HWMod
WS25

o todeing Hardware Modeling [VU] (191.011)
- WS25 —

Finite-State Machine Modeling

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:04 (f8a58e9)

Motivation

HWMod
WS25

Motivation

m Why not simply draw circuits?

Motivation

HWMod
WS25

Motivation

m Why not simply draw circuits?
m Error-prone and scaling poorly for complex FSMs

Motivation

HWMod
WS25

Motivation

m Why not simply draw circuits?

m Error-prone and scaling poorly for complex FSMs
m Hard to understand and maintain

Motivation

HWMod
WS25

Motivation

m Why not simply draw circuits?

m Error-prone and scaling poorly for complex FSMs
m Hard to understand and maintain

= Increase level of abstraction of description

Motivation

HWMod
WS25

Motivation

m Why not simply draw circuits?

m Error-prone and scaling poorly for complex FSMs
m Hard to understand and maintain

= Increase level of abstraction of description
m Draw FSMs as graphs (nodes for states, edges for transitions)

Motivation

HWMod
WS25

Motivation

m Why not simply draw circuits?

m Error-prone and scaling poorly for complex FSMs
m Hard to understand and maintain

= Increase level of abstraction of description

m Draw FSMs as graphs (nodes for states, edges for transitions)
m Implementation derived by tools

Common FSM Model

HWMod
WS25 . nq
Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
Gommon Model back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

Common FSM Model

HWMod

WS25 . Al
avior Description

The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
Common Model back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

®counter := 0...00

Common FSM Model

HWMod

WS25 . Al
avior Description

The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
Common Model back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

®counter := 0...00

Common FSM Model

HWMod

WS25 . Al
avior Description

The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
Common Model back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

Common FSM Model

HWMod

WS25 . Al
Behavior Description

The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
Common Model back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.
en=0
N
®counter := 0...00 | en=l| counter := 0...01
""" tick 1= 0 © diek =0 |

Common FSM Model

HWMod

Ws25 . L.
Behavior Description

The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
Common Model back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

otherwise
A}
®counter := 0...00 | en=l| counter := 0...01

Common FSM Model

HWMod
WS25 . nq
Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
Gommon Model back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

otherwise
A}
®counter := 0...00

en=1

Common FSM Model

HWMod
WS25 . nq
Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
Gommon Model back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

otherwise
h |

®counter := 0...0

Common FSM Model

HWMod
WS25 . nq
Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
Gommon Model back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

otherwise
h |

®counter := 0...0

Common FSM Model

HWMod
WS25 . nq
Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
Gommon Model back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

otherwise
h |

®counter := 0...00 | en=l| counter := 0...01 | en=l| counter := 0...10 counter := 1...11

2V states=- Scaling poorly! (“state explosion”)

HWMod FSM Model

s m Need more abstract FSM model
HWMod Model
° NAME
{state update} condition

{state update}
{output action}

output actions

NAME

{state update}

output actions

HWMod FSM Model

s m Need more abstract FSM model
m “Abstract states” gather multiple states with similar behavior

HWMod Model

initial state

NAME

{state update} condition
{state update}

{output action}

output actions

NAME

{state update}

output actions

HWMod FSM Model

e m Need more abstract FSM model
m Optional assignment to state register; per default value unchanged

HWMod Model

O NAME

{state update} condition
{state update}

{output action}

output actions

NAME

{state update}

output actions

HWMod FSM Model

e m Need more abstract FSM model
m Mapping of each state to an output

HWMod Model

O NAME

{state update} condition
{state update}

{output action}

output actions

NAME

{state update}

output actions

HWMod FSM Model

R anod m Need more abstract FSM model
m Conditional state transitions; implicit otherwise self-loop if not exhaustive
m Optional assignments to state register and outputs; overriding node’s actions

HWMod Model

O NAME

{state update} condition
{state update}

{output action}

output actions

NAME

{state update}

output actions

HWMod
WS25

HWMod Model

HWMod FSM Model

m Need more abstract FSM model

m Conditional state transitions; implicit otherwise self-loop if not exhaustive
m Optional assignments to state register and outputs; overriding node’s actions

m Mealy when transition output action depends on input

NAME

{state update}

output actions

condition
{state update}
{output action}

NAME

{state update}

output actions

Example |I: simple timer

HWMod . A
WS25 Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

simple_timer

Example |I: simple timer

HWMod . A
WS25 Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

simple_timer

C COUNT

Example |I: simple timer

HWMod . A
WS25 Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

simple_timer

C COUNT

s’.cnt » s.cnt

Example |I: simple timer

HWMod . A
WS25 Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

simple_timer

C COUNT

s’.cnt » s.cnt

Example |I: simple timer

HWMod . A
WS25 Behavior Description
The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

simple_timer

C COUNT

s’.cnt » s.cnt

tick <« '0’
Q en="1’ A s.cnt#2"-1

s’.cnt & s.cnt+l

Example |I: simple timer

HWMod . A
WS25 Behavior Description

The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
back to zero. If counter hits its maximum and en is asserted the tick output is asserted.

simple_timer

en='1" A s.cnt=2"-1
s’.cnt & O
tick <« "1/

C COUNT

s’.cnt » s.cnt

tick <« '0’
Q en="1’ A s.cnt#2"-1

s’.cnt & s.cnt+l

Synchronous FSM Behavior

HWMod
WS25

en="1" A s.cnt=2"-1
s’.cnt & 0 (] COUNT
tick <« "1’

s’.cnt & s.cnt

tick < 70° en="1" A s.cnt#2"-1
s’.cnt x s.cnt+l

simple-timer

clk | I

|

resn L___ [
en .

