
HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Hardware Modeling [VU] (191.011)
– WS24 –

From Circuits to Code and Back

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-08, 00:18 (b25118c)

Hardware Modeling [VU] (191.011)
– WS24 –

From Circuits to Code and Back

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

From Circuits to Code and Back

This lecture aims at giving you a more thorough understanding of how certain VHDL code structures map to hardware. We
will not introduce any new language concepts and instead focus on practically applying what we already know.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Introduction

Lecture Goal

Develop an intuition for how VHDL code maps to hardware and the associated
circuit complexity.

Two examples
Circuit diagram → Derive VHDL code
VHDL code → Derive circuit diagram

Important VHDL concepts used in the lecture
Sequential circuit elements
Behavioral modeling
Array-types and arithmetic functions

1

Introduction

Lecture Goal

Develop an intuition for how VHDL code maps to hardware and the associated
circuit complexity.

Two examples
Circuit diagram → Derive VHDL code
VHDL code → Derive circuit diagram

Important VHDL concepts used in the lecture
Sequential circuit elements
Behavioral modeling
Array-types and arithmetic functions

From Circuits to Code and Back
Introduction

Introduction

Similar to how a system-level programmer must have a good understanding of how the written program maps to the available
machine instructions on a given architecture, in order to produce efficient software, you – as a hardware developer – should
have a similar intuition about the mapping between VHDL code and circuits. Hence, with this lecture we want to help you to
develop such an intuition, as we believe that this is a key skill in becoming a great hardware developer!

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Introduction

Lecture Goal

Develop an intuition for how VHDL code maps to hardware and the associated
circuit complexity.

Two examples
Circuit diagram → Derive VHDL code
VHDL code → Derive circuit diagram

Important VHDL concepts used in the lecture
Sequential circuit elements
Behavioral modeling
Array-types and arithmetic functions

1

Introduction

Lecture Goal

Develop an intuition for how VHDL code maps to hardware and the associated
circuit complexity.

Two examples
Circuit diagram → Derive VHDL code
VHDL code → Derive circuit diagram

Important VHDL concepts used in the lecture
Sequential circuit elements
Behavioral modeling
Array-types and arithmetic functions

From Circuits to Code and Back
Introduction

Introduction

To achieve this goal we present and work through two circuit modeling examples. In the first example we take a circuit
diagram and derive a VHDL entity/architecture pair that models the behavior of the given circuit. For the second example, we
perform the reverse operation, taking a simple VHDL design and deriving a circuit diagram from it. We will thus effectively
perform the task of the synthesis tool ourselves.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Introduction

Lecture Goal

Develop an intuition for how VHDL code maps to hardware and the associated
circuit complexity.

Two examples
Circuit diagram → Derive VHDL code
VHDL code → Derive circuit diagram

Important VHDL concepts used in the lecture
Sequential circuit elements
Behavioral modeling
Array-types and arithmetic functions

1

Introduction

Lecture Goal

Develop an intuition for how VHDL code maps to hardware and the associated
circuit complexity.

Two examples
Circuit diagram → Derive VHDL code
VHDL code → Derive circuit diagram

Important VHDL concepts used in the lecture
Sequential circuit elements
Behavioral modeling
Array-types and arithmetic functions

From Circuits to Code and Back
Introduction

Introduction

Note that, besides other topics, this lecture heavily builds upon the videos about sequential circuit elements and behavioral
modeling.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Example 1: Circuit → VHDL Code

ent
ity

e is

por
t (

clk
: in

std
_ul

ogi
c;

res
_n

: in
std

_ul
ogi

c;

...

);

end
ent

ity
;

arc
hit

ect
ure

a of
e is

beg
in

...

D Q

2

Example 1: Circuit → VHDL Code

ent
ity

e is

por
t (

clk
: in

std
_ul

ogi
c;

res
_n

: in
std

_ul
ogi

c;

...

);

end
ent

ity
;

arc
hit

ect
ure

a of
e is

beg
in

...

D Q

From Circuits to Code and Back
Circuit → VHDL

Example 1: Circuit → VHDL Code

Let’s start with the first example, where we take a circuit diagram and derive an appropriate VHDL design from it.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Example 1: Circuit Diagram

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

3

Example 1: Circuit Diagram

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

From Circuits to Code and Back
Circuit → VHDL

Example 1: Circuit Diagram

Consider the circuit shown on the slide. Before we start, note that its actual function or purpose is not important for this
lecture – in fact we did not have any particular application in mind when designing this circuit. You should already know
most of the used circuit symbols. The circle-shaped component with the plus sign represents an adder, while the symbol with
the logical AND denotes a bit-wise AND operation. The inputs a and d are single-bit signals while b and c are four bit wide
as is the single output z. Since it contains registers the circuit also has a clock and reset input. However, these signals
have been omitted from the drawing, as not to clutter the figure. Thus, for the sake of completeness, imagine all registers
being connected to a common clock and an active-low reset signal.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Example 1 - Entity

