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Now that we have some basic knowledge about the programming language VHDL, we will take a look at how it is actually
used to describe hardware.
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L Introduction
L Introduction

Rocall
Not everything in VHDL is synthesizable.

Recall that, only a subset of the language features in VHDL is synthesizable. This means that only this subset can be
used to actually describe hardware. Nevertheless, the non-synthesizable parts of the language are vitally important to, for
example, verify the behavior of a design in a testbench. So far we have treated VHDL as just another, maybe a little exotic,
programming language. Now, we want to focus on the circuit-level semantics of its language constructs. At the end of the
lecture, we will have implemented our first combinational digital circuit.

Introduction
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VHDL Code

Introduction

Synthesizeable
VHDL Code

Recall

Not everything in VHDL is synthesizable.
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LEntities
L Entities

When designing a circuit, one of the key tasks is to define its interface to the outside world. As already introduced in a previous
lecture, in VHDL this is done using the ent ity-construct. It defines the inputs, outputs, and configuration parameters of a
module.

Entities
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ws25 m Interface specification of a module
m Interface signals
m Parameters

Entities
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However, it does not specify how the module behaves internally — that is handled by its architectures.

Entities
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ws25 m Interface specification of a module

m Interface signals
m Parameters

m No internal behavior specified

Entities
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Note that a single entity can have multiple different architectures.

Entities
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ws25 m Interface specification of a module

m Interface signals
m Parameters

m No internal behavior specified
m Multiple different architectures possible

Entities
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To draw a comparison to other programming languages, the entity-architecture concept can be compared to abstract classes
or interfaces and their implementations. However, unlike interfaces in for example Java or C# an architecture can only have
a single entity.

Entities
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ws25 m Interface specification of a module

m Interface signals
m Parameters

m No internal behavior specified
m Multiple different architectures possible
m Analogies

Entities

interface IAnimal {
void Speak();
}

v v

s N

class Dog : IAnimal { class Cat : IAnimal {
public void Speak () { public void Speak () {
print ("Woof!"); print ("Meow!");
} }
} }
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]

Another analogy closer to hardware — that fits slightly better — is the picture of a microchip and its socket. The socket
represents the interface, while the actual microchip can be changed — for example to different compatible processors with
varying performance levels.

of amodule

Entities
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ws25 m Interface specification of a module

m Interface signals
m Parameters

m No internal behavior specified
m Multiple different architectures possible
m Analogies

Entities

hi
interface IAnimal { p
void Speak();

}

C
socket

v v

s N

class Dog : IAnimal { class Cat : IAnimal {
public void Speak () { public void Speak () {
print ("Woof!"); print ("Meow!");
} }
} }
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L_Entities (cont'd)

Entities are declared using the ent ity keyword, followed by an identifier representing its name and the keyword is. Then
four blocks referred to as the generics and ports clause and the entity declarative and statement parts are listed. Note that,
as explicitly marked in the syntax specification, each of these blocks is optional. We have already seen this in previous code
examples, where only completely empty entities have been used so far.

Entities (cont’d)
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m Entity declaration syntax
entity NAME is
o [ generic ( {generic_element;} generic_element ); ]
[ port ( {port_element;} port_element ); ]
[ entity_declarative_part ]
[ begin entity_statement_part ]
end entity;
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L_Entities (cont'd)

The generic clause is introduced with the generic keyword, which is followed by a semicolon-separated list of generic
elements wrapped in parentheses. Note that in VHDL-2008 and earlier revisions the last element in the list is not terminated
with a semicolon. Having an additional semicolon at this position is only allowed since VHDL-2019 — in all older versions this
syntax leads to a compilation error. Generics can be used to define parameters that customize the behavior or structure of
a module, improving code reuse and flexibility. We will go into further depth on generics on a following slide.

Entities (cont’d)

HWMod
WS25

m Entity declaration syntax
entity NAME is
[ generic ( {generic_element;} generic_element ); |
[ port ( {port_element;} port_element ); ]
[ entity_declarative_part ]
[ begin entity_statement_part ]

Entities

end entity;
m Generic clause: configuration/parameters
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The port clause is marked with the port keyword and is then followed by a list of port elements using the same syntax as
the generic block. As for the generics, the last element of the list is "NOT” followed by a semicolon. The signals defined in
and entity’s port list define the actual physical interface of the module to the outside world. If you recall the Java and C#
analogies from before, you can view the ports as the methods of an abstract class, and the generics as the parameters of
the constructor.

