HWMod
WS25

rn Hardware Modeling [VU] (191.011)
— WS25 —

Circuit Description with Entities and Architectures

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:04 (f8a58e9)



Introduction

HWMod
WS25

VHDL Code
Synthesizeable
VHDL Code

Recall

Not everything in VHDL is synthesizable.

Introduction



Entities

HWMod o

ws25 m Interface specification of a module
m Interface signals
m Parameters

Entities



Entities

HWMod .
ws25 m Interface specification of a module

m Interface signals
m Parameters

m No internal behavior specified

Entities



Entities

HWMod
ws25 m Interface specification of a module

m Interface signals
m Parameters

m No internal behavior specified
m Multiple different architectures possible



Entities

HWMod
ws25 m Interface specification of a module

m Interface signals
m Parameters

m No internal behavior specified
m Multiple different architectures possible
m Analogies

Entities

interface IAnimal {
void Speak();
}

v v

s N

class Dog : IAnimal { class Cat : IAnimal {
public void Speak () { public void Speak () {
print ("Woof!"); print ("Meow!");
} }
} }




Entities

HWMod
ws25 m Interface specification of a module

m Interface signals
m Parameters

m No internal behavior specified
m Multiple different architectures possible
m Analogies

Entities

chip

interface IAnimal { SOCket

void Speak();
}

v v

s N

class Dog : IAnimal { class Cat : IAnimal {
public void Speak () { public void Speak () {
print ("Woof!"); print ("Meow!");
} }
} }




Entities (cont’d)

HWMod
WS25

m Entity declaration syntax
entity NAME is

Entities [

generic ( {generic_element;} generic_element ); ]
port ( {port_element;} port_element ); ]
entity_declarative_part ]

begin entity_statement_part ]

entity;



Entities (cont’d)

HWMod
WS25

m Entity declaration syntax
entity NAME is
o [ generic ( {generic_element;} generic_element ); ]
[ port ( {port_element;} port_element ); ]
[ entity_declarative_part ]
[ begin entity_statement_part ]
end entity;

m Generic clause: configuration/parameters



Entities (cont’d)

HWMod
WS25

m Entity declaration syntax
entity NAME is

Entities [

[
[
[
end

generic ( {generic_element;} generic_element ); ]
port ( {port_element;} port_element ); ]
entity_declarative_part ]

begin entity_statement_part ]

entity;

m Generic clause: configuration/parameters
m Port clause: physical I/O signals



Entities (cont’d)

HWMod
WS25

m Entity declaration syntax
entity NAME is
[ generic ( {generic_element;} generic_element ); ]
[ port ( {port_element;} port_element ); ]
[ entity declarative_part ]
[ begin entity_statement_part ]
end entity;

m Generic clause: configuration/parameters
m Port clause: physical I/O signals
m Declarations: constants, types, subprograms, etc.

Entities



Entities (cont’d)

HWMod
WS25

m Entity declaration syntax
entity NAME is
[ generic ( {generic_element;} generic_element ); ]
[ port ( {port_element;} port_element ); ]
[ entity_declarative_part ]
[ begin entity_ statement_part ]
end entity;
m Generic clause: configuration/parameters
m Port clause: physical I/O signals
m Declarations: constants, types, subprograms, etc.

m Statements: parameter checks

Entities



HWMod .
ws2s m Port element declaration syntax

port_element ::=
PORT_NAME : [mode] DATA_TYPE [:= default_value]

Ports.



HWMod .
ws2s m Port element declaration syntax

port_element ::=
PORT_NAME : [mode] DATA_TYPE [:= default_value]

m Mode

m Possible Values: in, out, inout, buffer, linkage
m Default (if mode is omitted): in
m Defines the direction of a signal (can it be read, written or both)

Ports.



HWMod .
ws2s m Port element declaration syntax

port_element ::=
PORT_NAME : [mode] DATA_TYPE [:= default_value]
m Mode

m Possible Values: in, out, inout, buffer, linkage
m Default (if mode is omitted): in
m Defines the direction of a signal (can it be read, written or both)

m Example entity

entity and_gate is

1

> port ( and_gate

3 a : in boolean;

4 b : in boolean; a

5 X : out boolean —-- no semicolon here! — X
6 ); b —

7 end entity;



Generics

HWMod . .
Ws25 m Generic element declaration syntax

generic_element ::=
GENERIC_NAME : DATA_TYPE [:= default value]

Generics



Generics

HWMod . .
ws25 m Generic element declaration syntax

generic_element ::=
GENERIC_NAME : DATA_TYPE [:= default value]

m No mode required (all generics are “constant inputs”)

Generics



Generics

HWMod . .
ws25 m Generic element declaration syntax

generic_element ::=
GENERIC_NAME : DATA_TYPE [:= default value]

m No mode required (all generics are “constant inputs”)
m Basically constants in the architecture

Generics



Generics

HWMod . .
ws25 m Generic element declaration syntax

generic_element ::=
GENERIC_NAME : DATA_TYPE [:= default value]

m No mode required (all generics are “constant inputs”)
m Basically constants in the architecture
m Example entity

