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m Fundamental structure in digital designs
m An FSM consists of a
m set of inputs, outputs and states
m transition function
m Synchronous FSMs: State changes only happen at clock events!
m Important VHDL concepts used in the lecture

m Enumeration and record types
m Behavioral modeling of combinational logic
m Sequential circuit elements (i.e., registers)
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Next-State Logic

State

b

next
state

m Purely combinational input

m Must not read the clock or reset
m Must not contain latches

m Implements the transition function
m by reading the input and the current state
m to calculate the next state of the FSM

m State changes are synchronous!

Register
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State Register

m Only synchronous component in the FSM

m Reads next state and outputs current state
m Strictly stick to the code patterns for registers!
m Reset value defines initial state
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m Defines the FSM type
m Moore: Output depends solely on current state
m Mealy: Output depends on current state and input
m Mealy machines

m can react to input changes in the same clock cycle (i.e., combinationally)
m (sometimes) require fewer states than a similar Moore machine

clock reset

Output Logic

m Can share logic with the next-state logic
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m Interacting Mealy FSMs can lead to combinational loops!
m Example

m FSM A: “Start when not busy”
m FSM B: “Assert busy when started”

Output Logic

start
. T

FSM A ﬁ . FSMB
I_ 4

busy

m Only use Mealy machines when really necessary
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The simple_timer module keeps an internal N-bit counter that is (synchronously) incremented
as long as en is asserted. When the counter reaches its maximum value (2" — 1) it overflows
back to zero. If the counter hits its maximum and en is asserted the tick output is asserted.

Interface

Specification

entity simple_timer is
generic (
N : positive := 8

clk : in std_ulogic;
res_n : in std_ulogic;
en : in std_ulogic;
9 tick : out std_ulogic
10 )i
11 end entity;

1
2
3
4
5 port (
6
7
8
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1 architecture arch of simple_timer is 16 next_state_logic : process(all)
R 2 subtype cnt_t is 17 begin

3 unsigned (N-1 downto 0); 18 cnt_nxt <= cnt;

4 signal cnt, cnt_nxt : cnt_t; 19 if en = '1’ then

5 constant M : natural := 2x%xN-1; 20 cnt_nxt <= cnt + 1;

6 begin 21 end if;

7 22 end process;

8 state_reg : process(clk, res_n) 23

9 begin 24 output_logic : process(all)

10 if res_n = "0’ then 25 variable comp : std_ulogic;

11 cnt <= (others => 70’); 26 begin

12 elsif rising_edge (clk) then 27 comp := "1’ when cnt=M else '0’;

13 cnt <= cnt_nxt; 28 tick <= en and comp;

14 end if; 29 end process;

15 end process; 30 end architecture; 9
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Simple Timer - Implementation

en

tick

resn

architecture arch of simple_timer is

subtype cnt_t is
unsigned(N-1 downto 0)

’

signal cnt, cnt_nxt cnt_t;
constant M natural := 2%*N-1;
begin

state_reg process (clk, res_n)
begin

if res_n = ’'0’ then

cnt <= (others => 70’);
elsif rising_edge (clk) then

cnt <= cnt_nxt;
end if;
end process;

16 next_state_logic

17 begin

18 cnt_nxt <= cnt;

19 if en = 1’ then

20 cnt_nxt <= cnt + 1;

21 end if;

22 end process;

23

24 output_logic process (all)
25 variable comp std_ulogic;
26 begin

27 comp := ’'1l’ when cnt=M else
28 tick <= en and comp;

29 end process;
30 end architecture;

process (all)

IOI;
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1 architecture arch of simple_timer is 16 next_state_logic : process(all)
R 2 subtype cnt_t is 17 begin

3 unsigned (N-1 downto 0); 18 cnt_nxt <= cnt;

4 signal cnt, cnt_nxt : cnt_t; 19 if en = '1’ then

5 constant M : natural := 2x%xN-1; 20 cnt_nxt <= cnt + 1;

6 begin 21 end if;

7 22 end process;

8 state_reg : process(clk, res_n) 23

9 begin 24 output_logic : process(all)

10 if res_n = "0’ then 25 variable comp : std_ulogic;

11 cnt <= (others => 70’); 26 begin

12 elsif rising_edge (clk) then 27 comp := "1’ when cnt=M else '0’;

13 cnt <= cnt_nxt; 28 tick <= en and comp;

14 end if; 29 end process;

15 end process; 30 end architecture; 9
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Implementation

Lecture Complete!
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