Entities (cont’d)
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m Entity declaration syntax
entity NAME is
[ generic ( {generic_element;} generic_element ); ]
[ port ( {port_element;} port_element ); ]
[ entity_declarative_part ]
[ begin entity_statement_part ]

Entities

end entity;
m Generic clause: configuration/parameters
m Port clause: physical I/O signals
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L_Entities (cont'd)

5, subprograms, ofc.

As the name suggest the declarative parts simply contains a range of declarations for — among other things — constants,
types, or subprograms. The objects declared here are visible only to the architectures implementing the respective entity.

Entities (cont’d)
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m Entity declaration syntax
entity NAME is
[ generic ( {generic_element;} generic_element ); ]
[ port ( {port_element;} port_element ); ]
[ entity declarative_part ]
[ begin entity_statement_part ]
end entity;

m Generic clause: configuration/parameters
m Port clause: physical I/O signals
m Declarations: constants, types, subprograms, etc.

Entities
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Finally, the begin keyword introduces the statement part, which can for instance be used to implement constraints or static
sanity checks on the generic parameters.

Entities (cont’d)
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Entity declaration syntax
entity NAME is
[ generic ( {generic_element;} generic_element ); ]
[ port ( {port_element;} port_element ); ]
[ entity_declarative_part ]
[ begin entity_ statement_part ]
end entity;

Generic clause: configuration/parameters

Port clause: physical I/O signals

Declarations: constants, types, subprograms, etc.
Statements: parameter checks

Entities
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OK, let’s start with taking a closer look at the ports section. The declaration of port elements looks very similar to the
declaration of variables or constants we have already seen in previous lectures. Each port element starts with a name,
followed by a colon and the optional mode specifier. Then the datatype of the port is specified. Finally, an optional default
value can be added. The semantics of this will be explained in an upcoming lecture. Note that similar to variable or constant
declarations the port name can also be a comma-separated list of identifiers. The semantics of this syntax should be
obvious.

HWMod .
ws2s m Port element declaration syntax

port_element ::=
PORT_NAME : [mode] DATA_TYPE [:= default_value]

Ports
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The mode of a port basically specifies its direction. The VHDL standard defines five possible modes, with "in” being the
default one. However, in this course we will only use the first three — that is in, out and inout. The other ones are rarely
used and will therefore not be covered in this course. As you might be able to deduce from the mode names, "in” and "out”
define circuit inputs and outputs, respectively. The mode inout is only used for interface signals that are actively driven by
the design as well as read back. This is for example required to implement open-drain outputs or bus protocols where it is
required to disconnect from a shared bus wire because other devices actively drive it. However, for now we will just use the
modes "in” and "out”. The inout mode will be covered in more detail in an upcoming lecture. In the context of synthesizable
entities the port datatype must of course be a synthesizable datatype, such as boolean, bit or integer. Although it seems
very natural to represent the logical binary state of a signal wire using a Boolean value, in practice these datatypes are rarely
used for interface signals. As will be shown in an upcoming lecture, even in a digital system it is beneficial to model more
signal states than just high and low. An example where the boolean values are insufficient is the shared bus wire we just
mentioned. However, until we learn about more specialized datatypes, we will stick to Booleans.

HWMod .
ws2s m Port element declaration syntax

port_element ::=
PORT_NAME : [mode] DATA_TYPE [:= default_value]
m Mode

m Possible Values: in, out, inout, buffer, linkage
m Default (if mode is omitted): in
m Defines the direction of a signal (can it be read, written or both)
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The example entity AND-gate on this slide, has two inputs — named a and b — and one output x. As its name suggests this
entity models the interface of a 2-input "and” gate. We will add an appropriate architecture on an upcoming slide.

HWMod .
ws2s m Port element declaration syntax

port_element ::=
PORT_NAME : [mode] DATA_TYPE [:= default_value]
m Mode

m Possible Values: in, out, inout, buffer, linkage
m Default (if mode is omitted): in
m Defines the direction of a signal (can it be read, written or both)

m Example entity

entity and_gate is

1
> port ( and_gate
3 a : in boolean;
. B a —
4 b : in boolean;
5 X : out boolean —-—- no semicolon here! > X
6 ); b —
7 end entity;
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LGenerics

With ports we can specify the physical interface signals of a module. However, when designing hardware oftentimes we also
want to configure other design parameters that are not actual physical inputs. Consider the example of a RAM module, an
important and widely used memory element in digital design. A typical design might use many RAMs with different address
and data widths. It would be quite a tedious task to explicitly design RAM modules for all the different configurations one
might need in a design. Moreover, an approach like this would result in a hard-to-maintain code. It would be much better
to define one RAM module with parameters that select the data and address widths. This is where the generics come into
play.

