L Finite-State Machine Implementation (in VHDL)

Hardware Modeling [VU] (191.011)

Ws 202425

After watching this lecture you will know how FSMs can be implemented in VHDL. We will further present best-practices
regarding the coding style and discuss some related pitfalls.

HWMod
WS24

e Hardware Modeling [VU] (191.011)
— WS24 —

Finite-State Machine Implementation (in VHDL)

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-12, 16:30 (21636bb)

L Finite-State Machine Implementation (in VHDL)
I—Implementation Steps e e e s
L-Implementing FSMs in VHDL

As already mentioned in the FSM modelling lecture, FSM models adhering to our modelling approach can be implemented
in VHDL by performing a sequence of simple steps. This conversion from an FSM model to VHDL code works for all FSMs
you will encounter in this and future courses. It is one of the key take-ways from this course! Hence, make sure that you can
perform such conversions yourself.

Implementing FSMs in VHDL

HWMod
WS24

m Conversion of FSM model to VHDL code follows simple steps

Implementation
Steps

L Finite-State Machine Implementation (in VHDL)
L Implementation Steps
L-Implementing FSMs in VHDL

o VHDL code follows simple steps
type for the FSM siate

The first step in the conversion process is to create an enumeration type containing all the abstract FSM state names used
in the graph model.

Implementing FSMs in VHDL

HWMod
WS24

m Conversion of FSM model to VHDL code follows simple steps
S Create an enumeration type for the FSM state

L Finite-State Machine Implementation (in VHDL)
L Implementation Steps
L-Implementing FSMs in VHDL

follows simple steps

To represent the state register we need another custom type in the form of the state register record type. This record consists
of all the state variables used in the model. These can be found easily, by gathering the left-hand sides of all state action
assignments. Furthermore, the state register also contains an element that identifies the current abstract FSM state of the
graph model. For this purpose we use the enumeration type declared in step one.

Implementing FSMs in VHDL

HWMod
WS24

m Conversion of FSM model to VHDL code follows simple steps

Sipa Create an enumeration type for the FSM state
Create a record type for the state register

L Finite-State Machine Implementation (in VHDL)
L Implementation Steps
L-Implementing FSMs in VHDL

Next, we need to declare exactly two signals of the state register record type. One represents the current value of the state
register, usually named s. Note that this is exactly why we prefixed the state register elements with s. in the modelling
lecture. This notation ensures, that accesses to the state register in state and output actions are already syntactically valid
accesses to elements of a VHDL record type. This allows us to later directly use the expressions of the graph model in
our code. The other signal represents the output of the next-state logic which holds the next value of the state register.
Therefore, we refer to it as s_nxt.

Implementing FSMs in VHDL

HWMod
WS24

m Conversion of FSM model to VHDL code follows simple steps

S Create an enumeration type for the FSM state
Create a record type for the state register
Create signals for the current (s) and next (s_nxt) register value

L Finite-State Machine Implementation (in VHDL)
L Implementation Steps
L-Implementing FSMs in VHDL

In the fourth step the state register is implemented using a synchronous process as introduced in the lecture about sequential
circuit elements. As an example will demonstrate shortly, this process is very simple and virtually always the same for all
FSMs.

Implementing FSMs in VHDL

HWMod
WS24

m Conversion of FSM model to VHDL code follows simple steps

S Create an enumeration type for the FSM state
Create a record type for the state register
Create signals for the current (s) and next (s_nxt) register value
Implement the state register in a sync. process

L Finite-State Machine Implementation (in VHDL)
L Implementation Steps
L-Implementing FSMs in VHDL

Finally, in the fifth step, the next-state and output logic are implemented using one or two combinational processes. While
these processes contain the most code, as they implement the actual functionality of the FSM, their basic structure is the
same for all FSM implementations, making their implementation quite straight forward. If you use our modelling approach,
you can write down these processes in an almost mechanical manner.

