HWMod
WS25

e Hardware Modeling [VU] (191.011)
— WS25 —

Finite-State Machine Implementation (in VHDL)

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:03 (f8a58e9)



Implementing FSMs in VHDL

HWMod
WS25

m Conversion of FSM model to VHDL code follows simple steps

Implementation
Steps



Implementing FSMs in VHDL

HWMod
WS25

m Conversion of FSM model to VHDL code follows simple steps
Spa Create an enumeration type for the FSM state



Implementing FSMs in VHDL

HWMod
WS25

m Conversion of FSM model to VHDL code follows simple steps

S Create an enumeration type for the FSM state
Create a record type for the state register



HWMod
WS25

Implementing FSMs in VHDL

m Conversion of FSM model to VHDL code follows simple steps

Create an enumeration type for the FSM state
Create a record type for the state register
Create signals for the current (s) and next (s_nxt) register value



Implementing FSMs in VHDL

HWMod
WS25

m Conversion of FSM model to VHDL code follows simple steps

S Create an enumeration type for the FSM state
Create a record type for the state register
Create signals for the current (s) and next (s_nxt) register value
Implement the state register in a sync. process



Implementing FSMs in VHDL

HWMod
WS25

m Conversion of FSM model to VHDL code follows simple steps

et Create an enumeration type for the FSM state
Create a record type for the state register
Create signals for the current (s) and next (s_nxt) register value
Implement the state register in a sync. process
Implement the next-state and output logic in comb. process(es)



Implementing FSMs in VHDL

HWMod
WS25

m Conversion of FSM model to VHDL code follows simple steps

et Create an enumeration type for the FSM state
Create a record type for the state register
Create signals for the current (s) and next (s_nxt) register value
Implement the state register in a sync. process
Implement the next-state and output logic in comb. process(es)

m 2- vs. 3-process method

m Overlap of next-state and output logic = 2-process usually more readable
m Recommendation: Use the 2-process method



Example: FSM Types

HWMod
WS25

FSM Types

O IDLE TICK
s’.clkecnt & 0 otherwise s’ .clk.ent % 0
s’.secent 2 0

hex <« SSD_CHAROFF

hex < to_segs(s.sec._cnt)

otherwise
btn_n="0"
DELAY s.sec.cnt<15
s’ .clk.ent * s.clk.ent+l s’.seccnt & s.seccnt+l

.seccnt * s.sec-cnt

hex <« to_segs(s.sec_cnt)
s.clk_cnt<CLK_FREQ-1




Example: FSM Types

R anod Create an enumeration type for the FSM state

20 type fsm_state_t is

(IDLE, DELAY, TICK);

FSM Types

IDLE

TICK
' .
s’.clkecnt & 0 otherwise s’ .clk.ent % 0
s’.secent 2 0

hex <« SSD_CHAROFF

hex < to_segs(s.sec._cnt)

otherwise

btn_n="0"

DELAY

s’ .clk.ent * s.clk.ent+l s’.seccnt & s.seccnt+l
’.sec.cnt * s.sec.cnt

s.sec-cnt<l5

hex <« to_segs(s.sec_cnt)
s.clk_cnt<CLK_FREQ-1




Example: FSM Types

HWMod

s Create a record type for the state register
20 type fsm_state_t is (IDLE, DELAY, TICK);
21 type state_reg_t is record
22 state fsm_state_t;

FSM Types

IDLE

TICK
' .
s’.clkecnt & 0 otherwise s’ .clk.ent % 0
s’.secent 2 0

hex <« SSD_CHAROFF

hex < to_segs(s.sec._cnt)
otherwise

btn_n="0"

DELAY

s.sec-cnt<l5
s’.clkent & s.clkoent+l s’.secent b s.seccnt+l
s’.sec.ent . s.sec.ent

hex <« to_segs(s.sec_cnt)
s.clk_cnt<CLK_FREQ-1




Example: FSM Types

R anod Create a record type for the state register
20 type fsm_state_t is (IDLE, DELAY, TICK);
21 type state_reg_t is record
22 state : fsm_state_t;
23 clk_cnt : unsigned(log2c (CLK_FREQ) downto 0);
FSM Types 24 tick_cnt : unsigned(3 downto 0);
25 end record;
o IDLE TICK
s’ .clkent & 0 otherwise

s’.clkcnt & 0

s’ .sec.cent 2 0

hex <« SSD_CHAR_OFF hex < to.segs(s.sec.cnt)
otherwise

btn_n="0"

