
HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Hardware Modeling [VU] (191.011)
– WS24 –

Finite-State Machine Basics

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-10, 16:07 (b25118c)

Hardware Modeling [VU] (191.011)
– WS24 –

Finite-State Machine Basics

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Finite-State Machine Basics

This lecture gives a first introduction to finite-state machines as digital circuits, their components and how they can look like
in VHDL. It forms the basis for upcoming lectures on state machine modeling and implementation.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Introduction

Fundamental structure in digital designs

An FSM consists of a
set of inputs, outputs and states
transition function

Synchronous FSMs: State changes only happen at clock events!
Important VHDL concepts used in the lecture

Enumeration and record types
Behavioral modeling of combinational logic
Sequential circuit elements (i.e., registers)

1

Introduction

Fundamental structure in digital designs

An FSM consists of a
set of inputs, outputs and states
transition function

Synchronous FSMs: State changes only happen at clock events!
Important VHDL concepts used in the lecture

Enumeration and record types
Behavioral modeling of combinational logic
Sequential circuit elements (i.e., registers)

Finite-State Machine Basics
Introduction

Introduction

You should already have encountered finite-state machines – also called finite-state automata or simply state machines – in
other courses, where they have probably been introduced as abstract mathematical models for computations. However, in
this lecture, we will not focus on the theory of automata, but rather look into concrete circuit implementations of this concept.
Finite-state machines – or FSMs in short – are a fundamental structure in digital design. Understanding them is crucial
for developing efficient, reliable, and maintainable hardware, as they allow for the abstraction of complex processes into
manageable sub-tasks and components.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Introduction

Fundamental structure in digital designs
An FSM consists of a

set of inputs, outputs and states
transition function

Synchronous FSMs: State changes only happen at clock events!
Important VHDL concepts used in the lecture

Enumeration and record types
Behavioral modeling of combinational logic
Sequential circuit elements (i.e., registers)

1

Introduction

Fundamental structure in digital designs
An FSM consists of a

set of inputs, outputs and states
transition function

Synchronous FSMs: State changes only happen at clock events!
Important VHDL concepts used in the lecture

Enumeration and record types
Behavioral modeling of combinational logic
Sequential circuit elements (i.e., registers)

Finite-State Machine Basics
Introduction

Introduction

On a basic level, an FSM is defined by a set of inputs, outputs, and states, as well as a transition function that defines how
the system moves from one state to another based on the current state and the input values. The outputs are set according
to the current state and, in some instances, also the input values.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Introduction

Fundamental structure in digital designs
An FSM consists of a

set of inputs, outputs and states
transition function

Synchronous FSMs: State changes only happen at clock events!

Important VHDL concepts used in the lecture
Enumeration and record types
Behavioral modeling of combinational logic
Sequential circuit elements (i.e., registers)

1

Introduction

Fundamental structure in digital designs
An FSM consists of a

set of inputs, outputs and states
transition function

Synchronous FSMs: State changes only happen at clock events!

Important VHDL concepts used in the lecture
Enumeration and record types
Behavioral modeling of combinational logic
Sequential circuit elements (i.e., registers)

Finite-State Machine Basics
Introduction

Introduction

Since we are talking about digital circuits, the inputs and outputs are sets of binary signals. The states are encoded into
binary values as well and the current state is stored in some sequential circuit element. Because we want to implement
synchronous circuits, this element is implemented using flip-flops, which are clocked by a common clock signal to ensure that
all state transitions occur synchronously to the clock. Thus, at each active clock edge, the values stored by the flip-flops that
hold the state are updated according to the transition function.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Introduction

Fundamental structure in digital designs
An FSM consists of a

set of inputs, outputs and states
transition function

Synchronous FSMs: State changes only happen at clock events!
Important VHDL concepts used in the lecture

Enumeration and record types
Behavioral modeling of combinational logic
Sequential circuit elements (i.e., registers)