Implementing FSMs in VHDL

HWMod
WS24

m Conversion of FSM model to VHDL code follows simple steps

e Create an enumeration type for the FSM state
Create a record type for the state register
Create signals for the current (s) and next (s_nxt) register value
Implement the state register in a sync. process
Implement the next-state and output logic in comb. process(es)

L Finite-State Machine Implementation (in VHDL)
L Implementation Steps
L-Implementing FSMs in VHDL

Depending on whether you use one or two processes for the next-state and output logic we refer to an implementation as
using the 2, respectively 3, process method. However, since the next-state and output functions usually share a significant
amount of logic, the two-process method is typically preferable as it is more readable and reduces redundant code. It is
therefore also easier to maintain, modify and extend. We therefore strongly recommend you to exclusively use the 2-process
method.

Implementing FSMs in VHDL

HWMod
WS24

m Conversion of FSM model to VHDL code follows simple steps

e Create an enumeration type for the FSM state
Create a record type for the state register
Create signals for the current (s) and next (s_nxt) register value
Implement the state register in a sync. process
Implement the next-state and output logic in comb. process(es)

m 2-vs. 3-process method

m Overlap of next-state and output logic = 2-process usually more readable
m Recommendation: Use the 2-process method

L Finite-State Machine Implementation (in VHDL)
I—Example

L_Example: FSM Types

D
Let us now demonstrate these FSM implementation steps at the hand of the advanced_t imer example for which we already
created a model. As a reminder, this model is shown on the slide.

Example: FSM Types

HWMod
WS24

FSM Types

© IDLE TICK
s.clkcnt := 0 otherwise s.clk.cnt 0
s.seccnt := 0
hex SSD_CHAR_OFF hex := to._segs(s.sec.cnt)
otherwise
btnn'N}
DELAY s.sec.cnt<15
s.clkent := s.clkcnt+l s.sec.ent := s.sec.enttl
s.seccnt := s.sec-cnt
hex := to_segs(s.sec_cnt)
s.clk_cnt<CLK_FREQ-1

L Finite-State Machine Implementation (in VHDL)
I—Example

L_Example: FSM Types

B Greate an enu

meration type for the FSM state.

The first step is to declare an enumeration type for the abstract states of the FSM. As already mentioned, the values of this
type are the names of the FSM'’s abstract states. In this case, the FSM has three states named IDLE, DELAY and TICK.

Example: FSM Types

B Create an enumeration type for the FSM state

20 type fsm_state_t is (IDLE, DELAY, TICK);

FSM Types

IDLE TICK
s.clkcnt := 0 otherwise s.clk.cnt o
s.seccnt := 0

hex := SSD_CHAR.OFF hex := to._segs(s.sec.cnt)
otherwise
btnn'K
DELAY s.sec.cnt<15
s.clkent := s.clkent+l s.seccnt := s.seccnt+l
s.seccnt := s.sec-cnt
hex := to_segs(s.sec_cnt)
s.clk_cnt<CLK_FREQ-1

L Finite-State Machine Implementation (in VHDL) 1 oo et
L-Example s

L_Example: FSM Types

Next, we declare the record type for the state register. As mentioned, this type shall always contain an element for the FSM’s
abstract state. Naturally, as shown on the slide, this element is of the previously declared enumeration type. Now we have

to determine which other elements the state register must contain. We do that by gathering the target elements of all state
actions, regardless of whether they can be found in a state node or alongside a transition edge

Example: FSM Types

B Create a record type for the state register
20 type fsm_state_t is (IDLE, DELAY, TICK);
21 type state_reg_t is record
22 state : fsm_state_t;
FSM Types
i IDLE TICK
s clk,cni = g otherwise s.clk.ent := 0
S.sec-cn =
hex := SSD_CHAR.OFF hex := to._segs(s.sec.cnt)
otherwise
btnn'N}

DELAY s.sec_cnt<15
s.clkent := s.clkent+l s.seccnt := s.seccnt+l
s.sec-cnt : s.sec-cnt
hex := to,segs(s.sec,cnt)\D

s.clk_cnt<CLK_FREQ-1

L Finite-State Machine Implementation (in VHDL) 1 oo et
L-Example i
L_Example: FSM Types

On the slide we colored the left-hand sides of all state actions contained in our model red.

