HWMod
WS25

i Hardware Modeling [VU] (191.011)

- WS25 -

Finite-State Machine Basics

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:03 (f8a58e9)

Introduction

HWMod
WS25

m Fundamental structure in digital designs

Introduction

Introduction

HWMod
WS25

m Fundamental structure in digital designs
m An FSM consists of a

m set of inputs, outputs and states
m transition function

Introduction

Introduction

HWMod
WS25

m Fundamental structure in digital designs
m An FSM consists of a

m set of inputs, outputs and states
m transition function

m Synchronous FSMs: State changes only happen at clock events!

Introduction

Introduction

HWMod
WS25

m Fundamental structure in digital designs
m An FSM consists of a
m set of inputs, outputs and states
m transition function
m Synchronous FSMs: State changes only happen at clock events!
m Important VHDL concepts used in the lecture

m Enumeration and record types
m Behavioral modeling of combinational logic
m Sequential circuit elements (i.e., registers)

Introduction

State Machine as Digital Circuits

HWMod
WS25

FSM Circuits

input output
current

state

clock reset

Next-State Logic

HWMod AR :
WS25 ' f\),(
P
. . . State [C Output
m Purely combinational iput = et QE} ouput
state state o
m Must not read the clock or reset —
RSl m Must not contain latches clock reset

Next-State Logic

HWMod AR :
WS25 1 4
Py
0
H H i H S C O
m Purely combinational mp“‘* o e Lﬁ;ﬁg}_ output
state state SO
m Must not read the clock or reset —
RSl m Must not contain latches clock reset

m Implements the transition function

m by reading the input and the current state
m to calculate the next state of the FSM

HWMod
WS25

Next-State Logic

Next-State Logic

State

b

next
state

m Purely combinational input

m Must not read the clock or reset
m Must not contain latches

m Implements the transition function
m by reading the input and the current state
m to calculate the next state of the FSM

m State changes are synchronous!

Register

RST

clock reset

clock | | | |
current state - E X ©
next state 5 X © X D

y
y ?“tF“t output
current | -99¢
state SO

State Register

HWMod frmmseeennossseesesossseesioocesensioooes :

WS25 ' :
H P
input 1 (Next S(aie /f Output output
P! Loglc current Logic P
state \M 4

next
state

clock reset

State Register

m Only synchronous component in the FSM
m Reads next state and outputs current state

State Register

HWIVoc K bbb LR :

WS25 1 :
1 q - PoS
H p
. ' Next-State [¢ Output
input (Lagel >—> — . output
L ogie next current 09
A state state A
clock reset
State Register

m Only synchronous component in the FSM
m Reads next state and outputs current state
m Strictly stick to the code patterns for registers!

State Register

HWIVoc K bbb LR :

WS25 1 :
1 q - PoS
H p
. ' Next-State [¢ Output
input (Lagel >—> — . output
L ogie next current 09
A state state A
clock reset
State Register

m Only synchronous component in the FSM

m Reads next state and outputs current state
m Strictly stick to the code patterns for registers!
m Reset value defines initial state

Output Logic

HWMod frmmseeennossseesesossseesioocesensioooes :

WS25 E ‘/\)
inout : E Next-S\(;;\j State
inpul Logic Register

m Purely combinational Ll e e

current
m Must not read the clock or reset
m Must not contain latches

RST

clock reset

Output Logic

Output Logic

HWMod :"":\)‘" ------------------------ !
WS25 H 3
. . input E E Next-;;;\j S@te
m Purely combinational O e RIS ren
AN state state

m Must not read the clock or reset
m Must not contain latches

m Produces the actual output signals

clock reset

Output Logic

HWMod
WS25

Output Logic

Output Logic

i m
. . inpu _J_,f Next-State) State
m Purely combinational put—— o o] Reaster o

Al state state
m Must not read the clock or reset
m Must not contain latches

m Produces the actual output signals

m Defines the FSM type

m Moore: Output depends solely on current state
m Mealy: Output depends on current state and input

clock reset

HWMod
WS25

Output Logic

Output Logic

i m
. . inpu _J_,f Next-State) State
m Purely combinational put—— o o] Reaster o

Al state state
m Must not read the clock or reset
m Must not contain latches
m Produces the actual output signals
m Defines the FSM type
m Moore: Output depends solely on current state
m Mealy: Output depends on current state and input
m Mealy machines

m can react to input changes in the same clock cycle (i.e., combinationally)
m (sometimes) require fewer states than a similar Moore machine

clock reset

Output Logic

HWMod frmmseeennossseesesossseesioocesensioooes :

