

Hardware Modeling [VU] (191.011)

– WS25 –

VHDL Delay Mechanisms

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Introduction

HWMOD
WS25

Delay Mech.

Delay Types

Pure

Inertial

Comparison

VHDL

- Previously: `after` for delaying the assignments of signals

Introduction

HWMod
WS25

Delay Mech.

Delay Types

Pure

Inertial

Comparison

VHDL

- Previously: `after` for delaying the assignments of signals
 - Why is this needed? ⇒ Delays exist in real hardware

Introduction

HWMod
WS25

Delay Mech.

Delay Types

Pure

Inertial

Comparison

VHDL

- Previously: `after` for delaying the assignments of signals
 - Why is this needed? ⇒ Delays exist in real hardware
- Two types of delay
 - *Pure* delay: finite signal propagation speed
 - *Inertial* delay: (dis)charging of capacitance

Pure Delay

HWMOD
WS25

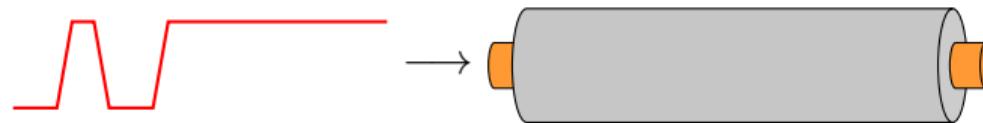
Delay Mech.

Delay Types

Pure

Inertial

Comparison


VHDL

Pure Delay

HWMod
WS25

Delay Mech.
Delay Types
Pure
Inertial
Comparison
VHDL

Pure Delay

HWMod
WS25

Delay Mech.

Delay Types

Pure

Inertial

Comparison

VHDL

Pure Delay

HWMod
WS25

Delay Mech.

Delay Types

Pure

Inertial

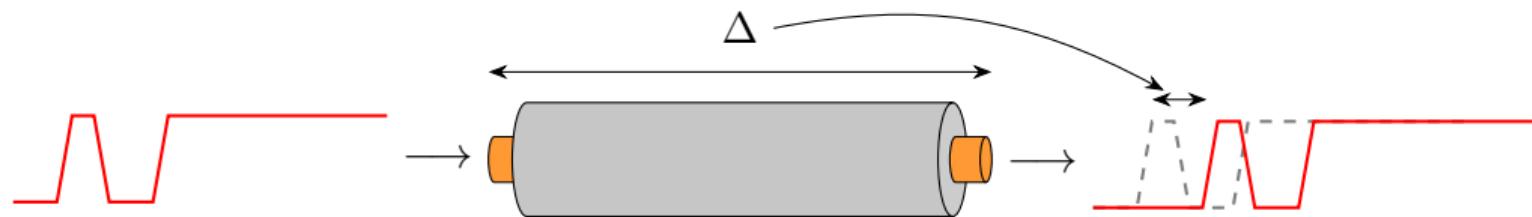
Comparison

VHDL

Pure Delay

HWMod
WS25

Delay Mech.


Delay Types

Pure

Inertial

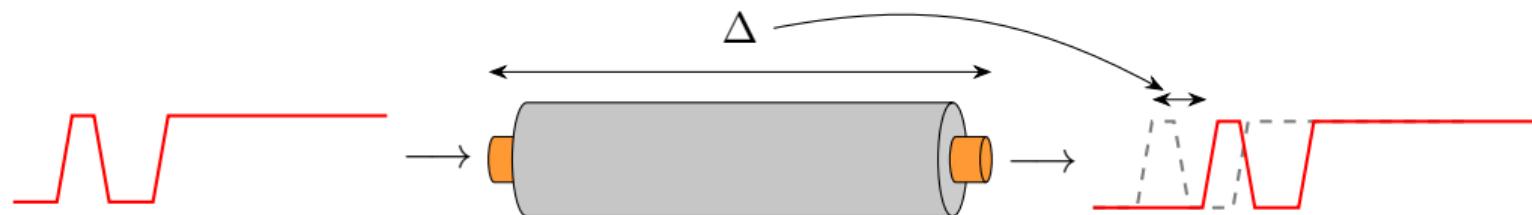
Comparison

VHDL

Pure Delay

HWMod
WS25

Delay Mech.


Delay Types

Pure

Inertial

Comparison

VHDL

Inertial Delay

HWMod
WS25

Delay Mech.