Example: FSM Types

B Create a record type for the state register

20 type fsm_state_t is (IDLE, DELAY, TICK);

21 type state_reg_t is record

22 state : fsm_state_t;

23 clk_cnt : unsigned(log2c (CLK_FREQ) downto 0);
FSM Types 24 tick_cnt : unsigned(3 downto 0);

25 end record;

=0 otherwise ~ 0
=0
hex := SSD_CHAR.OFF hex : -sec.cnt)
otherwise
btnn'N}
DELAY s.sec.cnt<15
s.seccnt := s.seccnt+l

s.clk.cnt+1l

s.clkcnt :
= s.sec-cnt

hex := to_segs(s.sec_cnt)
s.clk_cnt<CLK_FREQ-1
2

L Finite-State Machine Implementation (in VHDL) 1 oo et

L_Example = ‘
I_ . =
Example: FSM Types -‘.-

We can clearly observe that the state register requires two counters. One of them must support counting up to the clock
frequency, while the other one must be able to store values up to fifteen for counting the passed seconds. The data type
information of state register elements is either taken from the behavior description of the respective FSM, or from the model,
by looking at the state actions and conditions involving a specific element.

Example: FSM Types

B Create a record type for the state register

20 type fsm_state_t is (IDLE, DELAY, TICK);
21 type state_reg_t is record

22 state : fsm_state_t;
23 clk_cnt : unsigned(log2c (CLK_FREQ) downto 0);
FSM Types 24 tick_cnt : unsigned(3 downto 0);
25 end record;
TICK
otherwise s.clkcnt := 0
hex := SSD_CHAR.OFF hex := to._segs(s.sec.cnt)
otherwise
btnn'N}
DELAY s.sec.cnt<15
s.clkent := s.clkcnt+l s.secent := s.secenttl
cnt ¢
hex := to_segs(s.sec_cnt)
s.clk_cnt<CLK_FREQ-1
2

L Finite-State Machine Implementation (in VHDL)
I—Example
L_Example: State Register

B Create signals for the current (<) and next (s <) regster value

In the third step we have to declare the signals for the state register and the output of the next-state logic. While we already
mentioned that these are really the only two signals you need to declare when implementing an FSM, we want to illustrate
why this is the case.

Example: State Register

HWMod
WS24

Create signals for the current (s) and next (s_nxt) register value

18 architecture arch of advanced_timer is
19 —— enum and record declarations

State Register

L Finite-State Machine Implementation (in VHDL)
I—Example
L_Example: State Register

B Create signals for the current (<) and next (s <) regster value

For that, recall the basic structure of a finite state machine as shown on the slide. If we think about this structure as being a
VHDL entity the input and output are clearly ports of it. Therefore, since the combinational functions and the register can
be implemented in a single process each, there are only two internal interfaces for which we require dedicated signals. One
is at the output of the state register, which provides the current value stored in the register to the next-state and output logic,
while the other one is at the state register’s input and provides its next value. Both of these interfaces are highlighted on the
slide.

Example: State Register

HWMod
WS24

Create signals for the current (s) and next (s_nxt) register value

18 architecture arch of advanced_timer is (for Mealy machines)

'
'
output
current
state

19 —— enum and record declarations

State Register

input

L Finite-State Machine Implementation (in VHDL)
I—Example
L_Example: State Register

s for the current (s) and next (s_sx) register value

By adding these two signal declarations the declarative part of our FSM implementation’s architecture is complete and we
can proceed with the next step.

Example: State Register

27 begin input

HWMod
WS24
Create signals for the current (s) and next (s_nxt) register value
18 architecture arch of advanced_timer is (for Mealy machines)
19 —— enum and record declarations ! :
State Register 26 signal s, s_nxt : state_reg_t; .
output

L Finite-State Machine Implementation (in VHDL)

I—Example s
L_Example: State Register —e-Fe

B Implement the state register n a sync. process.

In the fourth step, we implement the state register. For that we assume that our FSM is clocked by a signal called c1k and
that it features an asynchronous, active-low, reset.

