
HWMod
WS24

FSM Modeling
Motivation

Models

Examples

Hardware Modeling [VU] (191.011)
– WS24 –

Finite-State Machine Modeling

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-12, 16:31 (21636bb)

Hardware Modeling [VU] (191.011)
– WS24 –

Finite-State Machine Modeling

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Finite-State Machine Modeling

This lecture shows how finite-state machines can be modelled in general and introduces the model we use in our courses.
Furthermore, we will look into two concrete examples showing how FSMs can be modelled given a description of their
behavior.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

Motivation

Why not simply draw circuits?

Error-prone and scaling poorly for complex FSMs
Hard to understand and maintain

⇒ Increase level of abstraction of description

Draw FSMs as graphs (nodes for states, edges for transitions)
Implementation derived by tools

1

Motivation

Why not simply draw circuits?

Error-prone and scaling poorly for complex FSMs
Hard to understand and maintain

⇒ Increase level of abstraction of description

Draw FSMs as graphs (nodes for states, edges for transitions)
Implementation derived by tools

Finite-State Machine Modeling
Motivation

Motivation

We will start this lecture with discussing how we can model FSMs. But why is this even necessary? After all, since we end
up implementing them in circuits, can’t we simply draw circuits for modelling them?



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

Motivation

Why not simply draw circuits?
Error-prone and scaling poorly for complex FSMs

Hard to understand and maintain

⇒ Increase level of abstraction of description

Draw FSMs as graphs (nodes for states, edges for transitions)
Implementation derived by tools

1

Motivation

Why not simply draw circuits?
Error-prone and scaling poorly for complex FSMs

Hard to understand and maintain

⇒ Increase level of abstraction of description

Draw FSMs as graphs (nodes for states, edges for transitions)
Implementation derived by tools

Finite-State Machine Modeling
Motivation

Motivation

First, recall the circuits we already saw during this course, especially in the exercise part. While there are structures within
them that we can observe, understand, and map to code, circuits quickly become quite big for even simple designs. Since
we want to use state machines as a more abstract design method for modelling complex circuits, this is obviously of no good.
Furthermore, modelling an FSM by drawing a respective circuit is an error-prone task for humans.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

Motivation

Why not simply draw circuits?
Error-prone and scaling poorly for complex FSMs
Hard to understand and maintain

⇒ Increase level of abstraction of description

Draw FSMs as graphs (nodes for states, edges for transitions)
Implementation derived by tools

1

Motivation

Why not simply draw circuits?
Error-prone and scaling poorly for complex FSMs
Hard to understand and maintain

⇒ Increase level of abstraction of description

Draw FSMs as graphs (nodes for states, edges for transitions)
Implementation derived by tools

Finite-State Machine Modeling
Motivation

Motivation

Another issue with specifying FSMs as circuits is sharing designs and working on them in a team. Spotting all the state
register, output logic and state transition function in an FSM circuit you did not design yourself takes quite some time and
effort, as does modifying such a circuit.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

Motivation

Why not simply draw circuits?
Error-prone and scaling poorly for complex FSMs
Hard to understand and maintain

⇒ Increase level of abstraction of description

Draw FSMs as graphs (nodes for states, edges for transitions)
Implementation derived by tools

1

Motivation

Why not simply draw circuits?
Error-prone and scaling poorly for complex FSMs
Hard to understand and maintain

⇒ Increase level of abstraction of description

Draw FSMs as graphs (nodes for states, edges for transitions)
Implementation derived by tools

Finite-State Machine Modeling
Motivation

Motivation

In conclusion, to really harness the power of FSMs as a more abstract circuit modelling tool, we require a description method
for FSMs that operates on a higher level of abstraction as well.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

Motivation

Why not simply draw circuits?
Error-prone and scaling poorly for complex FSMs
Hard to understand and maintain

⇒ Increase level of abstraction of description
Draw FSMs as graphs (nodes for states, edges for transitions)

Implementation derived by tools

1

Motivation

Why not simply draw circuits?
Error-prone and scaling poorly for complex FSMs
Hard to understand and maintain

⇒ Increase level of abstraction of description
Draw FSMs as graphs (nodes for states, edges for transitions)

Implementation derived by tools

Finite-State Machine Modeling
Motivation

Motivation

Usually this is done by using graphs to specify FSM behavior. Each state of the FSM corresponds to a dedicated graph node
and edges between nodes model state transitions. How outputs are handled will be shown on an upcoming slide. For now,
we just want to note that we will also make use of this abstraction during this course. The specific notation we use during this
course is also introduced in this lecture.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