Delay Types

Pure

Inertial

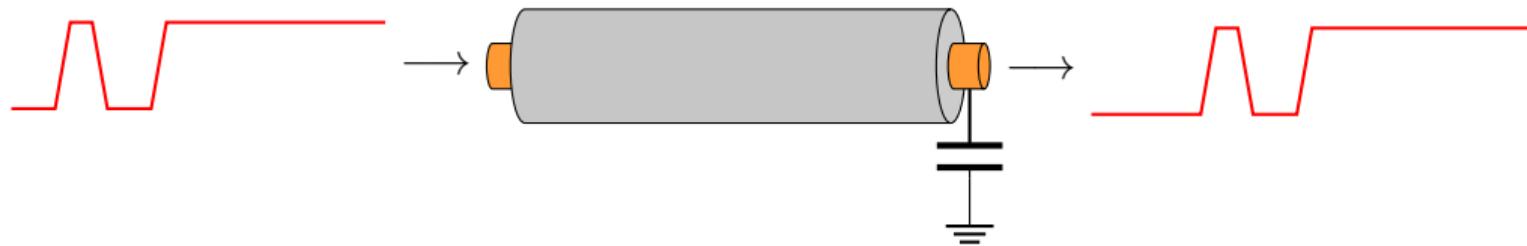
Comparison

VHDL

Inertial Delay

HWMod
WS25

Delay Mech.


Delay Types

Pure

Inertial

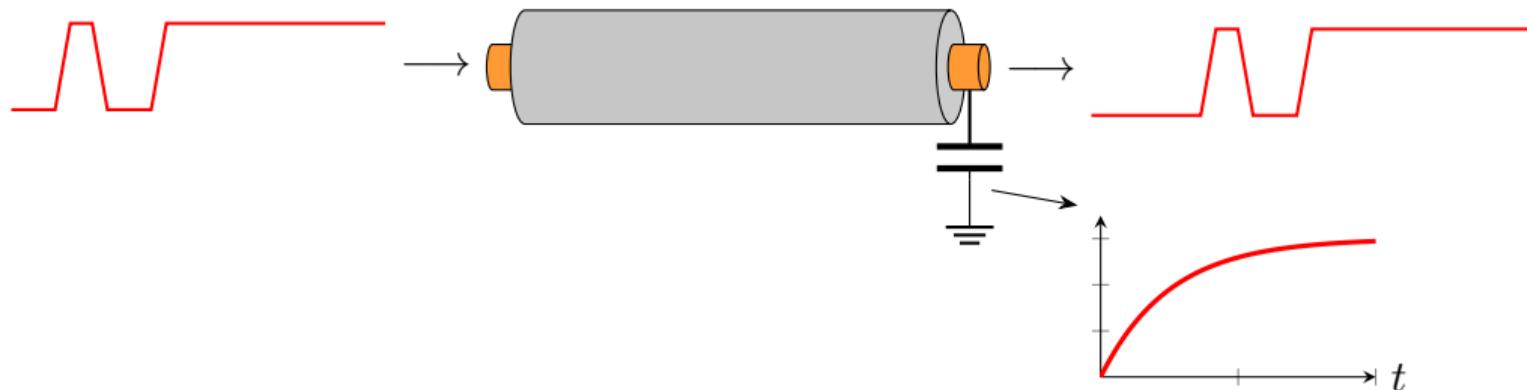
Comparison

VHDL

Inertial Delay

HWMod
WS25

Delay Mech.