Generics

HWMod . .
Ws25 m Generic element declaration syntax

generic_element ::=
GENERIC_NAME : DATA_TYPE [:= default value]

Generics
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As already mentioned, generics are used to parametrize entities, allowing to create modules that can be adapted to different
use cases with different settings, such as sizes, delays, or other operational parameters. The declaration of generics looks
very similar to a port declaration — the only difference is that no mode is needed as all generics can be viewed as constant
inputs. Generics will become important when we talk about the instantiation of modules in the next lecture.

Generics

HWMod . .
Ws25 m Generic element declaration syntax

generic_element ::=
GENERIC_NAME : DATA_TYPE [:= default value]

m No mode required (all generics are “constant inputs”)

Generics
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From the point of view of an architecture implementing an entity, generics can simply be viewed as constants, that are fixed
at compile-time. Hence, even in synthesizable modules, it is possible to use non-synthesizable datatypes here. An example
would be a time constant for the clock period or other timing parameters.

Generics

HWMod . .
ws25 m Generic element declaration syntax

generic_element ::=
GENERIC_NAME : DATA_TYPE [:= default value]

m No mode required (all generics are “constant inputs”)
m Basically constants in the architecture

Generics
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Note that port declarations may refer to generics and use them to constrain port datatypes. This is also done in the example
code shown on this slide. The entity is quite similar to the one on the previous slide. However, the two input signals have been
replaced by an input vector named i. The width of this vector is defined by the generic N, allowing you to create AND-gates
with arbitrary many inputs based on a single entity. This is a code pattern, you will encounter quite often in VHDL code.

Generics

HWMod . .
Ws25 m Generic element declaration syntax

generic_element ::=
GENERIC_NAME : DATA_TYPE [:= default value]

m No mode required (all generics are “constant inputs”)
m Basically constants in the architecture
m Example entity

Generics

entity and_gate is
generic ( and_gate

1

2

3 N : integer := 2

4 )i N

5 port ( ] —— —— X
6 i : in boolean_vector (N-1 downto 0);

7 x : out boolean

8 )i

9 end entity;
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L_Unconstrained Types

Note that it is also possible to use unconstrained types for generics and ports. For certain datatypes like strings, this is
even necessary to make reasonable use of them as generics because not all possible values might have the same character
length. In fact, in practice strings are sometimes used to enable or disable certain settings in an entity. The first example
code shows how something like this can look like. Note how the two strings "yes” and "no”, that the entity expects the generic
to have, are of different length.

Unconstrained Types

HWMod
HS2s m Unconstrained generic example

1 entity cpu is
generic (
ENABLE_BRANCH_PREDICTION : string := "YES"; -— "NO"
[...]
)i
[...]
end entity;

Unconstrained

2
3
4
5
Types
6
7
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= Unconstrained generic examy ple.

Unconstrained datatypes can also come in handy for port declarations. The second example shows yet another variant
of the AND-gate entity. This time no generic is used and the input i is simply left unconstrained. Whenever this entity is
instantiated, the width of this input signal is then implicitly constrained by the vector signal that is connected to i.

Unconstrained Types
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WS25 . .
m Unconstrained generic example
1 entity cpu is
2 generic (
3 ENABLE_BRANCH_PREDICTION : string := "YES"; -— "NO"
4 [...]
Unconstrained 5 ) ;
ypes
6 [...]
7 end entity;

m Unconstrained port example

1 entity and_gate is

2 port (

3 i : in boolean_vector;
4 x : out boolean

5 ) i

6 end entity;
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Now that we are familiar with how to specify module interfaces in VHDL, let’s turn to architectures and see how they can be
used to describe actual digital circuits. The VHDL standard defines architectures as the body of a design entity.

Architectures

e m VHDL standard ¢ :
“An architecture body defines the body of a design entity.”

Architectures
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L Architectures

Thus, an architecture defines the internal behavior and structure of a digital design, and essentially specifies how the inputs
of an entity have to be processed to create the output signals.