Motivation

Why not simply draw circuits?
Error-prone and scaling poorly for complex FSMs
Hard to understand and maintain

⇒ Increase level of abstraction of description
Draw FSMs as graphs (nodes for states, edges for transitions)
Implementation derived by tools

1

Motivation

Why not simply draw circuits?
Error-prone and scaling poorly for complex FSMs
Hard to understand and maintain

⇒ Increase level of abstraction of description
Draw FSMs as graphs (nodes for states, edges for transitions)
Implementation derived by tools

Finite-State Machine Modeling
Motivation

Motivation

As we will also see later, such FSM graphs can be converted to VHDL code in an almost automatic manner, leading to
common and simple-to-understand code structures. The design tools recognize and understand these structures, which
allows them to efficiently implement the described FSMs as circuits.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

2

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

Finite-State Machine Modeling
Models

Common FSM Model

Before we show you how we model FSMs, let us together recall the typical model you already know from past courses on
theoretical computer science and formal description methods. As an example we use the simple_timer module from the
lecture about FSM basics. As specified by the description of its behavior, the module shall contain an N-bit wide counter
register that is incremented when the en signal is asserted. Upon an overflow it wraps around to zero and sets its tick

output when en is high. Let us now model this FSM as a graph. With the internal counter being the only register specified
by the description, this will be the state register. Thus, for each possible value of this register our graph will contain a node.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

2

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

Finite-State Machine Modeling
Models

Common FSM Model

The slide shows a node for the initial state of the FSM, which we mark via a dot in the top-left corner. Inside the node the
value of the counter for this state is shown. For the shown state, all its bits are zero. However, as we heard in the lecture
about FSM basics, the output function of an FSM is a combinational function. Therefore, in addition to the current state
register value, each node must also specify values for the FSM outputs.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

2

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

Finite-State Machine Modeling
Models

Common FSM Model

In this case, the FSM only has the single output tick which is low in this state of the FSM. We draw this as a separate section
in the node, separated by a dashed line. Now that we got the content of our node complete, let us consider the transitions
to other states, which we draw as directed edges between state nodes. In this example there are two cases between which
we must distinguish.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

2

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

Finite-State Machine Modeling
Models

Common FSM Model

If the en signal is low, the counter value is not incremented and the FSM thus stays in its current state. We can draw this
via an edge from the node to itself, labelled by the condition under which the respective transition is taken. The second type
of transition happens when en is high. In this case the counter is incremented, hence leading to a node that represents this
new counter value.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

2

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

Finite-State Machine Modeling
Models

Common FSM Model

The slide shows this succeeding node and how the previous node is connected to it. At this point we want to point out
something paramount: The set edges going out of a state node must cover all possible conditions, meaning all possible
combinations of input values. In a majority of cases this results in a self-loop edge that is conditioned on the conjunction of
the negation of all other outgoing edges.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

2

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

Finite-State Machine Modeling
Models

Common FSM Model

Since writing down this negation can be quite verbose and is also not really necessary, we use the keyword otherwise in
such cases, as shown on the slide. In the very common case of a self-loop labelled with this particular condition, we omit
drawing the edge at all and thus implicitly assume that an FSM remains in its current state if no condition of a transition to a
different node is satisfied. From now on, we will no longer draw such otherwise self-loops.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

2

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

Finite-State Machine Modeling
Models

Common FSM Model

We continue adding such state nodes and transition edges until we enumerated all 2N possible states. Our FSM specification
is now almost complete, barring for the final outgoing edge of the last state node, which is slightly different from the other
edges. The specification states that when the counter hits its maximum value that tick is only set if en is high.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

2

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

Finite-State Machine Modeling
Models

Common FSM Model

This is modelled as follows: In addition to labelling edges with the respective condition, we can also label them with assign-
ments to FSM outputs. Such edge assignments always take precedence over the assignments contained in the state node,
allowing nodes to express default behavior and edges more specialized one.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

2

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

Finite-State Machine Modeling
Models

Common FSM Model

Finally, with our graph for this simple FSM being complete we want to remark that this description method is indeed easier to
use and comprehend.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

2

Common FSM Model

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

counter := 0...00counter := 0...00

tick := 0

en=0

counter := 0...01

tick := 0

en=1

otherwise

counter := 0...10

tick := 0

en=1 . . . counter := 1...11

tick := 0

en=1
tick := 1

2N states⇒ Scaling poorly! (“state explosion”)