1

Introduction

Fundamental structure in digital designs
An FSM consists of a

set of inputs, outputs and states
transition function

Synchronous FSMs: State changes only happen at clock events!
Important VHDL concepts used in the lecture

Enumeration and record types
Behavioral modeling of combinational logic
Sequential circuit elements (i.e., registers)

Finite-State Machine Basics
Introduction

Introduction

Note that this lecture, and the following ones on modeling and implementing FSMs, heavily rely on other topics we have
already covered. In particular, we will use enumeration and record types, behavioral circuit modeling and sequential circuit
elements. If you cannot recall these topics please refer back to the respective lectures before starting your journey into the
world of finite-state machines, as these topics are crucial for understanding the upcoming content.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

State Machine as Digital Circuits

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

2

State Machine as Digital Circuits

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Finite-State Machine Basics
FSM Circuits

State Machine as Digital Circuits

This slide shows the general structure of a circuit implementing a finite-state machine. It consists of three main components:
the next-state logic, the state register and the output logic. Please note that the cloud shapes are used for purely combina-
tional components. Over the next few slides we will explain each of the individual parts in detail.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

Next-State Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Implements the transition function
by reading the input and the current state
to calculate the next state of the FSM

State changes are synchronous!

clock

current state A B C

next state B C D

3

Next-State Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Implements the transition function
by reading the input and the current state
to calculate the next state of the FSM

State changes are synchronous!

clock

current state A B C

next state B C D

Finite-State Machine Basics
FSM Circuits

Next-State Logic

The next-state logic is a purely combinational circuit, meaning that it must not contain any sequential circuit elements. Hence,
it cannot read or depend on the clock or reset signal in any way and – most importantly – must not contain any latches.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

Next-State Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Implements the transition function
by reading the input and the current state
to calculate the next state of the FSM

State changes are synchronous!

clock

current state A B C

next state B C D

3

Next-State Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Implements the transition function
by reading the input and the current state
to calculate the next state of the FSM

State changes are synchronous!

clock

current state A B C

next state B C D

Finite-State Machine Basics
FSM Circuits

Next-State Logic

It implements the transition function of the FSM by mapping the applied inputs and the current state to the next state. Notice
that the current state is provided by the output of the state register, while the next state signal is its input.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

Next-State Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Implements the transition function
by reading the input and the current state
to calculate the next state of the FSM

State changes are synchronous!

clock

current state A B C

next state B C D

3

Next-State Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Implements the transition function
by reading the input and the current state
to calculate the next state of the FSM

State changes are synchronous!

clock

current state A B C

next state B C D

Finite-State Machine Basics
FSM Circuits

Next-State Logic

As a result state changes can only happen at the active clock edge, where the next state signal is captured by the state
register and becomes the new current state. The timing diagram illustrates this behavior. It shows an FSM transitioning
through the states A, B and C. At each rising clock edge the value of the next state signal becomes the current state.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

State Register

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Only synchronous component in the FSM
Reads next state and outputs current state

Strictly stick to the code patterns for registers!
Reset value defines initial state

4

State Register

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Only synchronous component in the FSM
Reads next state and outputs current state

Strictly stick to the code patterns for registers!
Reset value defines initial state

Finite-State Machine Basics
FSM Circuits

State Register

As already mentioned, the state register stores the actual state of the FSM and is the only sequential circuit element and
implemented using a set of D flip-flops.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

State Register

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Only synchronous component in the FSM
Reads next state and outputs current state
Strictly stick to the code patterns for registers!

Reset value defines initial state

4

State Register

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Only synchronous component in the FSM
Reads next state and outputs current state
Strictly stick to the code patterns for registers!

