
HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Hardware Modeling [VU] (191.011)
– WS24 –

Composite Types

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-12, 16:24 (b25118c)

Hardware Modeling [VU] (191.011)
– WS24 –

Composite Types

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Composite Types

In this lecture we take a look at composite types in VHDL and will, thus, extend our knowledge about the VHDL type system.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Introduction

VHDL type classes (repetition)
scalar
composite
file
access
protected

Composite types
Array types (homogeneous collections)
Record types (heterogeneous collections)

Value types

1

Introduction

VHDL type classes (repetition)
scalar
composite
file
access
protected

Composite types
Array types (homogeneous collections)
Record types (heterogeneous collections)

Value types

Composite Types

Introduction

In the introduction lecture to the VHDL type system we already learned that there are five classes of types and discussed the
scalar type in detail.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Introduction

VHDL type classes (repetition)
scalar
composite
file
access
protected

Composite types
Array types (homogeneous collections)
Record types (heterogeneous collections)

Value types

1

Introduction

VHDL type classes (repetition)
scalar
composite
file
access
protected

Composite types
Array types (homogeneous collections)
Record types (heterogeneous collections)

Value types

Composite Types

Introduction

In this lecture, we now take a closer look at composite types. The composite type class comprises array and record types,
which we will simply refer to as arrays and records.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Introduction

VHDL type classes (repetition)
scalar
composite
file
access
protected

Composite types
Array types (homogeneous collections)
Record types (heterogeneous collections)

Value types

1

Introduction

VHDL type classes (repetition)
scalar
composite
file
access
protected

Composite types
Array types (homogeneous collections)
Record types (heterogeneous collections)

Value types

Composite Types

Introduction

Please note that all types we have discussed so far and all types we will discuss in this lecture are value types. When a value
type variable is assigned to another variable, a copy of the value is made. This means changes to one variable do not affect
the other. This also holds true for composite types like arrays discussed in this lecture. Note that this is in contrast to many
other programming languages, where arrays are often handled using pointers or references.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Array Types 60

Declaration syntax
type TYPE_NAME is
array(range_constraints) of element_type;

Examples
 -- declaration
 type u_t is array(integer range <>) of boolean; -- unconstrained
 type c_t is array(0 to 13) of boolean; -- constrained
 -- usage
 variable u : u_t(3 downto -7);
 variable c : c_t;
 constant const_u : u_t := 1 & 2 & 3; -- range is inferred

Synthesizeable, if elements are synthesizeable
Needed to describe memory

2

Array Types 60

Declaration syntax
type TYPE_NAME is
array(range_constraints) of element_type;

Examples
 -- declaration
 type u_t is array(integer range <>) of boolean; -- unconstrained
 type c_t is array(0 to 13) of boolean; -- constrained
 -- usage
 variable u : u_t(3 downto -7);
 variable c : c_t;
 constant const_u : u_t := 1 & 2 & 3; -- range is inferred

Synthesizeable, if elements are synthesizeable
Needed to describe memory

Composite Types
Array Types

Array Types

You should already be familiar with the concept of arrays from other programming languages. Arrays are data structures used
to store multiple values of the same type. Individual elements in an array are accessed using an index. In many programming
languages such as C or Java this index starts at zero. However, as we will learn in this lecture, VHDL is much more flexible
in this regard, allowing array indices to be arbitrary continuous ranges of integer values.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Array Types 60

Declaration syntax
type TYPE_NAME is
array(range_constraints) of element_type;

Examples
 -- declaration
 type u_t is array(integer range <>) of boolean; -- unconstrained
 type c_t is array(0 to 13) of boolean; -- constrained
 -- usage
 variable u : u_t(3 downto -7);
 variable c : c_t;
 constant const_u : u_t := 1 & 2 & 3; -- range is inferred

Synthesizeable, if elements are synthesizeable
Needed to describe memory

2

Array Types 60

Declaration syntax
type TYPE_NAME is
array(range_constraints) of element_type;

Examples
 -- declaration
 type u_t is array(integer range <>) of boolean; -- unconstrained
 type c_t is array(0 to 13) of boolean; -- constrained
 -- usage
 variable u : u_t(3 downto -7);
 variable c : c_t;
 constant const_u : u_t := 1 & 2 & 3; -- range is inferred

Synthesizeable, if elements are synthesizeable
Needed to describe memory

Composite Types
Array Types

Array Types

Array types are declared using the array keyword followed by one or more comma-separated integer range constraints.
Specifying multiple range constraints allows the declaration of multidimensional arrays. Finally, we have to declare the actual
element type of the array. This can be any scalar type, another array or a record type.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Array Types 60

Declaration syntax
type TYPE_NAME is
array(range_constraints) of element_type;

Examples
 -- declaration
 type u_t is array(integer range <>) of boolean; -- unconstrained
 type c_t is array(0 to 13) of boolean; -- constrained
 -- usage
 variable u : u_t(3 downto -7);
 variable c : c_t;
 constant const_u : u_t := 1 & 2 & 3; -- range is inferred

Synthesizeable, if elements are synthesizeable
Needed to describe memory

2

Array Types 60

Declaration syntax
type TYPE_NAME is
array(range_constraints) of element_type;

Examples
 -- declaration
 type u_t is array(integer range <>) of boolean; -- unconstrained
 type c_t is array(0 to 13) of boolean; -- constrained
 -- usage
 variable u : u_t(3 downto -7);
 variable c : c_t;
 constant const_u : u_t := 1 & 2 & 3; -- range is inferred

Synthesizeable, if elements are synthesizeable
Needed to describe memory

Composite Types
Array Types

Array Types

We don’t want to get into too much detail regarding the formal specification of the array declaration syntax, as it is quite
complex. Rather we want to show some example declarations and discuss their semantics. Array types in VHDL can be
classified as either constrained or unconstrained. The code snippet on this slide shows an example for both variants. The first
type named u_t is unconstrained, indicated by the symbol formed by the opening and closing angled brackets. Whenever
this type is used in a variable declaration, it has to be constrained explicitly. In this case, this range constraint may use
arbitrary integer-type limits and can be either ascending or descending. For constants, such as const_u in the example
code, the story is a little different. Here, the range constraint can be omitted, as the compiler can infer it from the constant
value itself. Constrained array types, such as c_t, can only be used with one particular range – the range they have been
declared for. The array range constraints basically define the indices that can be accessed on arrays of that type. This
means that arrays in VHDL don’t always start with the index zero, as is the case for many other programming languages. For
the variable ”u”, we can for example access the indices three, two all the way down to negative 7. Let us quickly revisit the
declaration of the constant const-u. Its initialization value is a 3-element array comprising the integers 1, 2 and 3, specified
using the concatenation operator. However, be aware that contrary to what you might expect, this code will not produce an
array with the range 0 to 2. Since, the range of the underlying type u-type is specified as an integer range, the compiler will
let the array start from the index given by the smallest value representable by the built-in integer type. This is something you
should keep in mind when working with unconstrained types.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Array Types 60