Finite-State Machine Modeling
Models

Common FSM Model

However, by enumerating all possible state values the size of the graph has a size exponential in the with of the state register,
which makes it infeasible to draw such graphs for non-toy FSMs. We will now present our FSM model used in this course,
which scales significantly better in a majority of cases.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

HWMod FSM Model

Need more abstract FSM model

Optional assignments to state register and outputs; overriding node’s actions

Mealy when transition output action depends on input

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

condition
{state action}
{output action}

condition
{state action}
{output action}

condition
{state action}
{output action}

initial state

3

HWMod FSM Model

Need more abstract FSM model

Optional assignments to state register and outputs; overriding node’s actions

Mealy when transition output action depends on input

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

condition
{state action}
{output action}

condition
{state action}
{output action}

condition
{state action}
{output action}

initial state

Finite-State Machine Modeling
Models

HWMod FSM Model

On the previous slide we could observe that the often-encountered way to model FSMs via graphs is infeasible for our
purpose. However, we could also observe that, although the values of the state register differed, all states, except for the final
one, where on an abstract level identical as they all just set the output to low and, when enabled, incremented the counter
by one. We will now present the FSM model used in this course, which harnesses this key observation that multiple states
might behave the same on an abstract level.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

HWMod FSM Model

Need more abstract FSM model
“Abstract states” gather multiple states with similar behavior

Optional assignments to state register and outputs; overriding node’s actions

Mealy when transition output action depends on input

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

condition
{state action}
{output action}

condition
{state action}
{output action}

condition
{state action}
{output action}

initial state

3

HWMod FSM Model

Need more abstract FSM model
“Abstract states” gather multiple states with similar behavior

Optional assignments to state register and outputs; overriding node’s actions

Mealy when transition output action depends on input

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

condition
{state action}
{output action}

condition
{state action}
{output action}

condition
{state action}
{output action}

initial state

Finite-State Machine Modeling
Models

HWMod FSM Model

Let us start with the key difference to the model from the previous slide, the abstract states. Instead of each node corre-
sponding to exactly one state register value, in our model each node corresponds to a set of state values. These sets are
not chosen arbitrary, but rather such that the FSM next-state and output logic are similar for states that are grouped together.
To highlight this conceptual similarity between the FSM states grouped in an abstract state, we give these states descriptive
names. Note that an FSM must have one initial state. As before, we mark this state via a dot in the top-left corner in the
respective node.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

HWMod FSM Model

Need more abstract FSM model
Optional assignment to state register; per default value unchanged

Optional assignments to state register and outputs; overriding node’s actions

Mealy when transition output action depends on input

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

condition
{state action}
{output action}

condition
{state action}
{output action}

condition
{state action}
{output action}

initial state

3

HWMod FSM Model

Need more abstract FSM model
Optional assignment to state register; per default value unchanged

Optional assignments to state register and outputs; overriding node’s actions

Mealy when transition output action depends on input

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

condition
{state action}
{output action}

condition
{state action}
{output action}

condition
{state action}
{output action}

initial state

Finite-State Machine Modeling
Models

HWMod FSM Model

Next, similar to before, each node may contain assignments to the state register. We refer to this as state actions, where a
single state action is an assignment to one part of the state register. This will become clear at later examples. In case a node
does not contain a state action, the state register is simply left unchanged. Note that this means that a state can contain
arbitrary many state actions, including none at all. We emphasize this via the enclosing braces.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

HWMod FSM Model

Need more abstract FSM model
Mapping of each state to an output

Optional assignments to state register and outputs; overriding node’s actions

Mealy when transition output action depends on input

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

condition
{state action}
{output action}

condition
{state action}
{output action}

condition
{state action}
{output action}

initial state

3

HWMod FSM Model

Need more abstract FSM model
Mapping of each state to an output

Optional assignments to state register and outputs; overriding node’s actions

Mealy when transition output action depends on input

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

condition
{state action}
{output action}

condition
{state action}
{output action}

condition
{state action}
{output action}

initial state

Finite-State Machine Modeling
Models

HWMod FSM Model

As before, each state must be mapped to values for the FSM outputs. This happens in the separated output actions part of
a node. Again, each output action corresponds to a single assignment to an output. Note that the output actions of a node
are mandatory and that it must contain an assignment for each FSM output in order to mitigate latches being modelled. A
state node without output action is therefore not allowed, which is also the reason why the outputs actions are not enclosed
via braces.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