DELAY s.sec_cnt<15

s’ .seccnt & s.seccnt+l

hex <« to_segs(s.sec_cnt)
s.clk_cnt<CLK_FREQ-1




Example: FSM Types

R anod Create a record type for the state register
20 type fsm_state_t is (IDLE, DELAY, TICK);
21 type state_reg_t is record
22 state : fsm_state_t;
23 clk_cnt : unsigned(log2c (CLK_FREQ) downto 0);
FSM Types 24 tick_cnt : unsigned (3 downto 0);
25 end record;
o IDLE TICK
s’ .clkent & 0 otherwise

s’.clkcnt & 0

s’ .sec.cent 2 0

hex <« SSD_CHAR_OFF hex < to.segs(s.sec.cnt)
otherwise

btn_n="0"

DELAY s.sec_cnt<15

s’ .seccnt & s.seccnt+l

hex <« to_segs(s.sec_cnt)
s.clk_cnt<CLK_FREQ-1




Example: State Register

HWMod
WS25

Create signals for the current (s) and next (s_nxt) register value

18 architecture arch of advanced_timer is
19 —— enum and record declarations

State Register



Example: State Register

HWMod
WS25
Create signals for the current (s) and next (s_nxt) register value
18 architecture arch of advanced_timer is (for Mealy machines)
19 —— enum and record declarations
State Register

input

'
'
output
current
state



Example: State Register

HWMod
WS25
Create signals for the current (s) and next (s_nxt) register value
18 architecture arch of advanced_timer is (for Mealy machines)
19 —— enum and record declarations :
State Register 26 signal s, s_nxt : state_reg_t;
27 begin input output



Example: State Register

27 begin input

HWMod
WS25
Implement the state register in a sync. process
18 architecture arch of advanced_timer is (for Mealy machines)
19 —— enum and record declarations :
State Register 26 signal s, s_nxt : state_reg_t;
output



Example: State Register

HWMod

WS25
Implement the state register in a sync. process
18 architecture arch of advanced_timer is (for Mealy machines)
19 —-— enum and record declarations

State Register 26 signal s, s_nxt : state_reg_t;
27 begin input output
28 state_reg : process(clk, res_n)
29 begin
30 if res_n = "0’ then
31 s <= (state => IDLE, others => (others => ’0'));
32 elsif rising_edge (clk) then
33 s <= s_nxt;
34 end if;

35 end process;



Example: State Register

HWMod

WS25
Implement the state register in a sync. process
18 architecture arch of advanced_timer is (for Mealy machines)
19 —-— enum and record declarations

State Register 26 signal s, s_nxt : state_reg_t;
27 begin input output
28 state_reg : process(clk, res_n)
29 begin
30 if res_n = "0’ then
31 s <= (state => IDLE, others => (others => ’0'));
32 elsif rising_edge (clk) then
33 s <= s_nxt;
34 end if;

35 end process;



Example: State Register

HWMod

WS25
Implement the state register in a sync. process
18 architecture arch of advanced_timer is (for Mealy machines)
19 —-— enum and record declarations

State Register 26 signal s, s_nxt : state_reg_t;
27 begin input output
28 state_reg : process(clk, res_n)
29 begin
30 if res_n = "0’ then
31 s <= (state => IDLE, others => (others => ’0'));
32 elsif rising_edge (clk) then
33 s <= s_nxt;
34 end if;

35 end process;



Example: State Register

HWMod

WS25
Implement the state register in a sync. process
18 architecture arch of advanced_timer is (for Mealy machines)
19 —-— enum and record declarations

State Register 26 signal s, s_nxt : state_reg_t;
27 begin input output
28 state_reg : process(clk, res_n)
29 begin
30 if res_n = "0’ then
31 s <= (state => IDLE, others => (others => ’0'));
32 elsif rising_edge (clk) then
33 s <= s_nxt;
34 end if;

35 end process;



Example: Next-State and Output Logic

HWMod
Ws25 Implement the next-state and output logic in comb. process

36 comb : process(all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));

Comb. Logic



Example: Next-State and Output Logic

HWMod
Ws25 Implement the next-state and output logic in comb. process

m Recall: Path without assignment through comb. process = latch!