Declaration syntax
type TYPE_NAME is
array(range_constraints) of element_type;

Examples
 -- declaration
 type u_t is array(integer range <>) of boolean; -- unconstrained
 type c_t is array(0 to 13) of boolean; -- constrained
 -- usage
 variable u : u_t(3 downto -7);
 variable c : c_t;
 constant const_u : u_t := 1 & 2 & 3; -- range is inferred

Synthesizeable, if elements are synthesizeable
Needed to describe memory

2

Array Types 60

Declaration syntax
type TYPE_NAME is
array(range_constraints) of element_type;

Examples
 -- declaration
 type u_t is array(integer range <>) of boolean; -- unconstrained
 type c_t is array(0 to 13) of boolean; -- constrained
 -- usage
 variable u : u_t(3 downto -7);
 variable c : c_t;
 constant const_u : u_t := 1 & 2 & 3; -- range is inferred

Synthesizeable, if elements are synthesizeable
Needed to describe memory

Composite Types
Array Types

Array Types

A VHDL array is synthesizeable if the element type it contains is synthesizeable. Indeed, arrays are heavily used in synthe-
sizeable code to describe memories, such as RAMs, ROMs or FIFOs. However, this topic will be discussed in a dedicated
upcoming lecture.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Predefined Array Types

string type
Declaration
type string is
array (positive range <>) of character;

Unconstrained with positive range
Usage example
constant CONST_STRING : string := "Hello World";

Other predefined array types
type integer_vector is

array(natural range <>) of integer;
type boolean_vector is

array (natural range <>) of boolean;
type time_vector is

array (natural range <>) of time;

3

Predefined Array Types

string type
Declaration
type string is
array (positive range <>) of character;

Unconstrained with positive range
Usage example
constant CONST_STRING : string := "Hello World";

Other predefined array types
type integer_vector is

array(natural range <>) of integer;
type boolean_vector is

array (natural range <>) of boolean;
type time_vector is

array (natural range <>) of time;

Composite Types
Array Types

Predefined Array Types

Let’s now look at some of the predefined array types that can be found in the standard package.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L347
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L471
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L364
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L499
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L347
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L471
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L364
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L499

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Predefined Array Types

string type
Declaration
type string is
array (positive range <>) of character;

Unconstrained with positive range
Usage example
constant CONST_STRING : string := "Hello World";

Other predefined array types
type integer_vector is

array(natural range <>) of integer;
type boolean_vector is

array (natural range <>) of boolean;
type time_vector is

array (natural range <>) of time;

3

Predefined Array Types

string type
Declaration
type string is
array (positive range <>) of character;

Unconstrained with positive range
Usage example
constant CONST_STRING : string := "Hello World";

Other predefined array types
type integer_vector is

array(natural range <>) of integer;
type boolean_vector is

array (natural range <>) of boolean;
type time_vector is

array (natural range <>) of time;

Composite Types
Array Types

Predefined Array Types

We have already encountered the built-in string type in previous lectures. In VHDL, strings are simply defined as arrays
of characters, comparable to what is done in the C programming language. The string type is another example for an
unconstrained array type. Note that the string range limits are of the integer-subtype positive, which only includes numbers
grater and equal to one. This means that a string never has a character at index zero! For the example string constant shown
on this slide, this results in an inferred range of 1 to 11.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L347
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L471
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L364
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L499
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L347
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L471
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L364
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L499

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Predefined Array Types

string type
Declaration
type string is
array (positive range <>) of character;

Unconstrained with positive range
Usage example
constant CONST_STRING : string := "Hello World";

Other predefined array types
type integer_vector is

array(natural range <>) of integer;
type boolean_vector is

array (natural range <>) of boolean;
type time_vector is

array (natural range <>) of time;

3

Predefined Array Types

string type
Declaration
type string is
array (positive range <>) of character;

Unconstrained with positive range
Usage example
constant CONST_STRING : string := "Hello World";

Other predefined array types
type integer_vector is

array(natural range <>) of integer;
type boolean_vector is

array (natural range <>) of boolean;
type time_vector is

array (natural range <>) of time;

Composite Types
Array Types

Predefined Array Types

Conveniently, starting with VHDL-2008 the standard package already defines array types for the predefined scalar types
integer, real, boolean, bit, and time. The naming convention for these array types is the name of the scalar type underscore-
vector. Note, that they are all unconstrained arrays with natural range limits.

https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L347
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L471
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L364
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L499
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L347
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L471
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L364
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L499

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Element Access

Element access syntax
Not via square brackets, i.e., []
Parentheses with integer index as parameter
Similar to function calls

Element access example
 process
 variable a : integer_vector(0 to 3);
 begin
 a(0) := 1; -- write access
 report to_string(a(0)); -- read access
 wait;
 end process;

Runtime range checks

4

Element Access

Element access syntax
Not via square brackets, i.e., []
Parentheses with integer index as parameter
Similar to function calls

Element access example
 process
 variable a : integer_vector(0 to 3);
 begin
 a(0) := 1; -- write access
 report to_string(a(0)); -- read access
 wait;
 end process;

Runtime range checks

Composite Types
Array Types

Element Access

Now that we know, how arrays are declared, we can turn our attention to the question of how array elements are accessed.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Element Access

Element access syntax
Not via square brackets, i.e., []
Parentheses with integer index as parameter
Similar to function calls

Element access example
 process
 variable a : integer_vector(0 to 3);
 begin
 a(0) := 1; -- write access
 report to_string(a(0)); -- read access
 wait;
 end process;

Runtime range checks

4

Element Access

Element access syntax
Not via square brackets, i.e., []
Parentheses with integer index as parameter
Similar to function calls

Element access example
 process
 variable a : integer_vector(0 to 3);
 begin
 a(0) := 1; -- write access
 report to_string(a(0)); -- read access
 wait;
 end process;