HWMod FSM Model

Need more abstract FSM model
Conditional state transitions; implicit otherwise self-loop if not exhaustive
Optional assignments to state register and outputs; overriding node’s actions

Mealy when transition output action depends on input

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

condition
{state action}
{output action}

condition
{state action}
{output action}

condition
{state action}
{output action}

initial state

3

HWMod FSM Model

Need more abstract FSM model
Conditional state transitions; implicit otherwise self-loop if not exhaustive
Optional assignments to state register and outputs; overriding node’s actions

Mealy when transition output action depends on input

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

condition
{state action}
{output action}

condition
{state action}
{output action}

condition
{state action}
{output action}

initial state

Finite-State Machine Modeling
Models

HWMod FSM Model

Finally, our model also contains edges for transitions between states. Again, these edges are labelled with a mandatory
condition. However, since in our model the state nodes can correspond to multiple state register values, the conditions do
not only depend on the inputs but also on the state register. Again, the conditions of all transition edges together must
exhaustively cover all possibilities. As before, if this is not the case, we implicitly assume a self-loop on the current state
labelled with otherwise. Furthermore, our model also allows transitions to optionally assign values to the state register or
the outputs. Such assignments always override the ones contained in the node.



HWMod
WS24

FSM Modeling
Motivation

Models

Common Model

HWMod Model

Examples

HWMod FSM Model

Need more abstract FSM model
Conditional state transitions; implicit otherwise self-loop if not exhaustive
Optional assignments to state register and outputs; overriding node’s actions

Mealy when transition output action depends on input

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

condition
{state action}
{output action}

condition
{state action}
{output action}

condition
{state action}
{output action}

initial state

3

HWMod FSM Model

Need more abstract FSM model
Conditional state transitions; implicit otherwise self-loop if not exhaustive
Optional assignments to state register and outputs; overriding node’s actions

Mealy when transition output action depends on input

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

NAME

{state action}

output actions NAME

{state action}

output actions

condition
{state action}
{output action}

condition
{state action}
{output action}

condition
{state action}
{output action}

initial state

Finite-State Machine Modeling
Models

HWMod FSM Model

Finally, before we look at an example, we want to point out a minor drawback of our model. In particular, the information
whether an FSM is of Moore or Mealy type is not immediately visible from looking at the graph. To determine this, one
needs to determine if there exists a transition edge that contains an output action that either directly contains an input in its
assignment, or depends on one via the condition. If that is the case, the FSM is of Mealy type.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Example I: simple timer

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

COUNTCOUNT

s.cnt := s.cnt

COUNT

s.cnt := s.cnt

tick := ’0’

en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

4

Example I: simple timer

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

COUNTCOUNT

s.cnt := s.cnt

COUNT

s.cnt := s.cnt

tick := ’0’

en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

Finite-State Machine Modeling
Examples

Example I: simple timer

As an example, let us now create a description for the simple timer module using our FSM model.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Example I: simple timer

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

COUNTCOUNT

s.cnt := s.cnt

COUNT

s.cnt := s.cnt

tick := ’0’

en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

4

Example I: simple timer

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

COUNTCOUNT

s.cnt := s.cnt

COUNT

s.cnt := s.cnt

tick := ’0’

en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

Finite-State Machine Modeling
Examples

Example I: simple timer

From our previous graph of this FSM we already know that the FSM essentially does the same state and output actions
independent of the particular state register value. We capture this by creating a single abstract state node called COUNT.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Example I: simple timer

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

COUNTCOUNT

s.cnt := s.cnt

COUNT

s.cnt := s.cnt

tick := ’0’

en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

4

Example I: simple timer

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

COUNTCOUNT

s.cnt := s.cnt

COUNT

s.cnt := s.cnt

tick := ’0’

en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

Finite-State Machine Modeling
Examples

Example I: simple timer

Next, let us specify the state actions. Since our FSM only contains a single state register, we only have a single assignment
in here. As stated before, the state action inside a node should ideally correspond to a default assignment that can then be
overridden by the state actions of conditioned transition edges. In this example, the count state register shall not change in
the default case. At this point there are two remarks to be made: First, note how we refer to values of the state register via
the prefix ”s.”. While this might appear strange right now, it will make sense later when we convert our FSM models to VHDL
code. Therefore, we decided to introduce this notation early. Furthermore, note how this assignment is not strictly necessary
in our model, as we assume the state register to hold its value per default. However, we wanted to make this explicit during
the examples to keep them more comprehensible.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Example I: simple timer