Example: State Register

HWMod

WS24
Implement the state register in a sync. process
18 architecture arch of advanced_timer is (for Mealy machines)
19 —— enum and record declarations ' :
State Register 26 signal s, s_nxt : state_reg_t;
27 begin input output

k
res.n

L Finite-State Machine Implementation (in VHDL)
I—Example s
L_Example: State Register L -eRe-

B Implement the state register n a sync. process.

Since we all watched the video about describing sequential logic in VHDL we of course know that we must only use the struc-
tures introduced there. Therefore, since we want to implement a register with asynchronous reset, we create a synchronous
process sensitive to the clock and reset signal.

Example: State Register

HWMod

WS24
Implement the state register in a sync. process
18 architecture arch of advanced_timer is (for Mealy machines)
19 —— enum and record declarations ! :

State Register 26 signal s, s_nxt : state_reg_t;
27 begin input output
28 state_reg : process(clk, res_n) s“‘
29 begin
30 if res_n = '0’ then et
31 s <= (state => IDLE, others => (others => "0'));
32 elsif rising_edge(clk) then
33 s <= s_nxt;
34 end if;

35 end process;

L Finite-State Machine Implementation (in VHDL)
I—Example s
L_Example: State Register L -eRe-

B Implement the state register n a sync. process.

Next, we implement the asynchronous reset functionality. From the model we know that the FSM should start in the IDLE
state. Remember that it is good practice to always provide reset values for all flip-flops in a design. Hence, we set the two
counters to zero. The actual value for these counters doesn’t really matter, as they are initialized to zero in the IDLE state
anyway. Please note that this coding style for FSMs enforces concrete reset values for all elements of the state register
at compile time. If you forget to provide a value of a particular element in the aggregate expression representing the reset
value, the code compilation fails.

Example: State Register

HWMod

WS24
Implement the state register in a sync. process
18 architecture arch of advanced_timer is (for Mealy machines)
19 —-— enum and record declarations ! :

State Register 26 signal s, s_nxt : state_reg_t;
27 begin input output
28 state_reg : process(clk, res_n) s“‘
29 begin
30 if res_n = '0’ then et
31 s <= (state => IDLE, others => (others => ’0'));
32 elsif rising_edge(clk) then
33 s <= s_nxt;
34 end if;

35 end process;

L Finite-State Machine Implementation (in VHDL)
I—Example s
L_Example: State Register L -eRe-

B Implement the state register n a sync. process.

At each active clock edge, we simply assign the next-state signal to the current state signal. Since we are using a record
type for the state register, this can be done in a single line of code. With that we are done implementing the state register.

Example: State Register

HWMod

WS24
Implement the state register in a sync. process
18 architecture arch of advanced_timer is (for Mealy machines)
19 —— enum and record declarations ! :

State Register 26 signal s, s_nxt : state_reg_t;
27 begin input output
28 state_reg : process(clk, res_n) s“‘
29 begin
30 if res_n = '0’ then et
31 s <= (state => IDLE, others => (others => "0'));
32 elsif rising_edge (clk) then
33 s <= s_nxt;
34 end if;

35 end process;

L Finite-State Machine Implementation (in VHDL)

I—Example s
L_Example: State Register L -eRe-

B Implement the state register n a sync. process.

Note how the code for our state register is, except for the reset, completely independent of the particular FSM we implement
because we use the dedicated record type. At this point we want to point out that this is always the only code required to
implement the state register of an FSM and that you can use this general structure for all FSMs in our courses. We will now
look at the implementation of the next-state and output functions.

Example: State Register

HWMod

WS24
Implement the state register in a sync. process
18 architecture arch of advanced_timer is (for Mealy machines)
19 —— enum and record declarations ! :

State Register 26 signal s, s_nxt : state_reg_t;
27 begin input output
28 state_reg : process(clk, res_n) s“‘
29 begin
30 if res_n = '0’ then et
31 s <= (state => IDLE, others => (others => "0'));
32 elsif rising_edge(clk) then
33 s <= s_nxt;
34 end if;

35 end process;

L Finite-State Machine Implementation (in VHDL)
I—Example
L_Example: Next-State and Output Logic

B Implement the next-state and output logic in comb. process

The final step in the FSM implementation flow is about the next-state and output logic. Since these two combinational logic
blocks essentially define the behavior of the FSM, this is also the most elaborate step. However, by basing the code on the
FSM model again, this step is nevertheless usually straight forward. Since we are using the 2-process approach, we will
implement the two functions in a single combinational process. The slide already shows its first few lines. However, before
we continue let us address one of the most common mistakes we observed beginners make when implementing FSMs.