Delay Types

Pure

Inertial

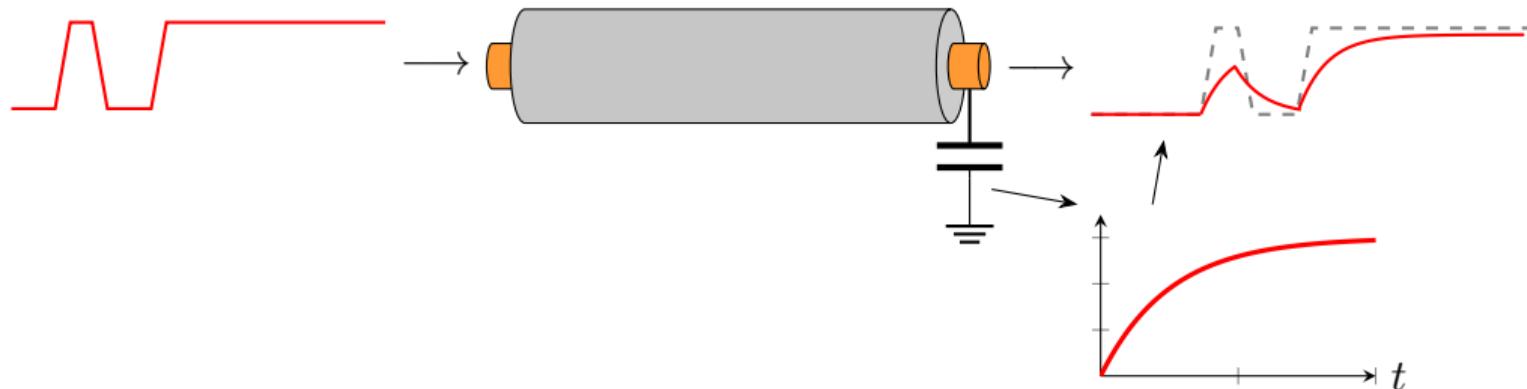
Comparison

VHDL

Inertial Delay

HWMod
WS25

Delay Mech.


Delay Types

Pure

Inertial

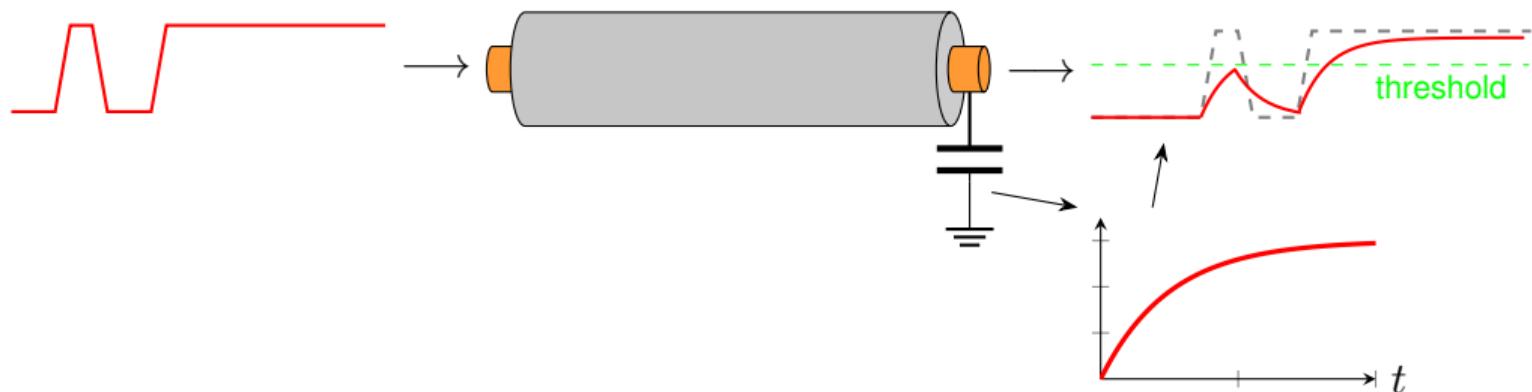
Comparison

VHDL

Inertial Delay

HWMod
WS25

Delay Mech.


Delay Types

Pure

Inertial

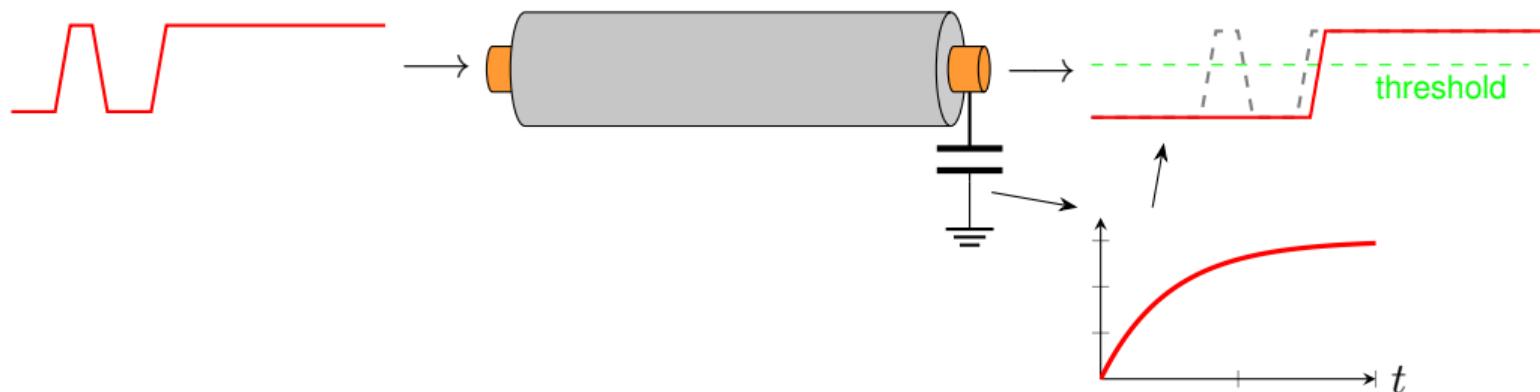
Comparison

VHDL

Inertial Delay

HWMod
WS25

Delay Mech.