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

COUNTCOUNT

s.cnt := s.cnt

COUNT

s.cnt := s.cnt

tick := ’0’

en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

4

Example I: simple timer

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

COUNTCOUNT

s.cnt := s.cnt

COUNT

s.cnt := s.cnt

tick := ’0’

en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

Finite-State Machine Modeling
Examples

Example I: simple timer

Next, we create a mapping for the state to the FSM output. In this case this mapping simply always assigns low to tick,
letting the edges handle the special case where the output is asserted.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Example I: simple timer

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

COUNTCOUNT

s.cnt := s.cnt

COUNT

s.cnt := s.cnt

tick := ’0’

en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

4

Example I: simple timer

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

COUNTCOUNT

s.cnt := s.cnt

COUNT

s.cnt := s.cnt

tick := ’0’

en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

Finite-State Machine Modeling
Examples

Example I: simple timer

Speaking of which, there are two edges which we need to introduce in order to update the state register and set the output
correctly. First, we have the case where the en signal is high, and the counter register has not yet reached its maximum
value. In this case, the counter register is updated by one.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Example I: simple timer

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

COUNTCOUNT

s.cnt := s.cnt

COUNT

s.cnt := s.cnt

tick := ’0’

en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

4

Example I: simple timer

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

COUNTCOUNT

s.cnt := s.cnt

COUNT

s.cnt := s.cnt

tick := ’0’

en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

Finite-State Machine Modeling
Examples

Example I: simple timer

Second, there is the case where en is high and the counter has reached its maximum value. In this case, the counter is set
to zero and the output to high. And with that, our model for the simple timer FSM is complete. Note how we just require
a single abstract state using our model, independent of the counter width. We will now continue by looking at how our model
conceptually relates to synchronous circuits.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Synchronous FSM Behavior

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

clk

res n

en

s.cnt X 1 0

tick

. . .

. . .

. . .

. . .

. . .

0 2 2
N − 2 2

N − 1

5

Synchronous FSM Behavior

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

clk

res n

en

s.cnt X 1 0

tick

. . .

. . .

. . .

. . .

. . .

0 2 2
N − 2 2

N − 1

Finite-State Machine Modeling
Examples

Synchronous FSM Behavior

In general this relation is quite simple. During the reset of the synchronous circuit implementing an FSM the state register is
set to an initial value. In our example this initial value is 0, as shown by the wave diagram on the slide. After the reset, the
FSM operates synchronous to a clock, meaning that it only changes its state and output at active clock edges. We will now
consider the first active clock edge.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Synchronous FSM Behavior

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

clk

res n

en

s.cnt X 1 0

tick

. . .

. . .

. . .

. . .

. . .

0 2 2
N − 2 2

N − 1

5

Synchronous FSM Behavior

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

clk

res n

en

s.cnt X 1 0

tick

. . .

. . .

. . .

. . .

. . .

0 2 2
N − 2 2

N − 1

Finite-State Machine Modeling
Examples

Synchronous FSM Behavior

As en is low and the counter value 0, none of the edge conditions is true and the FSM will thus simply perform the default
actions contained in the node, highlighted in red.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Synchronous FSM Behavior

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

clk

res n

en

s.cnt X 1 0

tick

. . .

. . .

. . .

. . .

. . .

0 2 2
N − 2 2

N − 1

5

Synchronous FSM Behavior

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

clk

res n

en

s.cnt X 1 0

tick

. . .

. . .

. . .

. . .

. . .

0 2 2
N − 2 2

N − 1

Finite-State Machine Modeling
Examples

Synchronous FSM Behavior

At the next active clock edge, the en signal is high. Since the counter is still zero, and thus has not yet reached its maximum
value, the condition of the bottom right edge is satisfied. Therefore, the counter register will be incremented by one. Since
this edge does not override the default action for the output, tick is set to zero again.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Synchronous FSM Behavior

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

clk

res n

en

s.cnt X 1 0

tick

. . .

. . .

. . .

. . .

. . .

0 2 2
N − 2 2

N − 1

5

Synchronous FSM Behavior

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

clk

res n

en

s.cnt X 1 0

tick

. . .

. . .

. . .

. . .

. . .