Architectures

e m VHDL standard ¢ :
“An architecture body defines the body of a design entity.”

m Contains the actual circuit description

Architectures



LCircuit Description with Entities and Architectures oy
L Architectures g
L Architectures ‘

°
ture body defines the body of a design ey

An architecture is declared using the architecture keyword followed by an identifier, representing its name, the keyword
of and another identifier specifying the entity this architecture belongs to.

Architectures

e m VHDL standard ¢ :
“An architecture body defines the body of a design entity.”

m Contains the actual circuit description

m Architecture declaration syntax
architecture NAME of ENTITY_NAME is
architecture_declarative_part
begin
architecture_statement_part
end architecture;

Architectures
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/e body defines the body of a design enty:

After the keyword is follow the architecture’s declarative and statement part, which are separated by the begin keyword.
As you can see from the syntax specification, both of these parts can contain zero or more elements. The VHDL standard
refers to these elements as block declarative items and concurrent statements, respectively.

Architectures

e m VHDL standard ¢ :
“An architecture body defines the body of a design entity.”

m Contains the actual circuit description

m Architecture declaration syntax
architecture NAME of ENTITY_NAME is
architecture_declarative_part
begin
architecture_statement_part
end architecture;

m Declarative/statement part
architecture_declarative_part ::=
{ block_declarative_item }
architecture_statement_part ::=

{ concurrent statement }
7

Architectures
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= Declarative part (block declaraiive ftems) o

As the name suggests, the declarative part, contains declarations for various VHDL language constructs, such as constants,
signals, types, subprograms and others.

Architecture (cont’d)

HWMod
WS25

m Declarative part (block declarative items) ¢
m Signals
m Constants
Architectures . Types
m Sub-programs
m efc.
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= Declarative part (block declaraiive ftems) o

There are various types of concurrent statements that can go into the statements part of an architecture. In this lecture we
will focus on the concurrent signal assignments. While we have already seen quite a few processes during the previous
lectures, as most of the code samples were build around them, we have only used them in non-synthesizable contexts so
far. We will discuss processes for synthesizable code, instantiations of entities as well as block and generate statements in
upcoming lectures.

Architecture (cont'd)
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m Declarative part (block declarative items) ¢
m Signals
m Constants
m Types
m Sub-programs
m efc.
m Statement part (concurrent statements)
m Concurrent signal assignments
m Processes
m Instantiation statements
m Blocks statements
|
]

Architectures

Generate statements
etc.
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L_Concurrent Signal Assignments — Example: AND gate ‘ ) ot

We will now introduce concurrent signal assignments. To do that let us start with a very basic example and implement an
architecture for the "AND”-gate entity we showed before using such a concurrent signal assignment.  The assignment is
located in line 11 of the sample code. Notice that VHDL uses a different assignment operator for signals than for variables.

Concurrent Signal Assignments — Example

1
2
3
4
5
6
7
8
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entity and_gate is

port (
G a : in boolean; and_gate
Assignments b : in boolean;

x : out boolean

a —>
)i ‘ —> X
end entity; b

—

architecture arch of and_gate is
10 begin

11 x <= a and b;

12 end architecture;

©
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L_Concurrent Signal Assignments — Example: Multiplexer

Let’s look at a slightly more complex example, that of a four-to-one multiplexer. As you should already know, the function of
a multiplexer is to relay one of the inputs to a single output based on the value of a control input. In our case here, we want
to multiplex between four input signals i (0) to i3, for which we need to control inputs ¢ (0) and c(1). To implement
the multiplexer we use a so-called conditional signal assignment. Essentially, this is a compact way to specify an if-else-if
construct in a single expression. You can compare it to a nested ternary conditional operator in other programming languages
such as Java or C. If both control signals are false then the output gets assigned the input i (0) . If only c (0) is true, i (1)
is selected, and so on. The right side of the slide depicts the circuit symbol that we will use for multiplexers throughout this
course.