s.ecnt XY o

tick

Synchronous FSM Behavior

HWMod
WS25

en="1" A s.cnt=2"-1
s’.cnt & 0 (] COUNT
tick <« "1’

s’.cnt & s.cnt

tick < 70’ en="1" A s.cnt#2"-1
s’.cnt & s.cnt+l

simple-timer

|
resn L___ [
en [

s.cnt XX

ST e B

tick

Synchronous FSM Behavior

HWMod
WS25

en="1" A s.cnt=2"-1
s’.cnt & 0 (] COUNT
tick <« "1’

s’.cnt & s.cnt

tick < 70’ en="1" A s.cnt#2"-1
s’.cnt & s.cnt+l

simple-timer

clk L1 I 11
res_n _¢—I: 3 3 3
en [3

s.cnt XX 0 i | 1§ 2

tick

Synchronous FSM Behavior

HWMod
WS25
en='1" A s.cnt=2"-1
s’.cnt & 0 L4 COUNT
tick <« 17
s’ .cnt & s.cnt
ampiesmor [N . '77’77 -
tick <« ’0 en="1" A s.cnt#2"-1
s’.cnt & s.cnt+l

Synchronous FSM Behavior

HWMod

Wses en='1" A s.cnt=2"-1
s’.cnt & 0 (] COUNT
tick <« "1’
s’.cnt & s.cnt
simple_timer X
tick < 70’ en="1" A s.cnt#2"-1
Q s’.cnt & s.cnt+l

|
|

resn Lo |
I

en . |

s.cnt XX 0

ik LI LI I 1. I

tick

Synchronous FSM Behavior

HWMod

Wses en='1" A s.cnt=2"-1
s’.cnt & O G COUNT
tick <« "1’
s’.cnt & s.cnt
simple_timer X
tick < 70’ en="1" A s.cnt#2"-1
Q s’.cnt & s.cnt+l

|
|

resn Lo |
I

en . |

s.cnt XX 0

ik LI LI Lo 1.

tick

Example II: advanced timer

HWMod
WS25

Behavior Description

After a press of button btn_n the synchronous advanced_timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

advanced.timer

Example II: advanced timer

HWMod
WS25

Behavior Description

After a press of button btn_n the synchronous advanced_timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

advanced.timer

U IDLE

s’ .clkent 2 0
s’ .secccnt 2 0O

hex <« SSD_CHAR.QOFF

Example II: advanced timer

HWMod
WS25

Behavior Description

After a press of button btn_n the synchronous advanced_timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

advanced.timer

U IDLE

s’ .clkent 2 0
’.secccnt 0

7]

hex <« SSD_CHAR.QOFF

btn.n="0"

DELAY

s’ .clk.cnt » s.clk.cnt+l
s’ .sec.cnt » s.seccnt

hex <« to_segs(s.sec_cnt)

Example II: advanced timer

HWMod
WS25

After a press of button btn_n the synchronous advanced_timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment
display shall be turned off.

advanced.timer

U IDLE

s’ .clkent 2 0
s’ .secccnt 2 0O

hex <« SSD_CHAR.QOFF

btn.n="0"

DELAY

s’ .clk.cnt » s.clk.cnt+l
s’ .sec.cnt » s.seccnt

hex <« to_segs(s.sec_cnt)
s.clk_cnt<CLK_FREQ-1 6

HWMod
WS25

advanced.timer

Example II: advanced timer

After a press of button btn_n the synchronous advanced_timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment

display shall be turned off.

U IDLE TICK

s’ .clkent 2 0
s’ .secccnt 2 0O

s’ .clk.ent & 0

hex <« SSD_CHAR_QOFF hex <« to_segs(s.sec_cnt)
otherwise

btn.n="0"

DELAY

s’ .clk.cnt » s.clk.cnt+l
s’ .sec.cnt » s.seccnt

hex <« to_segs(s.sec_cnt)
s.clk_cnt<CLK_FREQ-1

HWMod
WS25

advanced.timer

Example II: advanced timer

After a press of button btn_n the synchronous advanced_timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment

display shall be turned off.

U IDLE TICK

s’ .clkent 2 0
s’ .secccnt 2 0O

s’ .clk.ent & 0

hex <« SSD_CHAR_QOFF hex <« to_segs(s.sec_cnt)
otherwise

btn.n="0"

DELAY s.sec.cnt<15
s’ .sec.cnt . s.seccnt+l

s’ .clk.cnt » s.clk.cnt+l
s’ .sec.cnt » s.seccnt

hex <« to_segs(s.sec_cnt)
s.clk_cnt<CLK_FREQ-1

HWMod
WS25

advanced.timer

Example II: advanced timer

After a press of button btn_n the synchronous advanced_timer module starts counting from
zero to 15 seconds (inclusive). It shall display the current second as hex value on the seven-
segment display hex. Before the button press and after it finished counting, the seven-segment

display shall be turned off.

U IDLE TICK

s’ .clkent 2 0 otherwise
s’ .secccnt 2 0O

s’ .clk.ent & 0

hex <« SSD_CHAR_QOFF hex <« to_segs(s.sec_cnt)
otherwise

btn.n="0"

DELAY s.sec.cnt<15
s’ .sec.cnt . s.seccnt+l

s’ .clk.cnt » s.clk.cnt+l
s’ .sec.cnt » s.seccnt

hex <« to_segs(s.sec_cnt)
s.clk_cnt<CLK_FREQ-1

HWMod
WS25

advanced.timer

Lecture Complete!

Modified: 2025-12-16, 16:04 (f8a58e9)

	Finite-State Machine Modeling
	Motivation
	Models
	Examples