Example: Next-State and Output Logic

HWMod
ws24 Implement the next-state and output logic in comb. process

36 comb : process(all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));

Comb. Logic

L Finite-State Machine Implementation (in VHDL)
I—Example
L_Example: Next-State and Output Logic

B implement
& Recall

Recall what we heard about inferred latches in a previous lecture: A latch is inferred in a combinational process if there
exists both, a path which writes to some signal, and one in which it does not write to the same signal. When implementing
FSMs this often accidentally happens when either an output or an element of the next state is not assigned a value within
the respective process. However, by adhering to the flow shown in this lecture it is easy to mitigate such mistakes in the first
place. You know that, by design, only the s_nxt signal or an FSM output can result in a latch. Since these signals are only
driven by the FSMs combinational process, you can easily ensure that they are always assigned a value.

Example: Next-State and Output Logic

HWMod
ws24 Implement the next-state and output logic in comb. process

m Recall: Path without assignment through comb. process = latch!

36 comb : process(all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));

Comb. Logic

L Finite-State Machine Implementation (in VHDL)
I—Example
L_Example: Next-State and Output Logic

To achieve this we recommend you to do as shown on the slide. The first thing you should do in your combinational process is
to assign s to the s_nxt signal. Recall that, in the modeling lecturei, we defined that the state register simply keeps its value
if there are no state actions performed in a state. This is exactly, what is expressed using this default assignment. Then
you should provide a default value for each of your outputs. This default value can either depend on the current value of the
state register, an input or a constant. In our example we use the current value of tick_cnt converted to a sensible seven
segment display value. Since two of the three states use this assignment anyway, this is a reasonable choice that reduces
the amount of code we need to write for the individual states.

Example: Next-State and Output Logic

HWMod

w24 Implement the next-state and output logic in comb. process
m Recall: Path without assignment through comb. process = latch!
= Recommendation: Use default assignments

36 comb : process(all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));

Comb. Logic

L Finite-State Machine Implementation (in VHDL)
I—Example
L_Example: Next-State and Output Logic

B impl

After providing default assignments we can implement the actual next-state and output logic. For that we can simply use a
case statement and define the two logic functions per state. This way the code does not become too complex, is easy to
read, modify and maintain. Furthermore, as before, this general code structure is the same for all FSMs. Let us now look at
the two logic functions for the IDLE state.

Example: Next-State and Output Logic

HWMod
ws24 Implement the next-state and output logic in comb. process

m Recall: Path without assignment through comb. process = latch!
= Recommendation: Use default assignments
m Define next-state and output logic per state

36 comb : process(all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));

Comb. Logic

41 case s.state is

L Finite-State Machine Implementation (in VHDL)
I—Example

L_Example: Next-State and Output Logic

B impl

To implement the combinational logic required for a state, we need the respective state node of our model, as well as all
out-going edges. For the IDLE state this is shown on the slide.

Example: Next-State and Output Logic

"Weat Implement the next-state and output logic in comb. process
m Recall: Path without assignment through comb. process =- latch!
= Recommendation: Use default assignments
m Define next-state and output logic per state

36 comb : process(all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));

Comb. Logic

) . IDLE
41 case s.state is

.clkcnt := 0
42 when IDLE => s.cox-ent i=
s.sec_cnt :=

btn—n='0'\) DELAY

L Finite-State Machine Implementation (in VHDL)

B impl

I—Example
I—Example: Next-State and Output Logic o o

Inside the when clause we write the state and output actions of the state node if they are not covered by the default assign-
ments. In our case all actions inside the IDLE state node differ from the default assignments.