Reset value defines initial state

Finite-State Machine Basics
FSM Circuits

State Register

At this point we want to stress that, as always, you must strictly adhere to the code patterns for flip-flops discussed in the
lecture about sequential circuit elements to avoid the introduction of bugs or non-synthesizable code.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

State Register

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Only synchronous component in the FSM
Reads next state and outputs current state
Strictly stick to the code patterns for registers!
Reset value defines initial state

4

State Register

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Only synchronous component in the FSM
Reads next state and outputs current state
Strictly stick to the code patterns for registers!
Reset value defines initial state

Finite-State Machine Basics
FSM Circuits

State Register

The reset value of this register defines the initial state of the FSM. The reset can be implemented in a synchronous or
asynchronous way. However, in this course we consistently only use the asynchronous variant as discussed in a previous
lecture.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

Output Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Produces the actual output signals
Defines the FSM type

Moore: Output depends solely on current state
Mealy: Output depends on current state and input

Mealy machines
can react to input changes in the same clock cycle (i.e., combinationally)
(sometimes) require fewer states than a similar Moore machine

Can share logic with the next-state logic

5

Output Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Produces the actual output signals
Defines the FSM type

Moore: Output depends solely on current state
Mealy: Output depends on current state and input

Mealy machines
can react to input changes in the same clock cycle (i.e., combinationally)
(sometimes) require fewer states than a similar Moore machine

Can share logic with the next-state logic

Finite-State Machine Basics
FSM Circuits

Output Logic

Exactly like the next-state logic, the output logic is also a purely combinational circuit and it must also under no circumstances
contain latches or depend on the clock.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

Output Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Produces the actual output signals

Defines the FSM type
Moore: Output depends solely on current state
Mealy: Output depends on current state and input

Mealy machines
can react to input changes in the same clock cycle (i.e., combinationally)
(sometimes) require fewer states than a similar Moore machine

Can share logic with the next-state logic

5

Output Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Produces the actual output signals

Defines the FSM type
Moore: Output depends solely on current state
Mealy: Output depends on current state and input

Mealy machines
can react to input changes in the same clock cycle (i.e., combinationally)
(sometimes) require fewer states than a similar Moore machine

Can share logic with the next-state logic

Finite-State Machine Basics
FSM Circuits

Output Logic

As its name suggests its purpose is to produce the actual output signals of the FSM.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

Output Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Produces the actual output signals
Defines the FSM type

Moore: Output depends solely on current state
Mealy: Output depends on current state and input

Mealy machines
can react to input changes in the same clock cycle (i.e., combinationally)
(sometimes) require fewer states than a similar Moore machine

Can share logic with the next-state logic

5

Output Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Produces the actual output signals
Defines the FSM type

Moore: Output depends solely on current state
Mealy: Output depends on current state and input

Mealy machines
can react to input changes in the same clock cycle (i.e., combinationally)
(sometimes) require fewer states than a similar Moore machine

Can share logic with the next-state logic

Finite-State Machine Basics
FSM Circuits

Output Logic

It also defines the state machine’s type. Depending on whether the output logic only reads the current state or the current
state and the inputs, the FSM is either classified as a Moore or a Mealy automaton, respectively.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

Output Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Produces the actual output signals
Defines the FSM type

Moore: Output depends solely on current state
Mealy: Output depends on current state and input

Mealy machines
can react to input changes in the same clock cycle (i.e., combinationally)
(sometimes) require fewer states than a similar Moore machine

Can share logic with the next-state logic

5

Output Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Produces the actual output signals
Defines the FSM type

Moore: Output depends solely on current state
Mealy: Output depends on current state and input

Mealy machines
can react to input changes in the same clock cycle (i.e., combinationally)
(sometimes) require fewer states than a similar Moore machine

Can share logic with the next-state logic

Finite-State Machine Basics
FSM Circuits

Output Logic

This type basically affects the way an FSM can react to input changes. In Mealy machines, as illustrated by the figure, there
is a combinational path from the input to the output. Therefore, the circuit can adjust its output based on an input change in
the same clock cycle without the need to wait for an active clock edge. In contrast, Moore machines only derive their outputs
from their current state. Hence, they can only react to input changes after the next clock edge, that is, in the next cycle.
Moreover, it is sometimes possible to implement the same functionality with a fewer number of states when using a Mealy
instead of a Moore machine.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

