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Recall

Not everything in VHDL is synthesizable.
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interface IAnimal {
void Speak();
}

v v
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class Dog : IAnimal { class Cat : IAnimal {
public void Speak () { public void Speak () {
print ("Woof!"); print ("Meow!");
} }
} }
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class Dog : IAnimal { class Cat : IAnimal {
public void Speak () { public void Speak () {
print ("Woof!"); print ("Meow!");
} }
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m Entity declaration syntax
entity NAME is

Entities [

generic ( {generic_element;} generic_element ); ]
port ( {port_element;} port_element ); ]
entity_declarative_part ]

begin entity_statement_part ]

entity;
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entity NAME is
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[ port ( {port_element;} port_element ); ]
[ entity declarative_part ]
[ begin entity_statement_part ]
end entity;
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m Entity declaration syntax
entity NAME is
[ generic ( {generic_element;} generic_element ); ]
[ port ( {port_element;} port_element ); ]
[ entity_declarative_part ]
[ begin entity_ statement_part ]
end entity;
m Generic clause: configuration/parameters
m Port clause: physical I/O signals
m Declarations: constants, types, subprograms, etc.

m Statements: parameter checks

Entities
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ws2s m Port element declaration syntax

port_element ::=
PORT_NAME : [mode] DATA_TYPE [:= default_value]
m Mode

m Possible Values: in, out, inout, buffer, linkage
m Default (if mode is omitted): in
m Defines the direction of a signal (can it be read, written or both)

m Example entity

entity and_gate is

1

> port ( and_gate

3 a : in boolean;

4 b : in boolean; a

5 X : out boolean —-- no semicolon here! — X
6 ); b —

7 end entity;
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generic_element ::=
GENERIC_NAME : DATA_TYPE [:= default value]

m No mode required (all generics are “constant inputs”)
m Basically constants in the architecture
m Example entity

Generics

entity and_gate is
generic ( and_gate

N : integer := 2

i : in boolean_vector (N-1 downto 0);
x : out boolean
)i
end entity;

1
2
3
4
5 port ( _‘LW‘) — X
6
7
8
9
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1 entity cpu is
2 generic (
3 ENABLE_BRANCH_PREDICTION : string := "YES"; -— "NO"
4 [...]
Unconstrained 5
Types
6
7

)i
[...]
end entity;
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m Unconstrained generic example
1 entity cpu is
2 generic (
3 ENABLE_BRANCH_PREDICTION : string := "YES"; -— "NO"
4 [...]
?;}Jc:snsuamed 5 )

6 [...]
7 end entity;

m Unconstrained port example

1 entity and_gate is

2 port (

3 i : in boolean_vector;
4 x : out boolean

5 ) i

6 end entity;
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e m VHDL standard ¢ :
“An architecture body defines the body of a design entity.”

m Contains the actual circuit description
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architecture NAME of ENTITY_NAME is
architecture_declarative_part
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end architecture;
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Architectures

e m VHDL standard ¢ :
“An architecture body defines the body of a design entity.”

m Contains the actual circuit description

m Architecture declaration syntax
architecture NAME of ENTITY_NAME is
architecture_declarative_part
begin
architecture_statement_part
end architecture;

m Declarative/statement part
architecture_declarative_part ::=
{ block_declarative_item }
architecture_statement_part ::=
{ concurrent_ statement }

Architectures
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m Declarative part (block declarative items) ¢
m Signals
m Constants
m Types
m Sub-programs
m efc.
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m Declarative part (block declarative items) ¢
m Signals
m Constants
m Types
m Sub-programs
m efc.
m Statement part (concurrent statements)
m Concurrent signhal assignments
m Processes
m Instantiation statements
m Blocks statements
|
]

Architectures

Generate statements
etc.
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entity and_gate is

port (
S a i in boolean; and_gate
Assignments b : in boolean;
X : out boolean

0 N O WD =

a —>
)i ' —> X
end entity;

b —

architecture arch of and_gate is
10 begin

11 x <= a and b;

12 end architecture;

©
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Concurrent
Assignments

Concurrent Signal Assignments — Example: Multiplexer

® N U A WD =

entity mux4l is

port (
c : in boolean_vector (1l downto
i : in boolean_vector (3 downto
o : out boolean
)i
end entity;
architecture arch of mux4l is
begin
o <= 1(0) when not c (1) and not
i(1l) when not c(1) and
i(2) when c(l) and not
i(3) when c(l) and
end architecture;

Q

PR e e
w NP O = O
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m Signal declaration syntax
signal NAME : DATA_TYPE [ := default_value ] ;
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m Signal declaration syntax
signal NAME : DATA_TYPE [ := default_value ] ;
m Signals vs. variables
Signal Declarations
Variables

Signals

m Declaration: (as) ports, entities, m Declaration: subprograms,
architectures, packages processes

m Assignment: deferred (event queue) m Assignment: immediate

m Assignment operator: <= m Assignment operator: :=
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cin
a
Signal Declarations b

entity fa is
port (
a, b, cin
sum, cout
)i
end entity;

in boolean;
out boolean
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1 entity fa is

cin Di sum > port (
3 a, b, cin : in boolean;
a X z cout 4 sum, cout : out boolean
5 )
Signal Declarations b Y 6 end entity;

7
8 architecture arch of fa is
9 signal x, y, z : boolean;
10 begin
11 x <= a xor b;
12y <= a and b;
13 sum <= cin xor x;
14 z <= cin and x;
15 cout <=y or z;
16 end architecture;
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Example - Full Adder

Important

The order of statements in an

architecture carries no semantic

significance!

0 N o oA WD =

o0 bR WN =2 O ©

entity fa is

port (
a, b, cin : in boolean;
sum, cout : out boolean

)i
end entity;

architecture arch of fa is
signal x, y, z : boolean;
begin
X <= a xor bj;
y <= a and b;
sum <= cin xor Xx;
z <= cin and x;
cout <=y or z;
end architecture;
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Signal Declarations

Lecture Complete!
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