.e., enum or integer) type (e.g., std_ulogic, natural)
a discrete type with a range constraint (e.g., natural range 0 to 1)

Datatype of loop variable depends on discrete range

6

HWMod
WS25

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Discrete Range Examples

 entity for_gen_demo is
 end entity;

 architecture arch of for_gen_demo is
 type myint_t is range 0 to 42;
 constant X : string := "demo";
 begin
 forgen : for i in [...] generate
 process

 begin
 report to_string(i);
 wait;
 end process;
 end generate;
 end architecture;

3 downto 0
⇒ 3, 2, 1, 0

bit
⇒ ’0’, ’1’

X’range
⇒ 1, 2, 3, 4

std_ulogic range ’0’ to ’Z’
⇒ ’0’, ’1’, ’Z’

myint_t
⇒ 0, 1, ..., 42

7

HWMod
WS25

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Loop Semantics

 forgen:
 for i in std_ulogic range ’0’ to ’Z’
 generate
 [declarations]
 begin
 [statements]
 end generate;

⇒

 \forgen(’0’)\ : block
 constant i : std_ulogic := ’0’;
 [declarations]
 begin
 [statements]
 end block;

 \forgen(’1’)\ : block
 constant i : std_ulogic := ’1’;

 [declarations]
 begin
 [statements]
 end block;

 \forgen(’0’)\ : block
 constant i : std_ulogic := ’Z’;
 [declarations]
 begin
 [statements]
 end block;

8

HWMod
WS25

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example

for generate - Example

o
a

b

c

 entity mux21 is
 port (
 a, b : in std_ulogic;
 c : in std_ulogic;
 o : out std_ulogic
);
 end entity;

 architecture arch of mux21 is
 begin
 o <= a when c = ’0’ else b;
 end architecture;

 entity vec_mux21 is
 generic (
 N : positive
);
 port (
 a, b : in std_ulogic_vector(N-1 downto 0);
 c : in std_ulogic;
 o : out std_ulogic_vector(N-1 downto 0)
);

 end entity;

 architecture arch of vec_mux21 is
 begin
 mux_gen : for i in 0 to N-1 generate
 begin
 mux21_inst : entity work.mux21
 port map (
 c => c, a => a(i), b => b(i), o => o(i)
);
 end generate;
 end architecture;

9

HWMod
WS25

Generates
Introduction

if generate

case generate

for generate

Syntax

Discrete Ranges

Loop Semantics

Example Lecture Complete!

Modified: 2025-12-16, 16:10 (f8a58e9)

	Generate Statements
	Introduction
	if generate
	case generate
	for generate