Output Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Produces the actual output signals
Defines the FSM type

Moore: Output depends solely on current state
Mealy: Output depends on current state and input

Mealy machines
can react to input changes in the same clock cycle (i.e., combinationally)
(sometimes) require fewer states than a similar Moore machine

Can share logic with the next-state logic

5

Output Logic

Next-State
Logic

State
Register

Output
Logic

RST

input output
next
state

current
state

clock reset

Purely combinational
Must not read the clock or reset
Must not contain latches

Produces the actual output signals
Defines the FSM type

Moore: Output depends solely on current state
Mealy: Output depends on current state and input

Mealy machines
can react to input changes in the same clock cycle (i.e., combinationally)
(sometimes) require fewer states than a similar Moore machine

Can share logic with the next-state logic

Finite-State Machine Basics
FSM Circuits

Output Logic

Since the next-state and the output logic operate on overlapping sets of inputs, it is in practice often the case that logic can
be shared between these two components. This holds true for both types of state machines, Mealy and Moore. However,
this is nothing you need to worry about too much, as the synthesis tool will figure this out for you.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

Output Logic - Combinational Loops

Interacting Mealy FSMs can lead to combinational loops!

Example
FSM A: “Start when not busy”
FSM B: “Assert busy when started”

FSM A FSM B

start

busy

Only use Mealy machines when really necessary

6

Output Logic - Combinational Loops

Interacting Mealy FSMs can lead to combinational loops!

Example
FSM A: “Start when not busy”
FSM B: “Assert busy when started”

FSM A FSM B

start

busy

Only use Mealy machines when really necessary

Finite-State Machine Basics
FSM Circuits

Output Logic - Combinational Loops

Although it might seem that Mealy machines have clear advantages over Moore machines, care must be taken as they can
easily introduce combinational loops into a system.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

Output Logic - Combinational Loops

Interacting Mealy FSMs can lead to combinational loops!
Example

FSM A: “Start when not busy”
FSM B: “Assert busy when started”

FSM A FSM B

start

busy

Only use Mealy machines when really necessary

6

Output Logic - Combinational Loops

Interacting Mealy FSMs can lead to combinational loops!
Example

FSM A: “Start when not busy”
FSM B: “Assert busy when started”

FSM A FSM B

start

busy

Only use Mealy machines when really necessary

Finite-State Machine Basics
FSM Circuits

Output Logic - Combinational Loops

Consider the shown example, of two FSMs that interact with each other using a ”start” and a ”busy” signal. FSM A uses the
start signal to initiate some operation in FSM B, while FSM B uses the busy signal to indicate to A that is ready to receive
the start signal. Assume both A and B are Mealy machines. The output logic of A sets the start signal to high as soon as the
busy signal it receives from B is low. At the same time, the output logic of B sets the busy signal to high as soon as it sees a
high level on the start input. This will essentially lead to B simply forwarding the ”start” to its ”busy” signal, and to A negating
the applied ”busy” signal. In this scenario we thus end up with a combinational loop formed by the output-logic of FSM A and
B. A possible fix would be to implement B as a Moore state machine and only set the busy signal in the cycle after the start
signal was set to high.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Next-State Logic

State Register

Output Logic

Example: Timer

Output Logic - Combinational Loops

Interacting Mealy FSMs can lead to combinational loops!
Example

FSM A: “Start when not busy”
FSM B: “Assert busy when started”

FSM A FSM B

start

busy

Only use Mealy machines when really necessary

6

Output Logic - Combinational Loops

Interacting Mealy FSMs can lead to combinational loops!
Example

FSM A: “Start when not busy”
FSM B: “Assert busy when started”

FSM A FSM B

start

busy

Only use Mealy machines when really necessary

Finite-State Machine Basics
FSM Circuits

Output Logic - Combinational Loops

In summary: Be aware of this potential issue and try to avoid Mealy machines unless, they are really necessary.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Specification