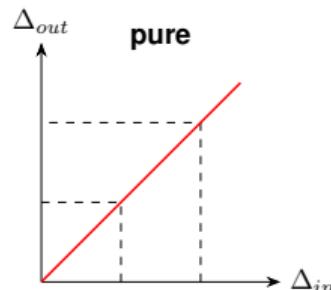

Delay Types

Pure

Inertial

Comparison

VHDL

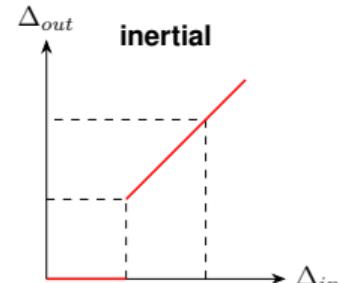
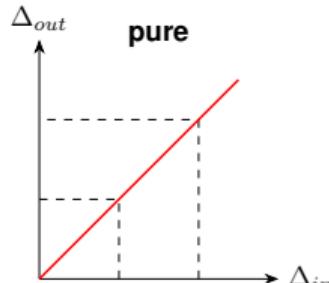

Pure vs. Inertial Delay

HWMod
WS25

Delay Mech.
Delay Types
Pure
Inertial
Comparison
VHDL

■ Pure delay

- Output wave is input wave “shifted backward” in time
- Arbitrary small pulses are propagated
- Use where capacitance negligible

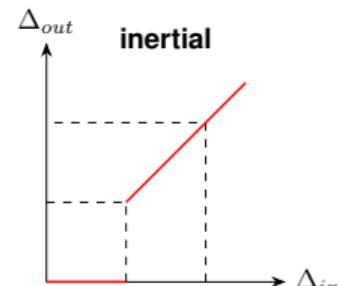
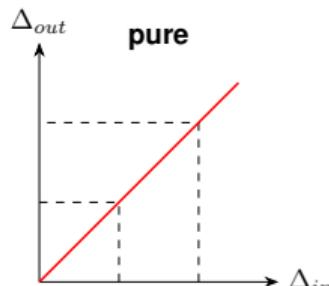



Pure vs. Inertial Delay

HWMod
WS25

Delay Mech.
Delay Types
Pure
Inertial
Comparison
VHDL

- Pure delay
 - Output wave is input wave “shifted backward” in time
 - Arbitrary small pulses are propagated
 - Use where capacitance negligible
- Inertial delay
 - Output wave is input wave “shifted backward” in time plus pulse-width filter
 - Only pulses above a certain width propagate
 - Use where capacitance relevant

Pure vs. Inertial Delay

HWMod
WS25

Delay Mech.
Delay Types
Pure
Inertial
Comparison
VHDL

- Pure delay
 - Output wave is input wave “shifted backward” in time
 - Arbitrary small pulses are propagated
 - Use where capacitance negligible
- Inertial delay
 - Output wave is input wave “shifted backward” in time plus pulse-width filter
 - Only pulses above a certain width propagate
 - Use where capacitance relevant
- Further, more specialized, models exist

- VHDL contains support for delays

```
target <= [ delay_mechanism ] waveform;
```

- VHDL contains support for delays

```
target <= [ delay_mechanism ] waveform;
```

- Both presented delay models are supported

```
delay_mechanism ::=  
  transport  
  | [ reject time_expression ] inertial
```

- VHDL contains support for delays

```
target <= [ delay_mechanism ] waveform;
```

- Both presented delay models are supported
 - Supports pure delay via *transport*

```
delay_mechanism ::=  
  transport  
  | [ reject time_expression ] inertial
```

- VHDL contains support for delays

```
target <= [ delay_mechanism ] waveform;
```

- Both presented delay models are supported

 - Supports pure delay via `transport`

 - Supports inertial delay via `reject` and `inertial`

```
delay_mechanism ::=  
  transport  
  | [ reject time_expression ] inertial
```

- Keyword `transport` before the `waveform` in an assignment

```
target <= transport waveform
```

