HWMod
WS25

e Hardware Modeling [VU] (191.011)
— WS25 —

Composite Types

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:08 (f8a58e9)



Introduction

HWMod
WS25

Te TS m VHDL type classes (repetition)
m scalar
m composite
m file
m access
protected
m Composite types

m Array types (homogeneous collections)
m Record types (heterogeneous collections)

m Value types



Array Types

HWMod
WS25

m Declaration syntax
type TYPE_NAME is
array (range_constraints) of element_type;
m Can be constrained or unconstrained

Arrays

m Examples
1 declaration
2 type u_t is array(integer range <>) of boolean; —-- unconstrained
3 type c_t 1is array (0 to 13) of boolean; constrained
4 —— usage
5 variable u : u_t (3 downto -7);
6 variable ¢ : c_t;
7 constant const_u : u_t :=1 & 2 & 3; -— range 1s inferred

m Synthesizeable, if elements are synthesizeable
m Needed to describe memory



Predefined Array Types

HWMod
Wz B stringtype
m Declaration
type string is
array (positive range <>) of character; &
m Unconstrained with positive range
m Usage example
constant CONST_STRING : string := "Hello World";

m Other predefined array types

B type integer_vector is

Predef. Arrays

array (natural range <>) of integer; &%
B type boolean_vector is

array (natural range <>) of boolean; &%
B type time_vector is

array (natural range <>) of time; &%


https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L347
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L471
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L364
https://opensource.ieee.org/vasg/Packages/-/blob/1076-2019/std/standard.vhdl#L499

Element Access

HWMod
WS25

m Element access syntax
m Not via square brackets, i.e., [ ]
m Parentheses with integer index as parameter
m Similar to function calls

m Element access example

Element Access

process
variable a : integer_vector (0 to 3);
begin

1
2
3
4 a(0) :=1; —— write access
5 report to_string(a(0)); —-- read access
6 wait;

7 end process;

m Runtime range checks



Element Access (contd)

HWMod
WS25

m Range access syntax: parentheses with integer range expression
m Range access example

Element Access

1 process

2 variable a : integer_vector (0 to 5);
3 begin

4 a(0) := 4;

5 a(l) := 2;

6 a(2 to 5) := a(0 to 1) & a(0 to 1);
7 for 1 in 0 to 5 loop

8 report to_string(a(i));

9 end loop;
10 wait;
11 end process;



Multidimensional Array Examples

N aaod m 2D Array

WS25

1 process
2 type a2d_t is array(integer range <>, integer range <>) of boolean;
3 variable a2d : a2d_t (3 downto -4, 0 to 7);
4 begin
Mulidim. Arrays 5 a2d(-4, 0) := true;
6 report to_string(a2d(-4, 0)); —- output: true
7 wait;
8 end process;

m Array of an Array

process

1
2 type aoa_t is array(integer range <>) of boolean_vector (0 to 7);
3 variable aoa : aoca_t (3 downto -4);

4 begin

5 aoa(-4) (0) := true;

6 report to_string(aoa(-4) (0)); —— output: true

7 wait;

8 end process;



Array Attributes

HWMod
WS25

m Defined for array-type objects (variables, constants, etc.)
Important: not for the type itself

m Example
1 process
2 type a_t is array(l downto -1) of boolean;
3 variable a : a_t;
4 begin
5 report "length=" & to_string(a’length); —- output: length=3
6 wait;
7 end process;

m Other attributes: 1ow, high, left, right, ascending, etc. (see VHDL
standard)



Array Attributes — Range

HWMod
WS25
m Access an array’s declared range
m Example
process

1
2 variable a : integer_vector (2 downto 0) :=1 & 2 & 3;

Attributes 3 be g in

4 report "range";

5 for i in a’range loop

6 report "index=" & to_string(i) & ", value=" & to_string(a(i));

7 end loop;

8 wait;

9 end process;

m Output
[...]: index=2, value=1
[...]: index=1, value=2
[...]: index=0, value=3



Array Attributes — Multidimensional Arrays

HWMod
WS25

m Array dimension specified by additional integer (> 1)

m Example

1 process
Attributes 2 type a_t is array (3 downto 0, 1 to 2) of boolean;