Runtime range checks

Composite Types
Array Types

Element Access

In contrast to many other programming languages, such as C, Java or Python, VHDL does not use square brackets to access
array elements – in fact square brackets are not used at all in the VHDL syntax. It rather uses simple round parentheses
which enclose the integer index of the element that is accessed. This, unfortunately, means that an array access is not always
directly obvious in code, as a call to a function with a single parameter uses the exact same syntax.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Element Access

Element access syntax
Not via square brackets, i.e., []
Parentheses with integer index as parameter
Similar to function calls

Element access example
 process
 variable a : integer_vector(0 to 3);
 begin
 a(0) := 1; -- write access
 report to_string(a(0)); -- read access
 wait;
 end process;

Runtime range checks

4

Element Access

Element access syntax
Not via square brackets, i.e., []
Parentheses with integer index as parameter
Similar to function calls

Element access example
 process
 variable a : integer_vector(0 to 3);
 begin
 a(0) := 1; -- write access
 report to_string(a(0)); -- read access
 wait;
 end process;

Runtime range checks

Composite Types
Array Types

Element Access

The example code on this slide demonstrates how this works. The process first write the integer value 1 to the first index of
the array ”a” and then uses a report statement to print it out.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Element Access

Element access syntax
Not via square brackets, i.e., []
Parentheses with integer index as parameter
Similar to function calls

Element access example
 process
 variable a : integer_vector(0 to 3);
 begin
 a(0) := 1; -- write access
 report to_string(a(0)); -- read access
 wait;
 end process;

Runtime range checks

4

Element Access

Element access syntax
Not via square brackets, i.e., []
Parentheses with integer index as parameter
Similar to function calls

Element access example
 process
 variable a : integer_vector(0 to 3);
 begin
 a(0) := 1; -- write access
 report to_string(a(0)); -- read access
 wait;
 end process;

Runtime range checks

Composite Types
Array Types

Element Access

As with the value ranges for integer and floating-point types, VHDL also performs static and runtime range checks when
accessing arrays. This means that accessing an element that is outside the declared range of an array leads to a compilation
error or the immediate termination of the simulator. However, please keep in mind that runtime range checks are only
performed in simulation and not in hardware.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Element Access (cont’d)

Range access syntax: parentheses with integer range expression

Range access example
 process
 variable a : integer_vector(0 to 5);
 begin
 a(0) := 4;
 a(1) := 2;
 a(2 to 5) := a(0 to 1) & a(0 to 1);
 for i in 0 to 5 loop
 report to_string(a(i));
 end loop;

 wait;
 end process;

5

Element Access (cont’d)

Range access syntax: parentheses with integer range expression

Range access example
 process
 variable a : integer_vector(0 to 5);
 begin
 a(0) := 4;
 a(1) := 2;
 a(2 to 5) := a(0 to 1) & a(0 to 1);
 for i in 0 to 5 loop
 report to_string(a(i));
 end loop;

 wait;
 end process;

Composite Types
Array Types

Element Access (cont’d)

In VHDL, it is also possible to index whole ranges of values. Again, parentheses are used, but instead of a single integer, an
integer range expression has to be specified.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Element Access (cont’d)

Range access syntax: parentheses with integer range expression
Range access example

 process
 variable a : integer_vector(0 to 5);
 begin
 a(0) := 4;
 a(1) := 2;
 a(2 to 5) := a(0 to 1) & a(0 to 1);
 for i in 0 to 5 loop
 report to_string(a(i));
 end loop;

 wait;
 end process;

5

Element Access (cont’d)

Range access syntax: parentheses with integer range expression
Range access example

 process
 variable a : integer_vector(0 to 5);
 begin
 a(0) := 4;
 a(1) := 2;
 a(2 to 5) := a(0 to 1) & a(0 to 1);
 for i in 0 to 5 loop
 report to_string(a(i));
 end loop;

 wait;
 end process;

Composite Types
Array Types

Element Access (cont’d)

How this works in actual VHDL code is shown in the example snippet on this slide. The code first declares an array variable A,
whose indices zero and one are set to the numbers 4 and 2, respectively. Now consider the right-hand-side of the assignment
in line 6. The value range zero to one of variable A is read two times, each time returning an array of length two, which are
then combined to an array of length 4 using the concatenation operator. The left-hand-side of the assignment, specifies a
range of the variable A. comprising four elements as the target for the assignment. Hence, the text output of this process are
the numbers 4 and 2 repeated three times.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Multidimensional Array Examples

2D Array
 process
 type a2d_t is array(integer range <>, integer range <>) of boolean;
 variable a2d : a2d_t(3 downto -4, 0 to 7);
 begin
 a2d(-4, 0) := true;
 report to_string(a2d(-4, 0)); -- output: true
 wait;
 end process;

Array of an Array
 process
 type aoa_t is array(integer range <>) of boolean_vector(0 to 7);
 variable aoa : aoa_t(3 downto -4);
 begin
 aoa(-4)(0) := true;
 report to_string(aoa(-4)(0)); -- output: true
 wait;
 end process;

6

Multidimensional Array Examples

2D Array
 process
 type a2d_t is array(integer range <>, integer range <>) of boolean;
 variable a2d : a2d_t(3 downto -4, 0 to 7);
 begin
 a2d(-4, 0) := true;
 report to_string(a2d(-4, 0)); -- output: true
 wait;
 end process;

Array of an Array
 process
 type aoa_t is array(integer range <>) of boolean_vector(0 to 7);
 variable aoa : aoa_t(3 downto -4);
 begin
 aoa(-4)(0) := true;
 report to_string(aoa(-4)(0)); -- output: true
 wait;
 end process;

Composite Types
Array Types

Multidimensional Array Examples

As already mentioned when we talked about the declaration syntax of arrays, it is possible to specify more than one range
constraint, which results in multidimensional arrays. The first example on this slide shows how this can look like for a
two-dimensional array. a2d_t represents an unconstrained two-dimensional array. Hence, when the array variable a2d is
declared, the range limits have to be specified – note that it is valid to mix ascending and descending ranges. However, what
is not valid is to mix constrained and unconstrained ranges in array declarations. To access elements of multidimensional
arrays, multiple comma-separated indices are used in parentheses.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Multidimensional Array Examples

2D Array
 process
 type a2d_t is array(integer range <>, integer range <>) of boolean;
 variable a2d : a2d_t(3 downto -4, 0 to 7);
 begin
 a2d(-4, 0) := true;
 report to_string(a2d(-4, 0)); -- output: true
 wait;
 end process;