36 comb : process(all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));

Comb. Logic



Example: Next-State and Output Logic

HWMod

W25 Implement the next-state and output logic in comb. process
m Recall: Path without assignment through comb. process = latch!
= Recommendation: Use default assignments

36 comb : process(all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));

Comb. Logic



Example: Next-State and Output Logic

HWMod
Ws25 Implement the next-state and output logic in comb. process

m Recall: Path without assignment through comb. process = latch!
= Recommendation: Use default assignments
m Define next-state and output logic per state

36 comb : process(all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));

Comb. Logic

41 case s.state is



Example: Next-State and Output Logic

HWMod
Ws25 Implement the next-state and output logic in comb. process

m Recall: Path without assignment through comb. process = latch!
= Recommendation: Use default assignments
m Define next-state and output logic per state

36 comb : process(all)

37 begin
Comb. Logic a8 s_nxt <= s;
39 hex <= to_segs(std ulogic_vector(s.tick_cnt));
40
M case s.state is * IDLE
42 when IDLE => s’.clkent & 0

s’.sec.cnt & 0

hex <« SSD_CHAR.OFF

btn,n='0'\> DELAY




Example: Next-State and Output Logic

HWMod
Ws25 Implement the next-state and output logic in comb. process

m Recall: Path without assignment through comb. process = latch!
= Recommendation: Use default assignments
m Define next-state and output logic per state

36 comb : process(all)

37 begin
R a5 38 s_nxt <= s;
39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));
40
41 case s.state is ° IDLE
42 when IDLE => octens 20
43 s_nxt.clk_cnt <= (others => ’'0"); |- n
44 s_nxt.tick_cnt <= (others => '0'); hex < SSD-CHAROFF

45 hex <= SSD_CHAR_OFF; \)
- — btn_n="0"
DELAY




HWMod
WS25

Comb. Logic

Example: Next-State and Output Logic

Implement the next-state and output logic in comb. process
m Recall: Path without assignment through comb. process = latch!

= Recommendation: Use default assignments
m Define next-state and output logic per state

36 comb : process(all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std ulogic_vector(s.tick_cnt))

’

IDLE

s’.clkcnt & 0
s’.sec.cnt & 0

hex <« SSD_CHAR.OFF

41 case s.state is °

42 when IDLE =>

43 s_nxt.clk_cnt <= (others => ’'0'); |-~
44 s_nxt.tick_cnt <= (others => '0'");

45 hex <= SSD_CHAR_OFF;

46 if btn_n = 0’ then

47 s_nxt.state <= DELAY;

48 end if;

btn_n=" 0'\\>

DELAY




HWMod
WS25

Comb. Logic

Example: Next-State and Output Logic

Implement the next-state and output logic in comb. process
m Recall: Path without assignment through comb. process = latch!

= Recommendation: Use default assignments
m Define next-state and output logic per state

36 comb : process(all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std ulogic_vector(s.tick_cnt))

’

IDLE

s’.clkcnt & 0
s’.sec.cnt & 0

hex <« SSD_CHAR.OFF

41 case s.state is °

42 when IDLE =>

43 s_nxt.clk_cnt <= (others => ’'0'); |-~
44 s_nxt.tick_cnt <= (others => '0'");

45 hex <= SSD_CHAR_OFF;

46 if btn_n = 0’ then

47 s_nxt.state <= DELAY;

48 end if;

btn_n=" 0'\\>

DELAY




HWMod
WS25

Comb. Logic

Example: Next-State and Output Logic (cont’d)

36 comb
37 begi

38 S_

process (all)
n
nxt <= s;

39 hex <= to_segs(std ulogic vector(s.tick_cnt));

41 ca

se s.state is

when IDLE =>
s_nxt.clk_cnt <= (others => ’0");
s_nxt.tick_cnt <= (others => ’'0');
hex <= SSD_CHAR_OFF;

if btn_n = ’0’ then
s_nxt.state <= DELAY;
end if;

when DELAY =>
if s.clk_cnt < CLK_FREQ-1 then
s_nxt.clk_cnt <= s.clk_cnt + 1;
else
s_nxt.state <= TICK;
end if;