Concurrent Signal Assignments — Example: Multiplexer
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entity mux4l is

1

2 port (

3 c : in boolean_vector (1 downto 0);

4 i : in boolean_vector (3 downto 0); c (O)
igﬁﬁ& 5 o : out boolean

6 ) C (l)

7 end entity;

8 i(0)

9 architecture arch of mux4l is i(1)

10 begin i (2) o

11 o <= 1(0) when not c(l) and not c(0) else . 3)

12 i(1) when not c(1) and c(0) else 1(

13 i(2) when c(l) and not c(0) else

14 i(3) when c(l) and c(0);

15 end architecture;
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L_signal Declarations

= Signal dectaration syniax

It is of course also possible to declare local signals in an architecture that are not visible to the outside world. As you might
have suspected, such declaration go into the declarative part of the architecture. The syntax for that is quite straight-forward
and basically looks very similar to a variable or constant declaration that we have already seen multiple times. However,
before we further elaborate, it is important to discuss a detail that we more or less glossed over so far.

Signal Declarations
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m Signal declaration syntax
signal NAME : DATA_TYPE [ := default_value ] ;

Signal Declarations
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In VHDL there is a fundamental difference between objects of type signal — that also includes the ports declared in an
entity — and variables. Signals represent and model physical connections between hardware components such as gates or
registers. They can be declared in the declarative part of architectures or entities as well as in packages. Furthermore, some
architecture statements such as blocks or generate statements can have their own local signals. However, they cannot be
declared in subprograms or processes. Here only variable declarations are allowed, representing local values that are only
relevant during the evaluation of a process or a subprogram. The major difference comes from the way these two classes
of objects are treated during simulation and synthesis. In strongly simplified terms: Signal assignment affect the internal
event queue the simulator has to maintain, whereas variable assignments do not and are executed immediately. As we have
already seen VHDL even goes so far as to use unique assignment operators for signals and variables, to also highlight this
difference syntactically. However, we don’t want to go into too much detail here — as this is the content of another lecture.

Signal Declarations
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m Signal declaration syntax
signal NAME : DATA_TYPE |

m Signals vs. variables

default_value ] ;

Signal Declarations

Signals Variables
m Declaration: (as) ports, entities, m Declaration: subprograms,
architectures, packages processes
m Assignment: deferred (event queue) m Assignment: immediate

m Assignment operator: <= m Assignment operator: :=
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Let’s look at a slightly more complex example that uses local signal declarations. A full adder, such as the one shown on the
left side of the slide, is a digital circuit with three inputs — a, b, and cin — and two outputs — sum and cout. lts purpose is to
add the three single-bit input signals and produce a 2-bit result consisting of the sum bit and a carry output. In order to add
multi-bit signals, multiple full adders can be connected together in the form of a ripple-carry adder.

Example - Full Adder
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entity fa is

port (
a, b, cin : in boolean;
sum, cout : out boolean

)i
end entity;

o oM W N =

Signal Declarations
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L_Example - Full Adder BT

To implement the circuit the example uses three intermediate signals named "x”, "y” and ”z”. You can see which circuit nodes
these signals represent in the schematic on the left. The five concurrent signal assignments correspond to the five gates in
the circuit and should be quite straight-forward to understand. However, you can pause the video to convince yourself that
this is indeed the case.

Example - Full Adder

HWMod
WS25

entity fa is

1
2 port (
3 a, b, cin : in boolean;
4 sum, cout : out boolean
5 );

Signal Declarations 6 end entity;
7
8 architecture arch of fa is
9 signal x, y, z : boolean;
10 begin

X <= a xor b;
y <= a and b;
sum <= cin xor Xx;

B WD

z <= cin and x;
cout <=y or z;
end architecture;

o o
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One key take-away from this code is that the sequence of the assignment statements does not matter in any way. No matter
how you arrange the statements in an architecture the semantic of the architecture stays the same. Unlike in software,
where statements are executed strictly in sequence, in a circuit a lot of things happen in parallel. The individual gates in a
circuit always evaluate their inputs and produce a new output signal level. Hence, you can think of the individual statements
in an architecture as individual threads that are all executed in parallel. This is the reason why they are called "concurrent”
signal assignments. This is a key insight that will be very important throughout this course and your journey with VHDL.

Example - Full Adder
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entity fa is

1
2 port (
3 a, b, cin : in boolean;
4 sum, cout : out boolean
5 );

Signal Declarations 6 end entity;
7
8 architecture arch of fa is
9 signal x, y, z : boolean;

Important 10 begin

X <= a xor b;
y <= a and b;
sum <= cin xor x;

The order of statements in an
architecture carries no semantic
significance!

BowW N

z <= cin and x;
cout <=y or z;
end architecture;

o o



Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.
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Signal Declarations

Lecture Complete!
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