Circuit

Implementation

Simple Timer - Specification

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

Interface
1 entity simple_timer is
2 generic (
3 N : positive := 8
4);
5 port (
6 clk : in std_ulogic;
7 res_n : in std_ulogic;
8 en : in std_ulogic;
9 tick : out std_ulogic

10);
11 end entity;

7

Simple Timer - Specification

Behavior Description

The simple timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2N − 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

Interface
1 entity simple_timer is
2 generic (
3 N : positive := 8
4);
5 port (
6 clk : in std_ulogic;
7 res_n : in std_ulogic;
8 en : in std_ulogic;
9 tick : out std_ulogic

10);
11 end entity;

Finite-State Machine Basics
Example: Timer

Simple Timer - Specification

As the introduction over the previous slides might have been a bit abstract, let’s look at a simple concrete example to get a
better understanding of the discussed components. The example that we will use for this is a very basic timer circuit, with
the interface shown on the lower part of the slide. Its behavior is quite straightforward. The timer keeps an internal N-bit
counter, which represents the state of the FSM. Whenever the en input is high, this counter is synchronously incremented.
This is a task implemented by the next-state logic. When the counter reaches its maximum value (2N − 1) it simply overflows
to zero. The output tick is set to high whenever the maximum value is reached and the en input is high.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Specification

Circuit

Implementation

Simple Timer - Circuit

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

8

Simple Timer - Circuit

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

Finite-State Machine Basics
Example: Timer

Simple Timer - Circuit

Here we see a circuit that implements the specification formulated on the previous slide. By now you should already recognize
most of the shown circuit elements. However, for the sake of completeness: The circle-shaped components with the equals
sign and plus sign represent an adder and a comparator, respectively.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Specification

Circuit

Implementation

Simple Timer - Circuit

next state logic

state register

output logic

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

8

Simple Timer - Circuit

next state logic

state register

output logic

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

Finite-State Machine Basics
Example: Timer

Simple Timer - Circuit

Of course, the central D flip-flops represent the state register. Its output, that is the signal labeled cnt, holds the current state
of the FSM. It feeds the output as well as the next state logic. The next state logic uses a multiplexer to decide whether
to increment the count value, based on the en input. It produces the cnt_nxt signal, which is connected to the input of the
state register. At the next rising clock edge this signal will be captured by the state register, thus becoming the new state.
Besides the current state, the output logic also reads the en input, making the circuit a Mealy state machine.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Specification

Circuit

Implementation

Simple Timer - Implementation

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

1 architecture arch of simple_timer is
2 subtype cnt_t is
3 unsigned(N-1 downto 0);
4 signal cnt, cnt_nxt : cnt_t;
5 constant M : natural := 2**N-1;
6 begin
7

8 state_reg : process(clk, res_n)
9 begin

10 if res_n = ’0’ then
11 cnt <= (others => ’0’);
12 elsif rising_edge(clk) then
13 cnt <= cnt_nxt;
14 end if;
15 end process;

16 next_state_logic : process(all)
17 begin
18 cnt_nxt <= cnt;
19 if en = ’1’ then
20 cnt_nxt <= cnt + 1;
21 end if;
22 end process;
23

24 output_logic : process(all)
25 variable comp : std_ulogic;
26 begin
27 comp := ’1’ when cnt=M else ’0’;
28 tick <= en and comp;
29 end process;
30 end architecture; 9

Simple Timer - Implementation

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

1 architecture arch of simple_timer is
2 subtype cnt_t is
3 unsigned(N-1 downto 0);
4 signal cnt, cnt_nxt : cnt_t;
5 constant M : natural := 2**N-1;
6 begin
7

8 state_reg : process(clk, res_n)
9 begin

10 if res_n = ’0’ then
11 cnt <= (others => ’0’);
12 elsif rising_edge(clk) then
13 cnt <= cnt_nxt;
14 end if;
15 end process;