3 variable a : a_t;
4 begin
5 report "length(l)=" & to_string(a’length(l));
6 report "length(2)=" & to_string(a’length(2));
7 wait;
8 end process;

m Output

[..]:(report note): length(1l)=4
[..]:(report note): length(2)=2



Record Types

HWMod
WS25

m Composed of elements of (potentially) different types (comparable to C
structs)
m Declaration syntax
type TYPE_NAME is record
{element_declaration}
end record;

m Example

Records

1 type my_record_t is record

2 a : integer_vector (7 downto 0);
3 b : boolean;

4 c, d : integer;

5 end record;

m Synthesizable (except if they comprise non-synthesizable data types)



Element Access

HWMod
WS25

m Element access syntax: dot operator
m Example

Element Access

1 process
2 type vec2_t is record
3 X, y @ real;

4 end record;

5 variable v : vec2_t;
6

7

8

begin
v.x = 1.0;
v.y = 2.0;
9 report "x=" & to_string(v.x) & "," &
10 "y=" & to_string(v.y); -— output: x=1.0, y=2.0
11 wait;

12 end process;



Unconstrained Elements

HWMod
WS25

m Records can have elements of unconstrained types
m Constrain types when record is used
m Example

Unconstrained
Elements

1 process

2 type ur_t is record
3 a : integer_vector; —-- unconstrained
4 b : boolean_vector; ——- unconstrained
5 c : real_vector(l downto 0); --constrained
6 end record;
7 variable v : ur_t(a(l downto 0), b(0 to 7));
8 begin

9 wait;

10 end process;



Aggregate Expressions

HWMod
WS25

m Used to initialize and manipulate values of composite data types

m Syntax

m Aggregates are enclosed by parentheses, i.e., ( )
m Individual elements separated by commas
m Example: (1, 2, 3) (equivalentto1l & 2 & 3)

Aggregates

m Array initialization example
constant A : integer_vector (0 to 2) := (1, 2, 3);
m Two categories

m Positional association
m Named association



Positional Association

Weos. m Array examples
1 constant A : boolean_vector(l downto 0) := (true, false) —— a(l)=true
2 constant B : integer_vector (2 to 4) := (1, 2, 3); —— b(2)=1
3 constant C : string(l to 3) := ('a’, 'b’, 'c’); —— equivalent to "abc"
4 constant D : bit_vector (2 downto 0) :=
F— 5 ("1, 0", ’1"); -- equivalent to "101"

m Record examples

type vec3d_t is record

1
2 X, Y, z @ real;

3 end record;

4 constant V : vec3d_t := (1.0, 0.0, 0.0);

5

6 type demo_t is record

7 a : integer_vector (1l downto 0);

8 v : vec3d_t;

9 b : boolean;

10 end record;

11 constant DEMO : demo_t := ((1, 2), V, true);



Named Association

HWMod
WS25

m Array examples

1 constant A : boolean_vector (1l downto 0) :=
2 (1L => true, 0 => false); —— equivalent to (true, false)
3 constant B : boolean_vector (7 downto 0) :=

Named Association 4 (7 => true, 0 => true, 6 downto 1 => false);

m Record example

1 constant DEMO : demo_t := (

2 a => (1, 2),

3 v => (x => 1.0, vy => 0.0, z => 0.0),
4 b => true

5

) i



Others Clause

HWMod
WS25
m Assign multiple elements at once
m Array examples
1 constant A : boolean_vector (63 downto 0) := (others=>false);
2 constant B : integer_vector (63 downto 0) := (1, others=>0); -— b(63)=1
Others Clause 3 constant C : integer_vector (63 downto 0) := (0=>1, others=>0); —- c(0)=1
m Record examples
1 constant VO : vec3d_t := (x=>1.0, others=>0.0); —— v0.x=1.0
2 constant V1 : vec3d_t := (1.0, others=>0.0); -— v1l.x=1.0
3 constant V2 : vec3d_t := (z=>1.0, others=>0.0); —— v2.z=1.0
4 constant D : demo_t := (v=>V2, others=>true); —-—- error



HWMod
WS25

Lecture Complete!

Modified: 2025-12-16, 16:08 (f8a58e9)



	Composite Types
	Array Types
	Record Types
	Aggregate Expressions