WS25 : J\)
H H input _‘;_yf Nex"s}ale\/\t State
m Purely combinational S s i

Al state state
m Must not read the clock or reset
m Must not contain latches
m Produces the actual output signals
m Defines the FSM type
m Moore: Output depends solely on current state
m Mealy: Output depends on current state and input
m Mealy machines

m can react to input changes in the same clock cycle (i.e., combinationally)
m (sometimes) require fewer states than a similar Moore machine

clock reset

Output Logic

m Can share logic with the next-state logic

Output Logic - Combinational Loops

HWMod
WS25

m Interacting Mealy FSMs can lead to combinational loops!

Output Logic

Output Logic - Combinational Loops

HWMod

WS25
m Interacting Mealy FSMs can lead to combinational loops!
m Example

m FSM A: “Start when not busy”
m FSM B: “Assert busy when started”

Output Logic

start
. T

FSM A ﬁ . FSMB
I_ 4

busy

Output Logic - Combinational Loops

HWMod

WS25
m Interacting Mealy FSMs can lead to combinational loops!
m Example

m FSM A: “Start when not busy”
m FSM B: “Assert busy when started”

Output Logic

start
. T

FSM A ﬁ . FSMB
I_ 4

busy

m Only use Mealy machines when really necessary

Simple Timer - Specification

HWMod X .
Ws25 Behavior Description

The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

Interface

Specification

entity simple_timer is
generic (
N : positive := 8

clk : in std_ulogic;
res_n : in std_ulogic;
en : in std_ulogic;
9 tick : out std_ulogic
10)i
11 end entity;

1
2
3
4
5 port (
6
7
8

HWMod
WS25

Circuit

Simple Timer - Circuit

en

cnt_nxt

clk —

res-n

cnt

tick

Simple Timer - Circuit

HWMod
WS25

en

Circuit

tick

next state logic output logic

state register

Simple Timer - Implementation

HWMod
WS25

o [

24-1
D Q b I = tick
+1 cntnxt cnt
clk = mr
resn

1 architecture arch of simple_timer is 16 next_state_logic : process(all)
R 2 subtype cnt_t is 17 begin

3 unsigned (N-1 downto 0); 18 cnt_nxt <= cnt;

4 signal cnt, cnt_nxt : cnt_t; 19 if en = '1’ then

5 constant M : natural := 2x%xN-1; 20 cnt_nxt <= cnt + 1;

6 begin 21 end if;

7 22 end process;

8 state_reg : process(clk, res_n) 23

9 begin 24 output_logic : process(all)

10 if res_n = "0’ then 25 variable comp : std_ulogic;

11 cnt <= (others => 70’); 26 begin

12 elsif rising_edge (clk) then 27 comp := "1’ when cnt=M else '0’;

13 cnt <= cnt_nxt; 28 tick <= en and comp;

14 end if; 29 end process;

15 end process; 30 end architecture; 9

Simple Timer - Implementation

HWMod
WS25

o [

24-1
N I
D Q = tick
+1 cntnxt cnt

resn

1 architecture arch of simple_timer is 16 next_state_logic : process(all)
R 2 subtype cnt_t is 17 begin

3 unsigned (N-1 downto O0); 18 cnt_nxt <= cnt;

4 signal cnt, cnt_nxt : cnt_t; 19 if en = '1’ then

5 constant M : natural := 2x%xN-1; 20 cnt_nxt <= cnt + 1;

6 begin 21 end if;

7 22 end process;

8 state_reg : process(clk, res_n) 23

9 begin 24 output_logic : process(all)

10 if res_n = "0’ then 25 variable comp : std_ulogic;

11 cnt <= (others => 70’); 26 begin

12 elsif rising_edge (clk) then 27 comp := "1’ when cnt=M else '0’;