16 next_state_logic : process(all)
17 begin
18 cnt_nxt <= cnt;
19 if en = ’1’ then
20 cnt_nxt <= cnt + 1;
21 end if;
22 end process;
23

24 output_logic : process(all)
25 variable comp : std_ulogic;
26 begin
27 comp := ’1’ when cnt=M else ’0’;
28 tick <= en and comp;
29 end process;
30 end architecture;

Finite-State Machine Basics
Example: Timer

Simple Timer - Implementation

Let us now look at a possible architecture for the simple_timer entity.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Specification

Circuit

Implementation

Simple Timer - Implementation

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

1 architecture arch of simple_timer is
2 subtype cnt_t is
3 unsigned(N-1 downto 0);
4 signal cnt, cnt_nxt : cnt_t;
5 constant M : natural := 2**N-1;
6 begin
7

8 state_reg : process(clk, res_n)
9 begin

10 if res_n = ’0’ then
11 cnt <= (others => ’0’);
12 elsif rising_edge(clk) then
13 cnt <= cnt_nxt;
14 end if;
15 end process;

16 next_state_logic : process(all)
17 begin
18 cnt_nxt <= cnt;
19 if en = ’1’ then
20 cnt_nxt <= cnt + 1;
21 end if;
22 end process;
23

24 output_logic : process(all)
25 variable comp : std_ulogic;
26 begin
27 comp := ’1’ when cnt=M else ’0’;
28 tick <= en and comp;
29 end process;
30 end architecture; 9

Simple Timer - Implementation

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

1 architecture arch of simple_timer is
2 subtype cnt_t is
3 unsigned(N-1 downto 0);
4 signal cnt, cnt_nxt : cnt_t;
5 constant M : natural := 2**N-1;
6 begin
7

8 state_reg : process(clk, res_n)
9 begin

10 if res_n = ’0’ then
11 cnt <= (others => ’0’);
12 elsif rising_edge(clk) then
13 cnt <= cnt_nxt;
14 end if;
15 end process;

16 next_state_logic : process(all)
17 begin
18 cnt_nxt <= cnt;
19 if en = ’1’ then
20 cnt_nxt <= cnt + 1;
21 end if;
22 end process;
23

24 output_logic : process(all)
25 variable comp : std_ulogic;
26 begin
27 comp := ’1’ when cnt=M else ’0’;
28 tick <= en and comp;
29 end process;
30 end architecture;

Finite-State Machine Basics
Example: Timer

Simple Timer - Implementation

To implement it, we first declare the signals cnt and cnt_nxt.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Specification

Circuit

Implementation

Simple Timer - Implementation

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

1 architecture arch of simple_timer is
2 subtype cnt_t is
3 unsigned(N-1 downto 0);
4 signal cnt, cnt_nxt : cnt_t;
5 constant M : natural := 2**N-1;
6 begin
7

8 state_reg : process(clk, res_n)
9 begin

10 if res_n = ’0’ then
11 cnt <= (others => ’0’);
12 elsif rising_edge(clk) then
13 cnt <= cnt_nxt;
14 end if;
15 end process;

16 next_state_logic : process(all)
17 begin
18 cnt_nxt <= cnt;
19 if en = ’1’ then
20 cnt_nxt <= cnt + 1;
21 end if;
22 end process;
23

24 output_logic : process(all)
25 variable comp : std_ulogic;
26 begin
27 comp := ’1’ when cnt=M else ’0’;
28 tick <= en and comp;
29 end process;
30 end architecture; 9

Simple Timer - Implementation

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

1 architecture arch of simple_timer is
2 subtype cnt_t is
3 unsigned(N-1 downto 0);
4 signal cnt, cnt_nxt : cnt_t;
5 constant M : natural := 2**N-1;
6 begin
7