Array of an Array
 process
 type aoa_t is array(integer range <>) of boolean_vector(0 to 7);
 variable aoa : aoa_t(3 downto -4);
 begin
 aoa(-4)(0) := true;
 report to_string(aoa(-4)(0)); -- output: true
 wait;
 end process;

6

Multidimensional Array Examples

2D Array
 process
 type a2d_t is array(integer range <>, integer range <>) of boolean;
 variable a2d : a2d_t(3 downto -4, 0 to 7);
 begin
 a2d(-4, 0) := true;
 report to_string(a2d(-4, 0)); -- output: true
 wait;
 end process;

Array of an Array
 process
 type aoa_t is array(integer range <>) of boolean_vector(0 to 7);
 variable aoa : aoa_t(3 downto -4);
 begin
 aoa(-4)(0) := true;
 report to_string(aoa(-4)(0)); -- output: true
 wait;
 end process;

Composite Types
Array Types

Multidimensional Array Examples

It is also possible to declare a multidimensional array, by declaring an array type whose element type is another array. This
is demonstrated in the second code snippet on this slide. Notice, however, that in this case the individual array elements are
accessed slightly differently, requiring two parenthesis expressions, instead of one with a comma.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Array Attributes 276

Defined for array-type objects (variables, constants, etc.)
Important: not for the type itself

Example
 process
 type a_t is array(1 downto -1) of boolean;
 variable a : a_t;
 begin
 report "length=" & to_string(a’length); -- output: length=3
 wait;
 end process;

Other attributes: low, high, left, right, ascending, etc. (see VHDL
standard)

7

Array Attributes 276

Defined for array-type objects (variables, constants, etc.)
Important: not for the type itself

Example
 process
 type a_t is array(1 downto -1) of boolean;
 variable a : a_t;
 begin
 report "length=" & to_string(a’length); -- output: length=3
 wait;
 end process;

Other attributes: low, high, left, right, ascending, etc. (see VHDL
standard)

Composite Types
Array Types

Array Attributes

To obtain meta-information about arrays VHDL offers several predefined array attributes. These attributes are defined for all
array-type objects such as variables or constants. This is in contrast to the attributes that we have seen for scalar types,
which are defined for the respective types and not the objects of that type.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Array Attributes 276

Defined for array-type objects (variables, constants, etc.)
Important: not for the type itself
Example

 process
 type a_t is array(1 downto -1) of boolean;
 variable a : a_t;
 begin
 report "length=" & to_string(a’length); -- output: length=3
 wait;
 end process;

Other attributes: low, high, left, right, ascending, etc. (see VHDL
standard)

7

Array Attributes 276

Defined for array-type objects (variables, constants, etc.)
Important: not for the type itself
Example

 process
 type a_t is array(1 downto -1) of boolean;
 variable a : a_t;
 begin
 report "length=" & to_string(a’length); -- output: length=3
 wait;
 end process;

Other attributes: low, high, left, right, ascending, etc. (see VHDL
standard)

Composite Types
Array Types

Array Attributes

The example code on this slide shows how the length attribute of the array ”a” is accessed. The length attribute always
returns the number of elements contained in an array, which in the case of the example is 3.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Array Attributes 276

Defined for array-type objects (variables, constants, etc.)
Important: not for the type itself
Example

 process
 type a_t is array(1 downto -1) of boolean;
 variable a : a_t;
 begin
 report "length=" & to_string(a’length); -- output: length=3
 wait;
 end process;

Other attributes: low, high, left, right, ascending, etc. (see VHDL
standard)

7

Array Attributes 276

Defined for array-type objects (variables, constants, etc.)
Important: not for the type itself
Example

 process
 type a_t is array(1 downto -1) of boolean;
 variable a : a_t;
 begin
 report "length=" & to_string(a’length); -- output: length=3
 wait;
 end process;

Other attributes: low, high, left, right, ascending, etc. (see VHDL
standard)

Composite Types
Array Types

Array Attributes

The attributes low, high, left, right and ascending have a similar function as the corresponding attributes for scalar types. For
arrays, they return the respective range limits the array was defined for. For an exhaustive list on all array attributes, please
refer to the VHDL standard.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Array Attributes – Range

Access an array’s declared range

Example
 process
 variable a : integer_vector(2 downto 0) := 1 & 2 & 3;
 begin
 report "range";
 for i in a’range loop
 report "index=" & to_string(i) & ", value=" & to_string(a(i));
 end loop;
 wait;
 end process;

Output
[...]: index=2, value=1
[...]: index=1, value=2
[...]: index=0, value=3

8

Array Attributes – Range

Access an array’s declared range

Example
 process
 variable a : integer_vector(2 downto 0) := 1 & 2 & 3;
 begin
 report "range";
 for i in a’range loop
 report "index=" & to_string(i) & ", value=" & to_string(a(i));
 end loop;
 wait;
 end process;

Output
[...]: index=2, value=1
[...]: index=1, value=2
[...]: index=0, value=3

Composite Types
Array Types

Array Attributes – Range

Let’s take a closer look at one quite important attribute. As the name suggests, the range attribute allows to refer to the range
an array is defined for.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Array Attributes – Range

Access an array’s declared range
Example

 process
 variable a : integer_vector(2 downto 0) := 1 & 2 & 3;
 begin
 report "range";
 for i in a’range loop
 report "index=" & to_string(i) & ", value=" & to_string(a(i));
 end loop;
 wait;
 end process;

Output
[...]: index=2, value=1
[...]: index=1, value=2
[...]: index=0, value=3

8

Array Attributes – Range

Access an array’s declared range
Example

 process
 variable a : integer_vector(2 downto 0) := 1 & 2 & 3;
 begin
 report "range";
 for i in a’range loop
 report "index=" & to_string(i) & ", value=" & to_string(a(i));
 end loop;
 wait;
 end process;

Output
[...]: index=2, value=1
[...]: index=1, value=2
[...]: index=0, value=3

Composite Types
Array Types

Array Attributes – Range

In the code snippet it is used to iterate over all indices of the array A and print them alongside the actual value stored at that
location. This way of iterating over the elements of an array is obviously preferable to hard-coding an explicit range in the for
loop.