13 cnt <= cnt_nxt; 28 tick <= en and comp;

14 end if; 29 end process;

15 end process; 30 end architecture; 9

Simple Timer - Implementation

HWMod
WS25

1 architecture arch of simple_timer is 16 next_state_logic : process(all)
2 subtype cnt_t is 17 begin
Implementation
3 unsigned (N-1 downto 0); 18 cnt_nxt <= cnt;
4 signal cnt, cnt_nxt : cnt_t; 19 if en = '1’ then
5 constant M : natural := 2x%xN-1; 20 cnt_nxt <= cnt + 1;
6 begin 21 end if;
7 22 end process;
8 state_reg : process(clk, res_n) 23
9 begin 24 output_logic : process(all)
10 if res_n = 0’ then 25 variable comp : std_ulogic;
11 cnt <= (others => ’0'); 26 begin
12 elsif rising_edge (clk) then 27 comp := "1’ when cnt=M else '0’;
13 cnt <= cnt_nxt; 28 tick <= en and comp;
14 end if; 29 end process;

15 end process; 30 end architecture; 9

Simple Timer - Implementation

HWMod
WS25

en

tick

1 architecture arch of simple_timer is 16 next_state_logic : process(all)
2 subtype cnt_t is 17 begin
Implementation
3 unsigned (N-1 downto 0); 18 cnt_nxt <= cnt;
4 signal cnt, cnt_nxt : cnt_t; 19 if en = 1’ then
5 constant M : natural := 2x%xN-1; 20 cnt_nxt <= cnt + 1;
6 begin 21 end if;
7 22 end process;
8 state_reg : process(clk, res_n) 23
9 begin 24 output_logic : process(all)
10 if res_n = "0’ then 25 variable comp : std_ulogic;
11 cnt <= (others => 70’); 26 begin
12 elsif rising_edge (clk) then 27 comp := "1’ when cnt=M else '0’;
13 cnt <= cnt_nxt; 28 tick <= en and comp;
14 end if; 29 end process;

15 end process; 30 end architecture; 9

HWMod
WS25

Implementation

Simple Timer - Implementation

en

tick

resn

architecture arch of simple_timer is

subtype cnt_t is
unsigned(N-1 downto 0)

’

signal cnt, cnt_nxt cnt_t;
constant M natural := 2%*N-1;
begin

state_reg process (clk, res_n)
begin

if res_n = ’'0’ then

cnt <= (others => 70’);
elsif rising_edge (clk) then

cnt <= cnt_nxt;
end if;
end process;

16 next_state_logic

17 begin

18 cnt_nxt <= cnt;

19 if en = 1’ then

20 cnt_nxt <= cnt + 1;

21 end if;

22 end process;

23

24 output_logic process (all)
25 variable comp std_ulogic;
26 begin

27 comp := ’'1l’ when cnt=M else
28 tick <= en and comp;

29 end process;
30 end architecture;

process (all)

IOI;

Simple Timer - Implementation

HWMod
WS25

o [

24-1
D Q b I = tick
+1 cntnxt cnt
clk = mr
resn

1 architecture arch of simple_timer is 16 next_state_logic : process(all)
R 2 subtype cnt_t is 17 begin

3 unsigned (N-1 downto 0); 18 cnt_nxt <= cnt;

4 signal cnt, cnt_nxt : cnt_t; 19 if en = '1’ then

5 constant M : natural := 2x%xN-1; 20 cnt_nxt <= cnt + 1;

6 begin 21 end if;

7 22 end process;

8 state_reg : process(clk, res_n) 23

9 begin 24 output_logic : process(all)

10 if res_n = "0’ then 25 variable comp : std_ulogic;

11 cnt <= (others => 70’); 26 begin

12 elsif rising_edge (clk) then 27 comp := "1’ when cnt=M else '0’;

13 cnt <= cnt_nxt; 28 tick <= en and comp;

14 end if; 29 end process;

15 end process; 30 end architecture; 9

HWMod
WS25

Implementation

Lecture Complete!

Modified: 2025-12-16, 16:03 (f8a58e9)

	Finite-State Machine Basics
	Introduction
	FSM Circuits
	Example: Timer