8 state_reg : process(clk, res_n)
9 begin

10 if res_n = ’0’ then
11 cnt <= (others => ’0’);
12 elsif rising_edge(clk) then
13 cnt <= cnt_nxt;
14 end if;
15 end process;

16 next_state_logic : process(all)
17 begin
18 cnt_nxt <= cnt;
19 if en = ’1’ then
20 cnt_nxt <= cnt + 1;
21 end if;
22 end process;
23

24 output_logic : process(all)
25 variable comp : std_ulogic;
26 begin
27 comp := ’1’ when cnt=M else ’0’;
28 tick <= en and comp;
29 end process;
30 end architecture;

Finite-State Machine Basics
Example: Timer

Simple Timer - Implementation

Next, using these signals, we can implement the state register via a synchronous process. For that we simply follow the code
pattern presented in the lecture about sequential circuit elements. During the asynchronous reset, the counter is set to zero,
which defines the initial state of our FSM. On rising clock edges, we simply assign the next signal to the counter to update
the state register.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Specification

Circuit

Implementation

Simple Timer - Implementation

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

1 architecture arch of simple_timer is
2 subtype cnt_t is
3 unsigned(N-1 downto 0);
4 signal cnt, cnt_nxt : cnt_t;
5 constant M : natural := 2**N-1;
6 begin
7

8 state_reg : process(clk, res_n)
9 begin

10 if res_n = ’0’ then
11 cnt <= (others => ’0’);
12 elsif rising_edge(clk) then
13 cnt <= cnt_nxt;
14 end if;
15 end process;

16 next_state_logic : process(all)
17 begin
18 cnt_nxt <= cnt;
19 if en = ’1’ then
20 cnt_nxt <= cnt + 1;
21 end if;
22 end process;
23

24 output_logic : process(all)
25 variable comp : std_ulogic;
26 begin
27 comp := ’1’ when cnt=M else ’0’;
28 tick <= en and comp;
29 end process;
30 end architecture; 9

Simple Timer - Implementation

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

1 architecture arch of simple_timer is
2 subtype cnt_t is
3 unsigned(N-1 downto 0);
4 signal cnt, cnt_nxt : cnt_t;
5 constant M : natural := 2**N-1;
6 begin
7

8 state_reg : process(clk, res_n)
9 begin

10 if res_n = ’0’ then
11 cnt <= (others => ’0’);
12 elsif rising_edge(clk) then
13 cnt <= cnt_nxt;
14 end if;
15 end process;

16 next_state_logic : process(all)
17 begin
18 cnt_nxt <= cnt;
19 if en = ’1’ then
20 cnt_nxt <= cnt + 1;
21 end if;
22 end process;
23

24 output_logic : process(all)
25 variable comp : std_ulogic;
26 begin
27 comp := ’1’ when cnt=M else ’0’;
28 tick <= en and comp;
29 end process;
30 end architecture;

Finite-State Machine Basics
Example: Timer

Simple Timer - Implementation

Let us now turn our attention to the next-state logic. Recall that this function is purely combinational and is hence also
implemented in a purely combinational process. The required multiplexer is described using an if-condition which checks
the en signal. Notice, that we only write to the ”next” signal, as the task of the next state logic is to prepare the next value
that will be captured into the state register.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Specification

Circuit

Implementation

Simple Timer - Implementation

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

1 architecture arch of simple_timer is
2 subtype cnt_t is
3 unsigned(N-1 downto 0);
4 signal cnt, cnt_nxt : cnt_t;
5 constant M : natural := 2**N-1;
6 begin
7

8 state_reg : process(clk, res_n)
9 begin

10 if res_n = ’0’ then
11 cnt <= (others => ’0’);
12 elsif rising_edge(clk) then
13 cnt <= cnt_nxt;
14 end if;
15 end process;

16 next_state_logic : process(all)
17 begin
18 cnt_nxt <= cnt;
19 if en = ’1’ then
20 cnt_nxt <= cnt + 1;
21 end if;
22 end process;
23