0 2 2
N − 2 2

N − 1

Finite-State Machine Modeling
Examples

Synchronous FSM Behavior

We continue in this manner until the counter register finally reaches its maximum value.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Synchronous FSM Behavior

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

clk

res n

en

s.cnt X 1 0

tick

. . .

. . .

. . .

. . .

. . .

0 2 2
N − 2 2

N − 1

5

Synchronous FSM Behavior

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

clk

res n

en

s.cnt X 1 0

tick

. . .

. . .

. . .

. . .

. . .

0 2 2
N − 2 2

N − 1

Finite-State Machine Modeling
Examples

Synchronous FSM Behavior

In the current clock cycle, an interesting thing happens: The en signal was low at the active clock edge, but becomes high
later during the clock cycle. Since the state register is a sequential element, the state actions will always happen at the active
clock edge. Hence, the node’s default state action will be performed which leads to the counter keeping its value. However,
recall that the specification states that the tick output is set whenever the counter holds its maximum value and en is high.
As we saw in the lecture about FSM basics, the simple timer is a Mealy type FSM and the output combinationally depends
on the en signal. Therefore, as shown on the slide, with the input becoming high during this clock cycle, the output will be
asserted. We highlighted this in blue in the model.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Synchronous FSM Behavior

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

clk

res n

en

s.cnt X 1 0

tick

. . .

. . .

. . .

. . .

. . .

0 2 2
N − 2 2

N − 1

5

Synchronous FSM Behavior

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

COUNT

s.cnt := s.cnt

tick := ’0’ en=’1’ ∧ s.cnt ̸=2N-1
s.cnt := s.cnt+1

en=’1’ ∧ s.cnt=2N-1
s.cnt := 0
tick := ’1’

clk

res n

en

s.cnt X 1 0

tick

. . .

. . .

. . .

. . .

. . .

0 2 2
N − 2 2

N − 1

Finite-State Machine Modeling
Examples

Synchronous FSM Behavior

Finally, the en input is high during an active clock cycle, which results in the condition of the top-left edge being satisfied.
This leads to the internal counter being reset. However, with counter value being reset, we can observe tick transitioning
to low.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Example II: advanced timer

Behavior Description

After a press of button btn n the synchronous advanced timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

IDLE
s.clk cnt := 0
s.sec cnt := 0

hex := SSD CHAR OFF

DELAY
s.clk cnt := s.clk cnt+1
s.sec cnt := s.sec cnt

hex := to segs(s.sec cnt)

btn n=’0’

s.clk cnt<CLK FREQ-1

TICK

s.clk cnt := 0

hex := to segs(s.sec cnt)

otherwise

s.sec cnt<15
s.sec cnt := s.sec cnt+1

otherwise

6

Example II: advanced timer

Behavior Description

After a press of button btn n the synchronous advanced timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

IDLE
s.clk cnt := 0
s.sec cnt := 0

hex := SSD CHAR OFF

DELAY
s.clk cnt := s.clk cnt+1
s.sec cnt := s.sec cnt

hex := to segs(s.sec cnt)

btn n=’0’

s.clk cnt<CLK FREQ-1

TICK

s.clk cnt := 0

hex := to segs(s.sec cnt)

otherwise

s.sec cnt<15
s.sec cnt := s.sec cnt+1

otherwise

Finite-State Machine Modeling
Examples

Example II: advanced timer

With our FSM model being introduced, and a simple example being shown to demonstrate its advantages and use, we
will now look at a more elaborate example, the advanced timer module. You can find the description of the module’s
behavior on the slide. In essence, it shall count from zero to fifteen seconds after a button press and display the current
second on a seven-segment display. We will now create a model for an FSM implementing this description. Unlike for the
simple timer we know nothing about the internals of the desired FSM. Hence, we also start without a clue about its state
register and possible values. Let us therefore create the FSM step-by-step by introducing new states for all parts of the
desired behavior.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Example II: advanced timer

Behavior Description

After a press of button btn n the synchronous advanced timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

IDLE
s.clk cnt := 0
s.sec cnt := 0

hex := SSD CHAR OFF

DELAY
s.clk cnt := s.clk cnt+1
s.sec cnt := s.sec cnt

hex := to segs(s.sec cnt)

btn n=’0’

s.clk cnt<CLK FREQ-1

TICK

s.clk cnt := 0

hex := to segs(s.sec cnt)

otherwise

s.sec cnt<15
s.sec cnt := s.sec cnt+1

otherwise

6

Example II: advanced timer

Behavior Description

After a press of button btn n the synchronous advanced timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