Generics

entity and_gate is
generic ( and_gate

N : integer := 2

i : in boolean_vector (N-1 downto 0);
x : out boolean
)i
end entity;

1
2
3
4
5 port ( _‘LW‘) — X
6
7
8
9



Unconstrained Types

HWMod
HS2s m Unconstrained generic example

1 entity cpu is
2 generic (
3 ENABLE_BRANCH_PREDICTION : string := "YES"; -— "NO"
4 [...]
Unconstrained 5
Types
6
7

)i
[...]
end entity;



Unconstrained Types

HWMod
WS25 . .
m Unconstrained generic example
1 entity cpu is
2 generic (
3 ENABLE_BRANCH_PREDICTION : string := "YES"; -— "NO"
4 [...]
?;}Jc:snsuamed 5 )

6 [...]
7 end entity;

m Unconstrained port example

1 entity and_gate is

2 port (

3 i : in boolean_vector;
4 x : out boolean

5 ) i

6 end entity;



Architectures

e m VHDL standard ¢ :
“An architecture body defines the body of a design entity.”

Architectures



Architectures

e m VHDL standard ¢ :
“An architecture body defines the body of a design entity.”

m Contains the actual circuit description

Architectures



Architectures

e m VHDL standard ¢ :
“An architecture body defines the body of a design entity.”

m Contains the actual circuit description

m Architecture declaration syntax
architecture NAME of ENTITY_NAME is
architecture_declarative_part
begin
architecture_statement_part
end architecture;

Architectures



Architectures

e m VHDL standard ¢ :
“An architecture body defines the body of a design entity.”

m Contains the actual circuit description

m Architecture declaration syntax
architecture NAME of ENTITY_NAME is
architecture_declarative_part
begin
architecture_statement_part
end architecture;

m Declarative/statement part
architecture_declarative_part ::=
{ block_declarative_item }
architecture_statement_part ::=
{ concurrent_ statement }

Architectures



Architecture (cont’d)

HWMod
WS25

m Declarative part (block declarative items) ¢
m Signals
m Constants
m Types
m Sub-programs
m efc.

Architectures



Architecture (cont’d)

HWMod
WS25

m Declarative part (block declarative items) ¢
m Signals
m Constants
m Types
m Sub-programs
m efc.
m Statement part (concurrent statements)
m Concurrent signhal assignments
m Processes
m Instantiation statements
m Blocks statements
|
]

Architectures

Generate statements
etc.



Concurrent Signal Assignments — Example: AND gate

HWMod
WS25

entity and_gate is

port (
S a i in boolean; and_gate
Assignments b : in boolean;
X : out boolean

0 N O WD =

a —>
)i ' —> X
end entity;

b —

architecture arch of and_gate is
10 begin

11 x <= a and b;

12 end architecture;

©



HWMod
WS25

Concurrent
Assignments

Concurrent Signal Assignments — Example: Multiplexer

® N U A WD =

entity mux4l is

port (
c : in boolean_vector (1l downto
i : in boolean_vector (3 downto
o : out boolean
)i
end entity;
architecture arch of mux4l is
begin
o <= 1(0) when not c (1) and not
i(1l) when not c(1) and
i(2) when c(l) and not
i(3) when c(l) and
end architecture;

Q

PR e e
w NP O = O



Signal Declarations

HWMod
WS25

m Signal declaration syntax
signal NAME : DATA_TYPE [ := default_value ] ;

Signal Declarations



Signal Declarations

HWMod
WS25
m Signal declaration syntax
signal NAME : DATA_TYPE [ := default_value ] ;
m Signals vs. variables
Signal Declarations
Variables

Signals

m Declaration: (as) ports, entities, m Declaration: subprograms,
architectures, packages processes

m Assignment: deferred (event queue) m Assignment: immediate

m Assignment operator: <= m Assignment operator: :=



Example - Full Adder

HWMod
WS25
cin
a
Signal Declarations b

entity fa is
port (
a, b, cin
sum, cout
)i
end entity;

in boolean;
out boolean



Example - Full Adder

HWMod

WS25
1 entity fa is

cin Di sum > port (
3 a, b, cin : in boolean;
a X z cout 4 sum, cout : out boolean
5 )
Signal Declarations b Y 6 end entity;

7
8 architecture arch of fa is
9 signal x, y, z : boolean;
10 begin
11 x <= a xor b;
12y <= a and b;
13 sum <= cin xor x;
14 z <= cin and x;
15 cout <=y or z;
16 end architecture;



HWMod
WS25

Signal Declarations

Example - Full Adder

Important

The order of statements in an

architecture carries no semantic

significance!

0 N o oA WD =

o0 bR WN =2 O ©

entity fa is

port (
a, b, cin : in boolean;
sum, cout : out boolean

)i
end entity;

architecture arch of fa is
signal x, y, z : boolean;
begin
X <= a xor bj;
y <= a and b;
sum <= cin xor Xx;
z <= cin and x;
cout <=y or z;
end architecture;



HWMod
WS25

Signal Declarations

Lecture Complete!

Modified: 2025-12-16, 16:04 (f8a58e9)



	Circuit Description with Entities and Architectures
	Introduction
	Entities
	Architectures