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

 entity circuit2code is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(3 downto 0);
 c : in std_ulogic_vector(3 downto 0);
 d : in std_ulogic;
 z : out std_ulogic_vector(3 downto 0)

);
 end entity;

4

Example 1 - Entity

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

 entity circuit2code is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(3 downto 0);
 c : in std_ulogic_vector(3 downto 0);
 d : in std_ulogic;
 z : out std_ulogic_vector(3 downto 0)

);
 end entity;

From Circuits to Code and Back
Circuit → VHDL

Example 1 - Entity

The first step in deriving a suitable VHDL design is to derive its interface, that is, its entity declaration.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Example 1 - Entity

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

 entity circuit2code is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(3 downto 0);
 c : in std_ulogic_vector(3 downto 0);
 d : in std_ulogic;
 z : out std_ulogic_vector(3 downto 0)

);
 end entity;

4

Example 1 - Entity

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

 entity circuit2code is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(3 downto 0);
 c : in std_ulogic_vector(3 downto 0);
 d : in std_ulogic;
 z : out std_ulogic_vector(3 downto 0)

);
 end entity;

From Circuits to Code and Back
Circuit → VHDL

Example 1 - Entity

First, we add a clock and reset input, as we will need them to implement the registers. As always, we use the std_ulogic

type for both of these signals. Note that the symbols used for the flip-flops in the circuit indicate an active-low reset.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Example 1 - Entity

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

 entity circuit2code is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(3 downto 0);
 c : in std_ulogic_vector(3 downto 0);
 d : in std_ulogic;
 z : out std_ulogic_vector(3 downto 0)

);
 end entity;

4

Example 1 - Entity

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

 entity circuit2code is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(3 downto 0);
 c : in std_ulogic_vector(3 downto 0);
 d : in std_ulogic;
 z : out std_ulogic_vector(3 downto 0)

);
 end entity;

From Circuits to Code and Back
Circuit → VHDL

Example 1 - Entity

Next, we list all the input signals in the order of their appearance. For the signals b and c we could also have gone with the
signed or the unsigned data-type. However, as the signedness of these input values does not change the way they need to
be handled by the circuit, we simply settled on the std_ulogic_vector type.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Example 1 - Entity

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

 entity circuit2code is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(3 downto 0);
 c : in std_ulogic_vector(3 downto 0);
 d : in std_ulogic;
 z : out std_ulogic_vector(3 downto 0)

);
 end entity;

4

Example 1 - Entity

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

 entity circuit2code is
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(3 downto 0);
 c : in std_ulogic_vector(3 downto 0);
 d : in std_ulogic;
 z : out std_ulogic_vector(3 downto 0)

);
 end entity;

From Circuits to Code and Back
Circuit → VHDL

Example 1 - Entity

Finally, we add the single, four-bit-wide, output signal z.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Example 1 - Architecture

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

Circuit Preparation

Label all register inputs and outputs and other important signals!

5

Example 1 - Architecture

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

Circuit Preparation

Label all register inputs and outputs and other important signals!

From Circuits to Code and Back
Circuit → VHDL

Example 1 - Architecture

With the entity in place, we can now turn our attention to the architecture, which contains the description of the actual circuit
behavior. Before we can start coding, we have to label some of the internal signals of our circuit, such that we can then
refer to these signals using appropriate identifiers in the VHDL design. Let us therefore again look at the circuit.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Example 1 - Architecture

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

Circuit Preparation

Label all register inputs and outputs and other important signals!
5

Example 1 - Architecture

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

Circuit Preparation

Label all register inputs and outputs and other important signals!

From Circuits to Code and Back
Circuit → VHDL

Example 1 - Architecture

In particular, we make sure that the inputs and outputs of all sequential elements have proper names. Therefore, for all inputs
and outputs of such elements, which are not directly connected to an entity port signal, we need to introduce a proper signal
name. For this example we use the following naming scheme: The output of a sequential element gets the name of its input
extended by the letter r, referring to the signal being ”registered”. Furthermore, depending on the exact way we express the
combinational parts of the circuit as VHDL code, it can also make sense to label further signals.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Example 1 - Architecture

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

Circuit Preparation

Label all register inputs and outputs and other important signals!
5

Example 1 - Architecture

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

Circuit Preparation

Label all register inputs and outputs and other important signals!