24 output_logic : process(all)
25 variable comp : std_ulogic;
26 begin
27 comp := ’1’ when cnt=M else ’0’;
28 tick <= en and comp;
29 end process;
30 end architecture; 9

Simple Timer - Implementation

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

1 architecture arch of simple_timer is
2 subtype cnt_t is
3 unsigned(N-1 downto 0);
4 signal cnt, cnt_nxt : cnt_t;
5 constant M : natural := 2**N-1;
6 begin
7

8 state_reg : process(clk, res_n)
9 begin

10 if res_n = ’0’ then
11 cnt <= (others => ’0’);
12 elsif rising_edge(clk) then
13 cnt <= cnt_nxt;
14 end if;
15 end process;

16 next_state_logic : process(all)
17 begin
18 cnt_nxt <= cnt;
19 if en = ’1’ then
20 cnt_nxt <= cnt + 1;
21 end if;
22 end process;
23

24 output_logic : process(all)
25 variable comp : std_ulogic;
26 begin
27 comp := ’1’ when cnt=M else ’0’;
28 tick <= en and comp;
29 end process;
30 end architecture;

Finite-State Machine Basics
Example: Timer

Simple Timer - Implementation

Finally, the output logic is also implemented using its own process. As with the next state logic, this process must also be
purely combinational. The constant M, representing the maximum value of the counter, is declared in the declaration part of
the architecture.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Specification

Circuit

Implementation

Simple Timer - Implementation

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

1 architecture arch of simple_timer is
2 subtype cnt_t is
3 unsigned(N-1 downto 0);
4 signal cnt, cnt_nxt : cnt_t;
5 constant M : natural := 2**N-1;
6 begin
7

8 state_reg : process(clk, res_n)
9 begin

10 if res_n = ’0’ then
11 cnt <= (others => ’0’);
12 elsif rising_edge(clk) then
13 cnt <= cnt_nxt;
14 end if;
15 end process;

16 next_state_logic : process(all)
17 begin
18 cnt_nxt <= cnt;
19 if en = ’1’ then
20 cnt_nxt <= cnt + 1;
21 end if;
22 end process;
23

24 output_logic : process(all)
25 variable comp : std_ulogic;
26 begin
27 comp := ’1’ when cnt=M else ’0’;
28 tick <= en and comp;
29 end process;
30 end architecture; 9

Simple Timer - Implementation

D Q

RST

=
++1

2N-1

en

tick

clk

res n

N

cntcnt nxt

1 architecture arch of simple_timer is
2 subtype cnt_t is
3 unsigned(N-1 downto 0);
4 signal cnt, cnt_nxt : cnt_t;
5 constant M : natural := 2**N-1;
6 begin
7

8 state_reg : process(clk, res_n)
9 begin

10 if res_n = ’0’ then
11 cnt <= (others => ’0’);
12 elsif rising_edge(clk) then
13 cnt <= cnt_nxt;
14 end if;
15 end process;

16 next_state_logic : process(all)
17 begin
18 cnt_nxt <= cnt;
19 if en = ’1’ then
20 cnt_nxt <= cnt + 1;
21 end if;
22 end process;
23

24 output_logic : process(all)
25 variable comp : std_ulogic;
26 begin
27 comp := ’1’ when cnt=M else ’0’;
28 tick <= en and comp;
29 end process;
30 end architecture;

Finite-State Machine Basics
Example: Timer

Simple Timer - Implementation

The FSM implementation style we used here is referred to as the 3-process-method, as it uses three separate processes for
each of the three state machine components. As we will see in an upcoming lecture, there also exists a 2- and 1-process-
method.

HWMod
WS24

FSM Basics
Introduction

FSM Circuits

Example: Timer

Specification

Circuit

Implementation Lecture Complete!

Modified: 2025-03-10, 16:07 (b25118c)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

	Finite-State Machine Basics
	Introduction
	FSM Circuits
	Example: Timer