HWMod
WS24

Comp. Types
Arrays

Predef. Arrays

Element Access

Multidim. Arrays

Attributes

Records

Aggregates

Array Attributes – Multidimensional Arrays

Array dimension specified by additional integer (≥ 1)
Example

 process
 type a_t is array(3 downto 0, 1 to 2) of boolean;
 variable a : a_t;
 begin
 report "length(1)=" & to_string(a’length(1));
 report "length(2)=" & to_string(a’length(2));
 wait;
 end process;

Output
[..]:(report note): length(1)=4
[..]:(report note): length(2)=2

9

Array Attributes – Multidimensional Arrays

Array dimension specified by additional integer (≥ 1)
Example

 process
 type a_t is array(3 downto 0, 1 to 2) of boolean;
 variable a : a_t;
 begin
 report "length(1)=" & to_string(a’length(1));
 report "length(2)=" & to_string(a’length(2));
 wait;
 end process;

Output
[..]:(report note): length(1)=4
[..]:(report note): length(2)=2

Composite Types
Array Types

Array Attributes – Multidimensional Arrays

In case of multidimensional arrays, all array attributes can be passed an additional parameter in parentheses that selects the
dimension for which the respective attribute should be read. The example code shows how this works for the length attribute.
Note, that the first dimension has the index 1.

HWMod
WS24

Comp. Types
Arrays

Records

Element Access

Unconstrained
Elements

Aggregates

Record Types 66

Composed of elements of (potentially) different types (comparable to C
structs)

Declaration syntax
type TYPE_NAME is record
{element_declaration}

end record;

Example
 type my_record_t is record
 a : integer_vector(7 downto 0);
 b : boolean;
 c, d : integer;
 end record;

Synthesizable (except if they comprise non-synthesizable data types)

10

Record Types 66

Composed of elements of (potentially) different types (comparable to C
structs)

Declaration syntax
type TYPE_NAME is record
{element_declaration}

end record;

Example
 type my_record_t is record
 a : integer_vector(7 downto 0);
 b : boolean;
 c, d : integer;
 end record;

Synthesizable (except if they comprise non-synthesizable data types)

Composite Types
Record Types

Record Types

OK, now let’s turn our attention to the other class of composite types – records. Record types are the VHDL-version of
heterogeneous composite data types and can be compared to structs in the C programming language. A record can be
composed of an arbitrary number of elements of different data types, such as built-in types like integer, boolean or time,
enums, arrays or even other records. They allow to group data that logically belongs together and, hence, make code more
structured and maintainable.

HWMod
WS24

Comp. Types
Arrays

Records

Element Access

Unconstrained
Elements

Aggregates

Record Types 66

Composed of elements of (potentially) different types (comparable to C
structs)
Declaration syntax
type TYPE_NAME is record
{element_declaration}

end record;

Example
 type my_record_t is record
 a : integer_vector(7 downto 0);
 b : boolean;
 c, d : integer;
 end record;

Synthesizable (except if they comprise non-synthesizable data types)

10

Record Types 66

Composed of elements of (potentially) different types (comparable to C
structs)
Declaration syntax
type TYPE_NAME is record
{element_declaration}

end record;

Example
 type my_record_t is record
 a : integer_vector(7 downto 0);
 b : boolean;
 c, d : integer;
 end record;

Synthesizable (except if they comprise non-synthesizable data types)

Composite Types
Record Types

Record Types

Record types are declared using the record keyword, followed by a list of element declarations. An element declaration is
given by an identifier – the element name – followed by a colon, a type and a semicolon. If multiple elements with the same
type have to be declared it is also possible to use a comma-separated list of identifiers, instead of a single one. This is also
demonstrated by the elements c and d in the example record shown on this slide.

HWMod
WS24

Comp. Types
Arrays

Records

Element Access

Unconstrained
Elements

Aggregates

Record Types 66

Composed of elements of (potentially) different types (comparable to C
structs)
Declaration syntax
type TYPE_NAME is record
{element_declaration}

end record;

Example
 type my_record_t is record
 a : integer_vector(7 downto 0);
 b : boolean;
 c, d : integer;
 end record;

Synthesizable (except if they comprise non-synthesizable data types)
10

Record Types 66

Composed of elements of (potentially) different types (comparable to C
structs)
Declaration syntax
type TYPE_NAME is record
{element_declaration}

end record;

Example
 type my_record_t is record
 a : integer_vector(7 downto 0);
 b : boolean;
 c, d : integer;
 end record;

Synthesizable (except if they comprise non-synthesizable data types)

Composite Types
Record Types

Record Types

Generally, records are fully synthesizable. However, if they contain elements of data types that are not synthesizable, like
time or real, then the resulting record is also not synthesizable.

HWMod
WS24

Comp. Types
Arrays

Records

Element Access

Unconstrained
Elements

Aggregates

Element Access

Element access syntax: dot operator

Example
 process
 type vec2_t is record
 x, y : real;
 end record;
 variable v : vec2_t;
 begin
 v.x := 1.0;
 v.y := 2.0;
 report "x=" & to_string(v.x) & "," &

 "y=" & to_string(v.y); -- output: x=1.0, y=2.0
 wait;
 end process;

11

Element Access

Element access syntax: dot operator

Example
 process
 type vec2_t is record
 x, y : real;
 end record;
 variable v : vec2_t;
 begin
 v.x := 1.0;
 v.y := 2.0;
 report "x=" & to_string(v.x) & "," &

 "y=" & to_string(v.y); -- output: x=1.0, y=2.0
 wait;
 end process;

Composite Types
Record Types

Element Access

To access the elements of a record the dot operator is used.

HWMod
WS24

Comp. Types
Arrays

Records

Element Access

Unconstrained
Elements

Aggregates

Element Access

Element access syntax: dot operator
Example

 process
 type vec2_t is record
 x, y : real;
 end record;
 variable v : vec2_t;
 begin
 v.x := 1.0;
 v.y := 2.0;
 report "x=" & to_string(v.x) & "," &

 "y=" & to_string(v.y); -- output: x=1.0, y=2.0
 wait;
 end process;

11

Element Access

Element access syntax: dot operator
Example

 process
 type vec2_t is record
 x, y : real;
 end record;
 variable v : vec2_t;
 begin
 v.x := 1.0;
 v.y := 2.0;
 report "x=" & to_string(v.x) & "," &

 "y=" & to_string(v.y); -- output: x=1.0, y=2.0
 wait;
 end process;

Composite Types
Record Types

Element Access

In the example code snippet the record type vec2_t is declared, which represents vector in 2D space. Then this type is
used to declare the variable v whose elements x and y are then assigned the values one and two.