IDLE
s.clk cnt := 0
s.sec cnt := 0

hex := SSD CHAR OFF

DELAY
s.clk cnt := s.clk cnt+1
s.sec cnt := s.sec cnt

hex := to segs(s.sec cnt)

btn n=’0’

s.clk cnt<CLK FREQ-1

TICK

s.clk cnt := 0

hex := to segs(s.sec cnt)

otherwise

s.sec cnt<15
s.sec cnt := s.sec cnt+1

otherwise

Finite-State Machine Modeling
Examples

Example II: advanced timer

First, we obviously need a state for the FSM to wait for a button press. We call this state IDLE. Furthermore, as the clock
period is most likely significantly smaller than one second, we introduce a clock count register which we can use to determine
the passing of a second. In addition to that, we introduce a register for counting the seconds themselves. We name these
two parts of the state register clk cnt and sec cnt. In the IDLE state they are both set to zero, while the FSM’s output
is set to the SSD CHAR OFF constant. Next, the description tells us that a button press leads to a state where seconds are
counted. Therefore, we introduce a respective transition to a state for counting seconds.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Example II: advanced timer

Behavior Description

After a press of button btn n the synchronous advanced timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

IDLE
s.clk cnt := 0
s.sec cnt := 0

hex := SSD CHAR OFF

DELAY
s.clk cnt := s.clk cnt+1
s.sec cnt := s.sec cnt

hex := to segs(s.sec cnt)

btn n=’0’

s.clk cnt<CLK FREQ-1

TICK

s.clk cnt := 0

hex := to segs(s.sec cnt)

otherwise

s.sec cnt<15
s.sec cnt := s.sec cnt+1

otherwise

6

Example II: advanced timer

Behavior Description

After a press of button btn n the synchronous advanced timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

IDLE
s.clk cnt := 0
s.sec cnt := 0

hex := SSD CHAR OFF

DELAY
s.clk cnt := s.clk cnt+1
s.sec cnt := s.sec cnt

hex := to segs(s.sec cnt)

btn n=’0’

s.clk cnt<CLK FREQ-1

TICK

s.clk cnt := 0

hex := to segs(s.sec cnt)

otherwise

s.sec cnt<15
s.sec cnt := s.sec cnt+1

otherwise

Finite-State Machine Modeling
Examples

Example II: advanced timer

Because we need to wait in this state until a second has passed, we name this state DELAY. In here clk cnt is incremented
by one in each clock cycle, whereas sec cnt retains its value, which is mapped to the output as hexadecimal digit via the
to segs function. How long do we remain in this state?



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Example II: advanced timer

Behavior Description

After a press of button btn n the synchronous advanced timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

IDLE
s.clk cnt := 0
s.sec cnt := 0

hex := SSD CHAR OFF

DELAY
s.clk cnt := s.clk cnt+1
s.sec cnt := s.sec cnt

hex := to segs(s.sec cnt)

btn n=’0’

s.clk cnt<CLK FREQ-1

TICK

s.clk cnt := 0

hex := to segs(s.sec cnt)

otherwise

s.sec cnt<15
s.sec cnt := s.sec cnt+1

otherwise

6

Example II: advanced timer

Behavior Description

After a press of button btn n the synchronous advanced timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

IDLE
s.clk cnt := 0
s.sec cnt := 0

hex := SSD CHAR OFF

DELAY
s.clk cnt := s.clk cnt+1
s.sec cnt := s.sec cnt

hex := to segs(s.sec cnt)

btn n=’0’

s.clk cnt<CLK FREQ-1

TICK

s.clk cnt := 0

hex := to segs(s.sec cnt)

otherwise

s.sec cnt<15
s.sec cnt := s.sec cnt+1

otherwise

Finite-State Machine Modeling
Examples

Example II: advanced timer

Well, as long as it takes until a second has passed. We model this via a respective self-loop, assuming that we know the
constant clock frequency. The minus one has its origin in the fact that a state transition takes one clock cycle. Thus, if we
want to reach the next state after exactly one second, we must account for this one cycle.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Example II: advanced timer

Behavior Description

After a press of button btn n the synchronous advanced timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

IDLE
s.clk cnt := 0
s.sec cnt := 0

hex := SSD CHAR OFF

DELAY
s.clk cnt := s.clk cnt+1
s.sec cnt := s.sec cnt

hex := to segs(s.sec cnt)

btn n=’0’

s.clk cnt<CLK FREQ-1

TICK

s.clk cnt := 0

hex := to segs(s.sec cnt)

otherwise

s.sec cnt<15
s.sec cnt := s.sec cnt+1

otherwise

6

Example II: advanced timer

Behavior Description

After a press of button btn n the synchronous advanced timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

