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Motivation

m Why not simply draw circuits?

m Error-prone and scaling poorly for complex FSMs
m Hard to understand and maintain

= Increase level of abstraction of description

m Draw FSMs as graphs (nodes for states, edges for transitions)
m Implementation derived by tools
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Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
Gommon Model back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.
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Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
Gommon Model back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

otherwise
h |

®counter := 0...00 | en=l| counter := 0...01 | en=l| counter := 0...10 counter := 1...11

2V states=- Scaling poorly! (“state explosion”)
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HWMod FSM Model

m Need more abstract FSM model

m Conditional state transitions; implicit otherwise self-loop if not exhaustive
m Optional assignments to state register and outputs; overriding node’s actions

m Mealy when transition output action depends on input

NAME

{state update}

output actions

condition
{state update}
{output action}

NAME

{state update}

output actions




Example |I: simple timer

HWMod . A
WS25 Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

simple_timer



Example |I: simple timer

HWMod . A
WS25 Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

simple_timer

C COUNT




Example |I: simple timer

HWMod . A
WS25 Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

simple_timer

C COUNT

s’.cnt » s.cnt




Example |I: simple timer

HWMod . A
WS25 Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

simple_timer

C COUNT

s’.cnt » s.cnt




Example |I: simple timer

HWMod . A
WS25 Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

simple_timer

C COUNT

s’.cnt » s.cnt

tick <« '0’
Q en="1’ A s.cnt#2"-1

s’.cnt & s.cnt+l




Example |I: simple timer

HWMod . A
WS25 Behavior Description

The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.
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en="1" A s.cnt=2"-1
s’.cnt & 0 (] COUNT
tick <« "1’
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s’.cnt & O G COUNT
tick <« "1’
s’.cnt & s.cnt
simple_timer X
tick < 70’ en="1" A s.cnt#2"-1
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|
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zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
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display shall be turned off.

advanced.timer
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segment display hex. Before the button press and after it finished counting, the seven-segment

display shall be turned off.
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