HWMod
WS24

Comp. Types
Arrays

Records

Element Access

Unconstrained
Elements

Aggregates

Unconstrained Elements

Records can have elements of unconstrained types

Constrain types when record is used
Example

 process
 type ur_t is record
 a : integer_vector; -- unconstrained
 b : boolean_vector; -- unconstrained
 c : real_vector(1 downto 0); --constrained
 end record;
 variable v : ur_t(a(1 downto 0), b(0 to 7));
 begin
 wait;

 end process;

12

Unconstrained Elements

Records can have elements of unconstrained types

Constrain types when record is used
Example

 process
 type ur_t is record
 a : integer_vector; -- unconstrained
 b : boolean_vector; -- unconstrained
 c : real_vector(1 downto 0); --constrained
 end record;
 variable v : ur_t(a(1 downto 0), b(0 to 7));
 begin
 wait;

 end process;

Composite Types
Record Types

Unconstrained Elements

It is possible to declare a record with unconstrained element types – for example an integer vector without a range constraint.

HWMod
WS24

Comp. Types
Arrays

Records

Element Access

Unconstrained
Elements

Aggregates

Unconstrained Elements

Records can have elements of unconstrained types
Constrain types when record is used

Example
 process
 type ur_t is record
 a : integer_vector; -- unconstrained
 b : boolean_vector; -- unconstrained
 c : real_vector(1 downto 0); --constrained
 end record;
 variable v : ur_t(a(1 downto 0), b(0 to 7));
 begin
 wait;

 end process;

12

Unconstrained Elements

Records can have elements of unconstrained types
Constrain types when record is used

Example
 process
 type ur_t is record
 a : integer_vector; -- unconstrained
 b : boolean_vector; -- unconstrained
 c : real_vector(1 downto 0); --constrained
 end record;
 variable v : ur_t(a(1 downto 0), b(0 to 7));
 begin
 wait;

 end process;

Composite Types
Record Types

Unconstrained Elements

In such a case, the range of these unconstrained elements have to be specified when a variable of that record type is
declared.

HWMod
WS24

Comp. Types
Arrays

Records

Element Access

Unconstrained
Elements

Aggregates

Unconstrained Elements

Records can have elements of unconstrained types
Constrain types when record is used
Example

 process
 type ur_t is record
 a : integer_vector; -- unconstrained
 b : boolean_vector; -- unconstrained
 c : real_vector(1 downto 0); --constrained
 end record;
 variable v : ur_t(a(1 downto 0), b(0 to 7));
 begin
 wait;

 end process;

12

Unconstrained Elements

Records can have elements of unconstrained types
Constrain types when record is used
Example

 process
 type ur_t is record
 a : integer_vector; -- unconstrained
 b : boolean_vector; -- unconstrained
 c : real_vector(1 downto 0); --constrained
 end record;
 variable v : ur_t(a(1 downto 0), b(0 to 7));
 begin
 wait;

 end process;

Composite Types
Record Types

Unconstrained Elements

This is shown in the example code snippet on this slide. The record ur_t contains two unconstrained elements – A and B.
Hence, when the variable v is declared, range limits for the elements A and B have to be provided. If those range constraints
would be omitted the compiler outputs an error. For constants the range constraints are not necessary, as they are inferred
automatically.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Positional
Association

Named Association

Others Clause

Aggregate Expressions

Used to initialize and manipulate values of composite data types

Syntax
Aggregates are enclosed by parentheses, i.e., ()
Individual elements separated by commas
Example: (1, 2, 3) (equivalent to 1 & 2 & 3)

Array initialization example
constant A : integer_vector(0 to 2) := (1, 2, 3);

Two categories
Positional association
Named association

13

Aggregate Expressions

Used to initialize and manipulate values of composite data types

Syntax
Aggregates are enclosed by parentheses, i.e., ()
Individual elements separated by commas
Example: (1, 2, 3) (equivalent to 1 & 2 & 3)

Array initialization example
constant A : integer_vector(0 to 2) := (1, 2, 3);

Two categories
Positional association
Named association

Composite Types
Aggregate Expressions

Aggregate Expressions

Before we close this lecture, we want to introduce an important and powerful VHDL language feature named aggregate
expressions. Aggregate expressions – for short just aggregates – can be used to initialize and manipulate composite data
structures – such as arrays and records – in a quite compact and efficient way.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Positional
Association

Named Association

Others Clause

Aggregate Expressions

Used to initialize and manipulate values of composite data types
Syntax

Aggregates are enclosed by parentheses, i.e., ()
Individual elements separated by commas
Example: (1, 2, 3) (equivalent to 1 & 2 & 3)

Array initialization example
constant A : integer_vector(0 to 2) := (1, 2, 3);

Two categories
Positional association
Named association

13

Aggregate Expressions

Used to initialize and manipulate values of composite data types
Syntax

Aggregates are enclosed by parentheses, i.e., ()
Individual elements separated by commas
Example: (1, 2, 3) (equivalent to 1 & 2 & 3)

Array initialization example
constant A : integer_vector(0 to 2) := (1, 2, 3);

Two categories
Positional association
Named association

Composite Types
Aggregate Expressions

Aggregate Expressions

Again, we don’t aim to discuss the formal syntax specification for aggregate expressions in detail. Hence, in the following
we look at some examples to give you a general ”feel” for aggregates and how they can be used. Generally aggregates are
always enclosed by parentheses, and the individual elements are separated by commas. The simple example on this slide
could be used to initialize a 3-element integer array.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Positional
Association

Named Association

Others Clause

Aggregate Expressions

Used to initialize and manipulate values of composite data types
Syntax

Aggregates are enclosed by parentheses, i.e., ()
Individual elements separated by commas
Example: (1, 2, 3) (equivalent to 1 & 2 & 3)

Array initialization example
constant A : integer_vector(0 to 2) := (1, 2, 3);

Two categories
Positional association
Named association

13

Aggregate Expressions

Used to initialize and manipulate values of composite data types
Syntax

Aggregates are enclosed by parentheses, i.e., ()
Individual elements separated by commas
Example: (1, 2, 3) (equivalent to 1 & 2 & 3)

Array initialization example
constant A : integer_vector(0 to 2) := (1, 2, 3);

Two categories
Positional association
Named association

Composite Types
Aggregate Expressions

Aggregate Expressions

Aggregates can be classified, depending on whether they use positional or named associations. The example on this slide
uses positional association. On the following slides we will take a closer look at both categories.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Positional
Association

Named Association

Others Clause

Positional Association

Array examples
 constant A : boolean_vector(1 downto 0) := (true, false) -- a(1)=true
 constant B : integer_vector(2 to 4) := (1, 2, 3); -- b(2)=1
 constant C : string(1 to 3) := (’a’, ’b’, ’c’); -- equivalent to "abc"
 constant D : bit_vector(2 downto 0) :=
 (’1’, ’0’, ’1’); -- equivalent to "101"