Example: Next-State and Output Logic

HWMod
ws24 Implement the next-state and output logic in comb. process

m Recall: Path without assignment through comb. process = latch!
= Recommendation: Use default assignments
m Define next-state and output logic per state

36 comb : process(all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));

Comb. Logic

41 case s.state is

42 when IDLE =>

43 s_nxt.clk_cnt <= (others => ’0');

44 s_nxt.tick_cnt <= (others => ’0’); hex := SSD.CHAR OFF

45 hex <= SSD_CHAR_OFF; \)
- — btn.n="0"
DELAY

L Finite-State Machine Implementation (in VHDL)
I—Example :
L_Example: Next-State and Output Logic o =

Next, we add an i £ statement for all outgoing edges. The condition of each i f statement is the condition of the respective
edge, whereas inside the body the destination state of the transition edge is set to be the next FSM state. Furthermore, all
actions of the respective edge are also added to this body. In our case there are no transition edges.

Example: Next-State and Output Logic

HWMod
ws24 Implement the next-state and output logic in comb. process

m Recall: Path without assignment through comb. process = latch!
= Recommendation: Use default assignments
m Define next-state and output logic per state

36 comb : process(all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));

Comb. Logic

41 case s.state is

42 when IDLE =>

43 s_nxt.clk_cnt <= (others => ’0');

44 s_nxt.tick_cnt <= (others => '0'); hex := SSD_CHAR.OFF

45 hex <= SSD_CHAR_OFF; o

46 if btn_n = '0’ then > DEERY
47 s_nxt.state <= DELAY;

48 end 1if;

L Finite-State Machine Implementation (in VHDL)
I—Example :
L_Example: Next-State and Output Logic o =

We continue in this manner, defining the next-state and output logic functions for all states of our FSM.

Example: Next-State and Output Logic

HWMod
ws24 Implement the next-state and output logic in comb. process

m Recall: Path without assignment through comb. process = latch!
= Recommendation: Use default assignments
m Define next-state and output logic per state

36 comb : process(all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));

Comb. Logic

41 case s.state is

42 when IDLE =>

43 s_nxt.clk_cnt <= (others => ’0');

44 s_nxt.tick_cnt <= (others => '0'); hex := SSD_CHAR.OFF

45 hex <= SSD_CHAR_OFF; o

46 if btn_n = 0’ then o > DELAY
47 s_nxt.state <= DELAY;

48 end 1if;

L Finite-State Machine Implementation (in VHDL)
I—Example
I—Example: Next-State and Output Logic (cont'd)

The result of this is shown on this slide. Note how the code features three when statements - one for each abstract FSM
state. Furthermore, observe how all states have the same structure and how the otherwise edges of the DELAY and TICK
states simply correspond to e1se statements.

Example: Next-State and Output Logic (cont’d)

HWMod 36 comb : process(all)
Ws24 37 begin
38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));
40

41 case s.state is 55 when TICK =>
42 when IDLE => 56 s_nxt.clk_cnt <= (others => "0');
43 s_nxt.clk_cnt <= (others => ’0"); 57 s_nxt.state <= DELAY;
. 44 s_nxt.tick_cnt <= (others => ’'0’); 58 if s.tick_cnt < 15 then
45 hex <= SSD_CHAR_OFF; 59 s_nxt.tick_cnt <= s.tick_cnt + 1
46 if btn_n = 0’ then 60 else
47 s_nxt.state <= DELAY; 61 s_nxt.state <= IDLE;
48 end if; 62 end if;
49
50 when DELAY =>
51 if s.clk_cnt < CLK_FREQ-1 then
52 s_nxt.clk_cnt <= s.clk_cnt + 1;
53 else
54 s_nxt.state <= TICK;
55 end if;

L Finite-State Machine Implementation (in VHDL)
I—Example
I—Example: Next-State and Output Logic (cont’d)

Finally, let us look at where we can find the next-state and output logic inside this single combinational process.