Pure Delay in VHDL

HWMod
WS25

Delay Mech.
Delay Types
VHDL
Pure
Inertial

- Keyword `transport` before the waveform in an assignment
`target <= transport waveform`
- Signal assignment is simply delayed by some time

- Keyword `transport` before the waveform in an assignment
`target <= transport waveform`
- Signal assignment is simply delayed by some time
 - Time given by waveform's `after` clause
 - Per default 0 ns

Pure Delay in VHDL

HWMod
WS25

Delay Mech.
Delay Types
VHDL
Pure
Inertial

- Keyword `transport` before the waveform in an assignment
`target <= transport waveform`
- Signal assignment is simply delayed by some time
 - Time given by waveform's `after` clause
 - Per default 0 ns
- Example

```
i <= '1' after 2 ns, '0' after 3 ns,    i  
      '1' after 4 ns:
```


Pure Delay in VHDL

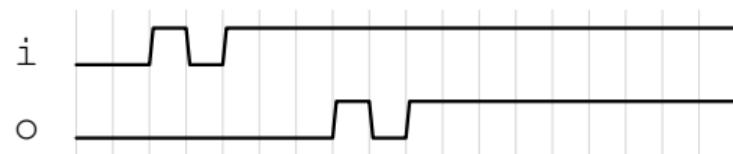
HWMod
WS25

Delay Mech.
Delay Types
VHDL
Pure
Inertial

- Keyword `transport` before the waveform in an assignment
`target <= transport waveform`
- Signal assignment is simply delayed by some time
 - Time given by waveform's `after` clause
 - Per default 0 ns
- Example

```
i <= '1' after 2 ns, '0' after 3 ns,    i
      '1' after 4 ns;
[...]
o <= transport i after 5 ns;
```


Pure Delay in VHDL


HWMod
WS25

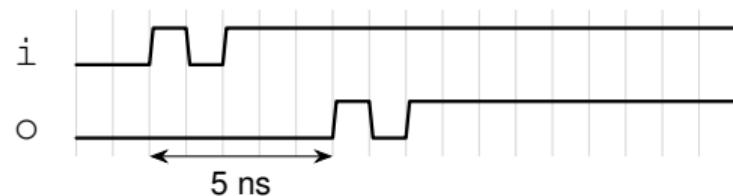
Delay Mech.
Delay Types
VHDL
Pure
Inertial

- Keyword `transport` before the waveform in an assignment


```
target <= transport waveform
```
- Signal assignment is simply delayed by some time
 - Time given by waveform's `after` clause
 - Per default 0 ns
- Example

```
i <= '1' after 2 ns, '0' after 3 ns,  
      '1' after 4 ns;  
[...]  
o <= transport i after 5 ns;
```


Pure Delay in VHDL

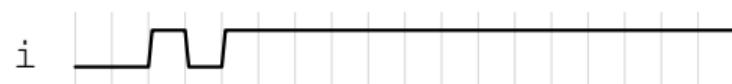

HWMod
WS25

Delay Mech.
Delay Types
VHDL
Pure
Inertial

- Keyword `transport` before the waveform in an assignment


```
target <= transport waveform
```
- Signal assignment is simply delayed by some time
 - Time given by waveform's `after` clause
 - Per default 0 ns
- Example

```
i <= '1' after 2 ns, '0' after 3 ns,  
      '1' after 4 ns;  
[...]  
o <= transport i after 5 ns;
```

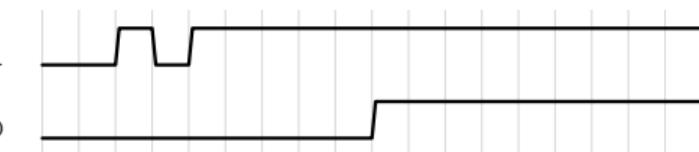


- Default mechanism, explicit via `inertial` in an assignment

```
target <= [reject time_expression] inertial waveform
```

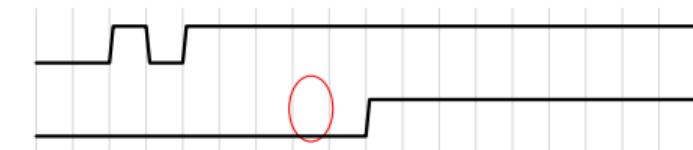
- Default mechanism, explicit via `inertial` in an assignment
`target <= [reject time_expression] inertial waveform`
- Signal assignment is delayed and too short pulses are filtered out
 - Minimum pulse width optionally defined by reject clause
 - Per default time expression associated with first element of waveform