55
56
57
58
59
60
61
62

when TICK =>
s_nxt.clk_cnt <=

(others => '0');

s_nxt.state <= DELAY;
if s.tick_cnt < 15 then

s_nxt.tick_cnt
else

s_nxt.state <=
end if;

<= s.tick_cnt +

IDLE;



Example: Next-State and Output Logic (cont’d)

HWMod 36 comb : process(all)

Ws25 37 begin
38 s_nxt <= s;
39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));
40
41 case s.state is 55 when TICK =>
42 when IDLE => 56 s_nxt.clk_cnt <= (others => '0');
43 s_nxt.clk_cnt <= (others => ’0"); 57 s_nxt.state <= DELAY;

Gomb Logic 44 s_nxt.tick_cnt <= (others => '07); 58 if s.tick_cnt < 15 then
45 hex <= SSD_CHAR_OFF; 59 s_nxt.tick_cnt <= s.tick_cnt + 1
46 if btn_n = 0’ then 60 else
47 s_nxt.state <= DELAY; 61 s_nxt.state <= IDLE;
48 end if; 62 end if;
49
50 when DELAY =>
51 if s.clk_cnt < CLK_FREQ-1 then (for Mealy machines)
52 s_nxt.clk_cnt <= s.clk_cnt + 1; ---------------------------------------------- :
53 else H PV V=N
54 s_nxt.state <= TICK; input — Nefg;(ca(e /J Rj;:er i ‘iili’ii‘ H>—’ output
55 end 1if; st . SUUS




HWMod
WS25

Comb. Logic

Example: Next-State and Output Logic (cont’d)

55
56
57
58
59
60
61
62

input

when TICK =>
s_nxt.clk_cnt <= (others =>
s_nxt.state <= DELAY;
if s.tick_cnt < 15 then
s_nxt.tick_cnt <= s.tick_cnt + 1
elise

07);

36 comb process (all)

37 begin

38 s_nxt <= s;

39 hex <= to_segs(std_ulogic_vector(s.tick_cnt));
40

41 case s.state is

42 when IDLE =>

43 s_nxt.clk_cnt <= (others => ’0’);
44 s_nxt.tick_cnt <= (others => ’'07);
45 hex <= SSD_CHAR_OFF;

46 if btn_n = 0’ then

47 s_nxt.state <= DELAY;

48 end if;

49

50 when DELAY =>

51 if s.clk_cnt < CLK_FREQ-1 then

52 s_nxt.clk_cnt <= s.clk_cnt + 1;
53 elise

54 s_nxt.state <= TICK;

55 end if;

s_nxt.state <= IDLE;
end if;
(for Mealy machines)
State / Output 2
Register L Logic > output
soxt s SO
asT




Example: Next-State and Output Logic (cont’d)

HWMod 36 comb : process(all)

Ws25 37 begin
38 s_nxt <= s;
39 hex <= to_segs(std ulogic vector(s.tick_cnt));
40
41 case s.state is 55 when TICK =>
42 when IDLE => 56 s_nxt.clk_cnt <= (others => '0');
43 s_nxt.clk_cnt <= (others => ’0"); 57 s_nxt.state <= DELAY;

Gomb Logic 44 s_nxt.tick_cnt <= (others => '07); 58 if s.tick_cnt < 15 then
45 hex <= SSD_CHAR_OFF; 59 s_nxt.tick_cnt <= s.tick_cnt + 1
46 if btn_n = 0’ then 60 else
47 s_nxt.state <= DELAY; 61 s_nxt.state <= IDLE;
48 end if; 62 end if;
49
50 when DELAY =>
51 if s.clk_cnt < CLK_FREQ-1 then (for Mealy machines)
52 s_nxt.clk_cnt <= s.clk_cnt + 1; ---------------------------------------------- :
53 else H
54 s_nxt.state <= TICK; input —= Nefg;(ca(e /J Rj;:er output
55 end 1if; st .




HWMod
WS25

Lecture Complete!

Modified: 2025-12-16, 16:03 (f8a58e9)



	Finite-State Machine Implementation (in VHDL)
	Implementation Steps
	Example