Record examples
 type vec3d_t is record
 x, y, z : real;
 end record;
 constant V : vec3d_t := (1.0, 0.0, 0.0);

 type demo_t is record
 a : integer_vector(1 downto 0);
 v : vec3d_t;
 b : boolean;

 end record;
 constant DEMO : demo_t := ((1, 2), V, true);

14

Positional Association

Array examples
 constant A : boolean_vector(1 downto 0) := (true, false) -- a(1)=true
 constant B : integer_vector(2 to 4) := (1, 2, 3); -- b(2)=1
 constant C : string(1 to 3) := (’a’, ’b’, ’c’); -- equivalent to "abc"
 constant D : bit_vector(2 downto 0) :=
 (’1’, ’0’, ’1’); -- equivalent to "101"

Record examples
 type vec3d_t is record
 x, y, z : real;
 end record;
 constant V : vec3d_t := (1.0, 0.0, 0.0);

 type demo_t is record
 a : integer_vector(1 downto 0);
 v : vec3d_t;
 b : boolean;

 end record;
 constant DEMO : demo_t := ((1, 2), V, true);

Composite Types
Aggregate Expressions

Positional Association

Positional association for arrays is quite straight-forward to understand. Each element in the aggregate expression is assigned
to the respective item in the array starting from the left. Many programming languages have similar language constructs to
initialize arrays. In the first example block, the element at index 1 of the boolean vector A gets assigned the value true,
while index 0 gets assigned false. For the constant B the left-most index is 2, hence, it is assigned the value 1. Note that for
the initialization of arrays of enum types that use character literals, such as string or bit-vector, VHDL supports a shorthand
notation using double quotes. For string types we have already seen this notation on previous slides and lectures. We have
included this equivalent shorthand notation for the constants C and D of the example.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Positional
Association

Named Association

Others Clause

Positional Association

Array examples
 constant A : boolean_vector(1 downto 0) := (true, false) -- a(1)=true
 constant B : integer_vector(2 to 4) := (1, 2, 3); -- b(2)=1
 constant C : string(1 to 3) := (’a’, ’b’, ’c’); -- equivalent to "abc"
 constant D : bit_vector(2 downto 0) :=
 (’1’, ’0’, ’1’); -- equivalent to "101"

Record examples
 type vec3d_t is record
 x, y, z : real;
 end record;
 constant V : vec3d_t := (1.0, 0.0, 0.0);

 type demo_t is record
 a : integer_vector(1 downto 0);
 v : vec3d_t;
 b : boolean;

 end record;
 constant DEMO : demo_t := ((1, 2), V, true);

14

Positional Association

Array examples
 constant A : boolean_vector(1 downto 0) := (true, false) -- a(1)=true
 constant B : integer_vector(2 to 4) := (1, 2, 3); -- b(2)=1
 constant C : string(1 to 3) := (’a’, ’b’, ’c’); -- equivalent to "abc"
 constant D : bit_vector(2 downto 0) :=
 (’1’, ’0’, ’1’); -- equivalent to "101"

Record examples
 type vec3d_t is record
 x, y, z : real;
 end record;
 constant V : vec3d_t := (1.0, 0.0, 0.0);

 type demo_t is record
 a : integer_vector(1 downto 0);
 v : vec3d_t;
 b : boolean;

 end record;
 constant DEMO : demo_t := ((1, 2), V, true);

Composite Types
Aggregate Expressions

Positional Association

Positional association also works for records, as shown in the second example block. Here the values are simply assigned
based on their position in the record type declaration. Hence, the element X in the constant V is assigned the value 1, while Y
and Z are set to zero. The example of the constant named demo also shows that aggregate expressions can also be nested.
However, for complex records with many heterogeneous elements – such as demo-type – we would rather discourage you
from using positional association, and rather use the named association that will be discussed on the following slides.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Positional
Association

Named Association

Others Clause

Named Association

Array examples
 constant A : boolean_vector(1 downto 0) :=
 (1 => true, 0 => false); -- equivalent to (true, false)
 constant B : boolean_vector(7 downto 0) :=
 (7 => true, 0 => true, 6 downto 1 => false);

Record example
 constant DEMO : demo_t := (
 a => (1, 2),
 v => (x => 1.0, y => 0.0, z => 0.0),
 b => true
);

15

Named Association

Array examples
 constant A : boolean_vector(1 downto 0) :=
 (1 => true, 0 => false); -- equivalent to (true, false)
 constant B : boolean_vector(7 downto 0) :=
 (7 => true, 0 => true, 6 downto 1 => false);

Record example
 constant DEMO : demo_t := (
 a => (1, 2),
 v => (x => 1.0, y => 0.0, z => 0.0),
 b => true
);

Composite Types
Aggregate Expressions

Named Association

With named association, values are explicitly assigned by specifying the names of the fields in records or the indices in an
array. In code the right arrow operator is used for this purpose.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Positional
Association

Named Association

Others Clause

Named Association

Array examples
 constant A : boolean_vector(1 downto 0) :=
 (1 => true, 0 => false); -- equivalent to (true, false)
 constant B : boolean_vector(7 downto 0) :=
 (7 => true, 0 => true, 6 downto 1 => false);

Record example
 constant DEMO : demo_t := (
 a => (1, 2),
 v => (x => 1.0, y => 0.0, z => 0.0),
 b => true
);

15

Named Association

Array examples
 constant A : boolean_vector(1 downto 0) :=
 (1 => true, 0 => false); -- equivalent to (true, false)
 constant B : boolean_vector(7 downto 0) :=
 (7 => true, 0 => true, 6 downto 1 => false);

Record example
 constant DEMO : demo_t := (
 a => (1, 2),
 v => (x => 1.0, y => 0.0, z => 0.0),
 b => true
);

Composite Types
Aggregate Expressions

Named Association

Let’s first look at some examples how this works for array types. For the constant ”A” the first index is set to true, while the
second one is set to false. On first sight this might seem unnecessarily cumbersome, especially when we compare it to the
code that would be required for a positional association. However, as shown for the constant B, the left part of the arrow
operator can also be a range expression. In this example, the first and the last array element are set to true, while the ones
in the middle are set to false.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Positional
Association

Named Association

Others Clause

Named Association

Array examples
 constant A : boolean_vector(1 downto 0) :=
 (1 => true, 0 => false); -- equivalent to (true, false)
 constant B : boolean_vector(7 downto 0) :=
 (7 => true, 0 => true, 6 downto 1 => false);