IDLE
s.clk cnt := 0
s.sec cnt := 0

hex := SSD CHAR OFF

DELAY
s.clk cnt := s.clk cnt+1
s.sec cnt := s.sec cnt

hex := to segs(s.sec cnt)

btn n=’0’

s.clk cnt<CLK FREQ-1

TICK

s.clk cnt := 0

hex := to segs(s.sec cnt)

otherwise

s.sec cnt<15
s.sec cnt := s.sec cnt+1

otherwise

Finite-State Machine Modeling
Examples

Example II: advanced timer

In case the second has passed, we transition to a state called TICK where the clk cnt register is set to zero for counting
the next second if necessary. The output logic is the same as in the previous state. We now have to determine the possible
transitions from this to other states.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Example II: advanced timer

Behavior Description

After a press of button btn n the synchronous advanced timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

IDLE
s.clk cnt := 0
s.sec cnt := 0

hex := SSD CHAR OFF

DELAY
s.clk cnt := s.clk cnt+1
s.sec cnt := s.sec cnt

hex := to segs(s.sec cnt)

btn n=’0’

s.clk cnt<CLK FREQ-1

TICK

s.clk cnt := 0

hex := to segs(s.sec cnt)

otherwise

s.sec cnt<15
s.sec cnt := s.sec cnt+1

otherwise

6

Example II: advanced timer

Behavior Description

After a press of button btn n the synchronous advanced timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

IDLE
s.clk cnt := 0
s.sec cnt := 0

hex := SSD CHAR OFF

DELAY
s.clk cnt := s.clk cnt+1
s.sec cnt := s.sec cnt

hex := to segs(s.sec cnt)

btn n=’0’

s.clk cnt<CLK FREQ-1

TICK

s.clk cnt := 0

hex := to segs(s.sec cnt)

otherwise

s.sec cnt<15
s.sec cnt := s.sec cnt+1

otherwise

Finite-State Machine Modeling
Examples

Example II: advanced timer

In case the FSM has not yet counted to fifteen, it transitions back to the DELAY state to wait for another second. Furthermore,
it increments the value held in sec cnt.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Example II: advanced timer

Behavior Description

After a press of button btn n the synchronous advanced timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

IDLE
s.clk cnt := 0
s.sec cnt := 0

hex := SSD CHAR OFF

DELAY
s.clk cnt := s.clk cnt+1
s.sec cnt := s.sec cnt

hex := to segs(s.sec cnt)

btn n=’0’

s.clk cnt<CLK FREQ-1

TICK

s.clk cnt := 0

hex := to segs(s.sec cnt)

otherwise

s.sec cnt<15
s.sec cnt := s.sec cnt+1

otherwise

6

Example II: advanced timer

Behavior Description

After a press of button btn n the synchronous advanced timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

IDLE
s.clk cnt := 0
s.sec cnt := 0

hex := SSD CHAR OFF

DELAY
s.clk cnt := s.clk cnt+1
s.sec cnt := s.sec cnt

hex := to segs(s.sec cnt)

btn n=’0’

s.clk cnt<CLK FREQ-1

TICK

s.clk cnt := 0

hex := to segs(s.sec cnt)

otherwise

s.sec cnt<15
s.sec cnt := s.sec cnt+1

otherwise

Finite-State Machine Modeling
Examples

Example II: advanced timer

If this is not the case, that is, the FSM has already counted to fifteen, it returns to the IDLE state. Since this state sets the
state register to a known value, no specialized state or output action is necessary. This last edge concludes this example.
Make sure that you understand all the states, actions and transitions and that you also have an intuition on how the FSM was
derived from the description of the behavior alone. Furthermore, try to determine if this is a Moore or a Mealy FSM? Since
none of the transition edges features an output action, this models a Moore FSM. This concludes the lecture about modelling
FSMs. In an upcoming video we will continue by discussing how such FSM models can be converted to VHDL code.



HWMod
WS24

FSM Modeling
Motivation

Models

Examples

simple timer

advanced timer

Lecture Complete!

Modified: 2025-03-12, 16:31 (21636bb)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.


	Finite-State Machine Modeling
	Motivation
	Models
	Examples