Example: Next-State and Output Logic (cont’d)

HWMod 36 comb : process(all)

Ws24 37 begin
38 s_nxt <= s;
39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));
40
41 case s.state is 55 when TICK =>
42 when IDLE => 56 s_nxt.clk_cnt <= (others => '0');
43 s_nxt.clk_cnt <= (others => ’0"); 57 s_nxt.state <= DELAY;

. 44 s_nxt.tick_cnt <= (others => ’'0’); 58 if s.tick_cnt < 15 then
45 hex <= SSD_CHAR_OFF; 59 s_nxt.tick_cnt <= s.tick_cnt + 1
46 if btn_n = 0’ then 60 else
47 s_nxt.state <= DELAY; 61 s_nxt.state <= IDLE;
48 end if; 62 end if;
49
50 when DELAY =>
51 if s.clk_cnt < CLK_FREQ-1 then (for Mealy machines)
52 s_nxt.clk_cnt <= s.clk_cnt + 1; 5- :
53 else : J\/\H fr\)&f\
54 s_nxt.state <= TICK; i"Pu'—‘—{F”eEng}'f'e ‘ R O Goge > o
55 end if; SO saxt o s L

L Finite-State Machine Implementation (in VHDL)
I—Example
I—Example: Next-State and Output Logic (cont’d)

The next-state logic comprises all assignments to the s_nxt signal, including respective conditional statements and the
default assignments.

Example: Next-State and Output Logic (cont’d)

HWMod 36 comb : process(all)

Ws24 37 begin
38 s_nxt <= s;
39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));
40
41 case s.state is 55 when TICK =>
42 when IDLE => 56 s_nxt.clk_cnt <= (others => ’'0’);
43 s_nxt.clk_cnt <= (others => ’0’); 57 s_nxt.state <= DELAY;

. 44 s_nxt.tick_cnt <= (others => ’'0’); 58 if s.tick_cnt < 15 then
45 hex <= SSD_CHAR_OFF; 59 s_nxt.tick_cnt <= s.tick_cnt + 1
46 if btn_n = 0’ then 60 else
47 s_nxt.state <= DELAY; 61 s_nxt.state <= IDLE;
48 end if; 62 end if;
49
50 when DELAY =>
51 if s.clk_cnt < CLK_FREQ-1 then (for Mealy machines)
52 s_nxt.clk_cnt <= s.clk_cnt + 1; : '
53 elise /,f*kf D
54 s_nxt.state <= TICK; input R oy ouu
55 end if; st - e o

L Finite-State Machine Implementation (in VHDL)
I—Example
I—Example: Next-State and Output Logic (cont’d)

e

Similarly, the output logic comprises the assignments to the FSM outputs, as well as respective conditional statements and
default assignments. In this example, due to the sensible choice of the default value for hex only very little code is required for
the output logic. Finally, please note that the left-hand side of all assignments in the process only use the next state signal
or an output. The right-hand sides, as well as expressions used in if-conditions, only use the state signals or inputs. This
property should hold up in most FSMs you design and implement! This concludes this lecture about the implementation
of FSMs in VHDL. The key take-aways of this video are that coding FSMs is a simple task if you use our FSM model and
adhere to the steps introduced in this lecture.

Example: Next-State and Output Logic (cont’d)

HWMod 36 comb : process(all)
Ws24 37 begin
38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));

41 case s.state is 55 when TICK =>
42 when IDLE => 56 s_nxt.clk_cnt <= (others => "0');
43 s_nxt.clk_cnt <= (others => ’0"); 57 s_nxt.state <= DELAY;
. 44 s_nxt.tick_cnt <= (others => ’'0’); 58 if s.tick_cnt < 15 then
45 hex <= SSD_CHAR_OFF; 59 s_nxt.tick_cnt <= s.tick_cnt + 1
46 if btn_n = 0’ then 60 else
47 s_nxt.state <= DELAY; 61 s_nxt.state <= IDLE;
48 end if; 62 end if;
49
50 when DELAY =>
51 if s.clk_cnt < CLK_FREQ-1 then (for Mealy machines)
52 s_nxt.clk_cnt <= s.clk_cnt + 1; l ------------------------------------

53 else : Py \/\H

. N Next-State State
54 s_nxt.state <= TICK; input —‘—'{F Logic s Register output
55 end lf, b snxt s

RST.

5

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

HWMod
WS24

Lecture Complete!

Modified: 2025-03-12, 16:30 (21636bb)

	Finite-State Machine Implementation (in VHDL)
	Implementation Steps
	Example