Record example
 constant DEMO : demo_t := (
 a => (1, 2),
 v => (x => 1.0, y => 0.0, z => 0.0),
 b => true
);

15

Named Association

Array examples
 constant A : boolean_vector(1 downto 0) :=
 (1 => true, 0 => false); -- equivalent to (true, false)
 constant B : boolean_vector(7 downto 0) :=
 (7 => true, 0 => true, 6 downto 1 => false);

Record example
 constant DEMO : demo_t := (
 a => (1, 2),
 v => (x => 1.0, y => 0.0, z => 0.0),
 b => true
);

Composite Types
Aggregate Expressions

Named Association

For record types the name of the element is used on the left side of the arrow. In the example code, we use the same record
type declarations, as shown on the previous slide and initialize the constant demo to the same value. Notice that now it is
much clearer and more explicit which element of the record gets assigned which value. Moreover, should the sequence of
elements be changed in the record type declaration, the named association is still valid and won’t break as a positional one
would.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Positional
Association

Named Association

Others Clause

Others Clause

Assign multiple elements at once

Array examples
 constant A : boolean_vector(63 downto 0) := (others=>false);
 constant B : integer_vector(63 downto 0) := (1, others=>0); -- b(63)=1
 constant C : integer_vector(63 downto 0) := (0=>1, others=>0); -- c(0)=1

Record examples
 constant V0 : vec3d_t := (x=>1.0, others=>0.0); -- v0.x=1.0
 constant V1 : vec3d_t := (1.0, others=>0.0); -- v1.x=1.0
 constant V2 : vec3d_t := (z=>1.0, others=>0.0); -- v2.z=1.0
 constant D : demo_t := (v=>V2, others=>true); -- error

16

Others Clause

Assign multiple elements at once

Array examples
 constant A : boolean_vector(63 downto 0) := (others=>false);
 constant B : integer_vector(63 downto 0) := (1, others=>0); -- b(63)=1
 constant C : integer_vector(63 downto 0) := (0=>1, others=>0); -- c(0)=1

Record examples
 constant V0 : vec3d_t := (x=>1.0, others=>0.0); -- v0.x=1.0
 constant V1 : vec3d_t := (1.0, others=>0.0); -- v1.x=1.0
 constant V2 : vec3d_t := (z=>1.0, others=>0.0); -- v2.z=1.0
 constant D : demo_t := (v=>V2, others=>true); -- error

Composite Types
Aggregate Expressions

Others Clause

Finally, let’s take a quick look at the ”others” clause that can be used in both named and positional associations – but only as
the last element. Using the others keyword, it is possible to assign all elements that have not yet been assigned using a
positional or named association in a composite data structure.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Positional
Association

Named Association

Others Clause

Others Clause

Assign multiple elements at once
Array examples

 constant A : boolean_vector(63 downto 0) := (others=>false);
 constant B : integer_vector(63 downto 0) := (1, others=>0); -- b(63)=1
 constant C : integer_vector(63 downto 0) := (0=>1, others=>0); -- c(0)=1

Record examples
 constant V0 : vec3d_t := (x=>1.0, others=>0.0); -- v0.x=1.0
 constant V1 : vec3d_t := (1.0, others=>0.0); -- v1.x=1.0
 constant V2 : vec3d_t := (z=>1.0, others=>0.0); -- v2.z=1.0
 constant D : demo_t := (v=>V2, others=>true); -- error

16

Others Clause

Assign multiple elements at once
Array examples

 constant A : boolean_vector(63 downto 0) := (others=>false);
 constant B : integer_vector(63 downto 0) := (1, others=>0); -- b(63)=1
 constant C : integer_vector(63 downto 0) := (0=>1, others=>0); -- c(0)=1

Record examples
 constant V0 : vec3d_t := (x=>1.0, others=>0.0); -- v0.x=1.0
 constant V1 : vec3d_t := (1.0, others=>0.0); -- v1.x=1.0
 constant V2 : vec3d_t := (z=>1.0, others=>0.0); -- v2.z=1.0
 constant D : demo_t := (v=>V2, others=>true); -- error

Composite Types
Aggregate Expressions

Others Clause

The constant A in the array example code uses the ”others” clause to initialize all elements of the array to false. The constant
B and C only set the first and last elements to one, respectively. All other values are set to zero. Notice, that all these
expressions are still valid if the left limit of the range expression would be changed.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Positional
Association

Named Association

Others Clause

Others Clause

Assign multiple elements at once
Array examples

 constant A : boolean_vector(63 downto 0) := (others=>false);
 constant B : integer_vector(63 downto 0) := (1, others=>0); -- b(63)=1
 constant C : integer_vector(63 downto 0) := (0=>1, others=>0); -- c(0)=1

Record examples
 constant V0 : vec3d_t := (x=>1.0, others=>0.0); -- v0.x=1.0
 constant V1 : vec3d_t := (1.0, others=>0.0); -- v1.x=1.0
 constant V2 : vec3d_t := (z=>1.0, others=>0.0); -- v2.z=1.0
 constant D : demo_t := (v=>V2, others=>true); -- error

16

Others Clause

Assign multiple elements at once
Array examples

 constant A : boolean_vector(63 downto 0) := (others=>false);
 constant B : integer_vector(63 downto 0) := (1, others=>0); -- b(63)=1
 constant C : integer_vector(63 downto 0) := (0=>1, others=>0); -- c(0)=1

Record examples
 constant V0 : vec3d_t := (x=>1.0, others=>0.0); -- v0.x=1.0
 constant V1 : vec3d_t := (1.0, others=>0.0); -- v1.x=1.0
 constant V2 : vec3d_t := (z=>1.0, others=>0.0); -- v2.z=1.0
 constant D : demo_t := (v=>V2, others=>true); -- error

Composite Types
Aggregate Expressions

Others Clause

For record types, the ”others” clause does not always make a lot of sense, since for it to be valid the unassigned elements
must all have the same type. The last example on the slide, where a constant ”D” of the demo type is declared, illustrates
this. Since its other fields are of different types, trying to set them via others results in an error. However, for some records
like the 3-element vector type, already used on the previous slides, it can be helpful.

HWMod
WS24

Comp. Types
Arrays

Records

Aggregates

Positional
Association

Named Association

Others Clause Lecture Complete!

Modified: 2025-03-12, 16:24 (b25118c)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

	Composite Types
	Array Types
	Record Types
	Aggregate Expressions