- Default mechanism, explicit via `inertial` in an assignment
`target <= [reject time_expression] inertial waveform`
- Signal assignment is delayed and too short pulses are filtered out
 - Minimum pulse width optionally defined by reject clause
 - Per default time expression associated with first element of waveform
- Example

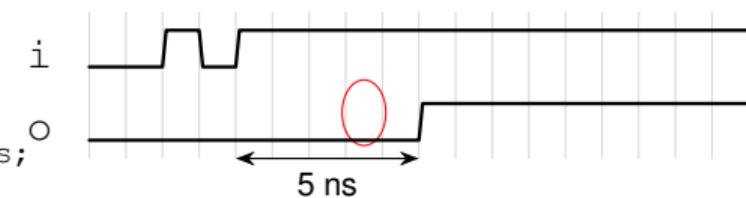
```
i <= '1' after 2 ns, '0' after 3 ns,  
      '1' after 4 ns;
```



- Default mechanism, explicit via `inertial` in an assignment
`target <= [reject time_expression] inertial waveform`
- Signal assignment is delayed and too short pulses are filtered out
 - Minimum pulse width optionally defined by reject clause
 - Per default time expression associated with first element of waveform
- Example

```
i <= '1' after 2 ns, '0' after 3 ns,    i  
      '1' after 4 ns;  
[...]  
o <= reject 1 ns inertial i after 5 ns
```



- Default mechanism, explicit via `inertial` in an assignment
`target <= [reject time_expression] inertial waveform`
- Signal assignment is delayed and too short pulses are filtered out
 - Minimum pulse width optionally defined by reject clause
 - Per default time expression associated with first element of waveform
- Example

```
i <= '1' after 2 ns, '0' after 3 ns,    i
      '1' after 4 ns;
[...]
o <= reject 1 ns inertial i after 5 ns;
```



- Default mechanism, explicit via `inertial` in an assignment
`target <= [reject time_expression] inertial waveform`
- Signal assignment is delayed and too short pulses are filtered out
 - Minimum pulse width optionally defined by reject clause
 - Per default time expression associated with first element of waveform
- Example

```
i <= '1' after 2 ns, '0' after 3 ns,    i
      '1' after 4 ns;
[...]
o <= reject 1 ns inertial i after 5 ns;
```


- Default mechanism, explicit via `inertial` in an assignment
`target <= [reject time_expression] inertial waveform`
- Signal assignment is delayed and too short pulses are filtered out
 - Minimum pulse width optionally defined by reject clause
 - Per default time expression associated with first element of waveform
- Example

```
i <= '1' after 2 ns, '0' after 3 ns,    i
      '1' after 4 ns;
[...]
o <= reject 1 ns inertial i after 5 ns;
```


Remarks

HWMod
WS25

- Default is inertial delay!

Delay Mech.

Delay Types

VHDL

Pure

Inertial

Remarks

HWMod
WS25

Delay Mech.
Delay Types
VHDL
Pure
Inertial

- Default is inertial delay!
- Pulse rejection time positive and smaller or equal the `after` time

Remarks

HWMod
WS25

Delay Mech.
Delay Types
VHDL
Pure
Inertial

- Default is inertial delay!
- Pulse rejection time positive and smaller or equal the `after` time
- All equivalent
 - `<= i after 1 ns;`
 - `<= inertial i after 1 ns;`
 - `<= reject 1 ns inertial i after 1 ns;`

Remarks

HWMod
WS25

Delay Mech.
Delay Types
VHDL
Pure
Inertial

- Default is inertial delay!
- Pulse rejection time positive and smaller or equal the `after` time
- All equivalent

- `<= i after 1 ns;`
 - `<= inertial i after 1 ns;`
 - `<= reject 1 ns inertial i after 1 ns;`

- *Any pulse shorter than the limit is rejected*

Remarks

HWMod
WS25

Delay Mech.
Delay Types
VHDL
Pure
Inertial

- Default is inertial delay!
- Pulse rejection time positive and smaller or equal the `after` time
- All equivalent

- `<= i after 1 ns;`
 - `<= inertial i after 1 ns;`
 - `<= reject 1 ns inertial i after 1 ns;`

- Any pulse shorter than the limit is rejected
- Pure delay: can convert to equivalent `inertial` delay

- `<= transport i after 10 ns;`
 - `<= reject 0 ns inertial i after 10 ns;`

Lecture Complete!