From Circuits to Code and Back
Circuit → VHDL

Example 1 - Architecture

One candidate for such a signal is the output of the multiplexer in the lower right corner, which we simply label m.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Architecture - Signal Declarations

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 architecture arch of circuit2code is
 signal br, cr, y, yr :
 std_ulogic_vector(3 downto 0);
 signal ar, x, xr, dr, drr : std_ulogic;
 begin

6

Architecture - Signal Declarations

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 architecture arch of circuit2code is
 signal br, cr, y, yr :
 std_ulogic_vector(3 downto 0);
 signal ar, x, xr, dr, drr : std_ulogic;
 begin

From Circuits to Code and Back
Circuit → VHDL

Architecture - Signal Declarations

Now we have everything we need to start implementing the architecture. We begin with the declarations for the internal
signals, that we have identified and labeled in the previous step. Note that we don’t declare a signal for m here. We will see
why we don’t do this shortly.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Architecture - Registers

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 process (clk, res_n)
 begin
 if res_n = ’0’ then
 ar <= ’0’; dr <= ’0’;

 xr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then
 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;
 yr <= y;
 drr <= dr;
 end if;
 end process;

7

Architecture - Registers

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 process (clk, res_n)
 begin
 if res_n = ’0’ then
 ar <= ’0’; dr <= ’0’;

 xr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then
 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;
 yr <= y;
 drr <= dr;
 end if;
 end process;

From Circuits to Code and Back
Circuit → VHDL

Architecture - Registers

After we declared the required internal signals, we can start to implement the behavior of our circuit within the architecture
body. A good place to start are the sequential elements. Hence, we create a synchronous process by using the appropriate
pattern presented in the sequential circuit elements lecture. Inside this process we write to all signals in our design that
represent the output of a register. For our example these are the signals whose names end with an r.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Architecture - Registers

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 process (clk, res_n)
 begin
 if res_n = ’0’ then
 ar <= ’0’; dr <= ’0’;

 xr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then
 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;
 yr <= y;
 drr <= dr;
 end if;
 end process;

7

Architecture - Registers

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 process (clk, res_n)
 begin
 if res_n = ’0’ then
 ar <= ’0’; dr <= ’0’;

 xr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then
 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;
 yr <= y;
 drr <= dr;
 end if;
 end process;

From Circuits to Code and Back
Circuit → VHDL

Architecture - Registers

As always in our course, we use an asynchronous reset. Furthermore, as already noted, the circuit diagram indicates that the
reset is active-low. In addition to that, because the flip-flops in the circuit feature a reset rather than a set input, we initialize
all of them to zero.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Architecture - Registers

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 process (clk, res_n)
 begin
 if res_n = ’0’ then
 ar <= ’0’; dr <= ’0’;

 xr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then
 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;
 yr <= y;
 drr <= dr;
 end if;
 end process;

7

Architecture - Registers

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 process (clk, res_n)
 begin
 if res_n = ’0’ then
 ar <= ’0’; dr <= ’0’;

 xr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then
 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;
 yr <= y;
 drr <= dr;
 end if;
 end process;

From Circuits to Code and Back
Circuit → VHDL

Architecture - Registers

On rising clock edges we simply assign each input signal of a sequential element to the appropriate output signal. For
example, the signal a is assigned to ar. This process is a quite straight forward step that doesn’t demand much thought and
is more or less independent of the actual circuit.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Architecture - Combinational Logic I

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 x <= ar xor xr;

 process (all)
 begin
 if x = ’1’ then
 y <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 y <= br and cr;
 end if;
 end process;

8

Architecture - Combinational Logic I

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 x <= ar xor xr;

 process (all)
 begin
 if x = ’1’ then
 y <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 y <= br and cr;
 end if;
 end process;

From Circuits to Code and Back
Circuit → VHDL

Architecture - Combinational Logic I

With the sequential circuit elements in place, we can now add the combinational logic between them that defines most of our
circuits specific behavior.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Architecture - Combinational Logic I

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 x <= ar xor xr;

 process (all)
 begin
 if x = ’1’ then
 y <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 y <= br and cr;
 end if;
 end process;

8

Architecture - Combinational Logic I

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 x <= ar xor xr;

 process (all)
 begin
 if x = ’1’ then
 y <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 y <= br and cr;
 end if;
 end process;

From Circuits to Code and Back
Circuit → VHDL

Architecture - Combinational Logic I

Let’s start with the XOR gate in the upper part of the circuit that produces the x signal. While there exist multiple ways to
describe this logic, we can very easily express such simple gates using concurrent signal assignments. An assignment like
the one highlighted on the slide typically directly maps to a single gate of the respective type for single bit signals, and to
multiple such gates for multi-bit signals.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Architecture - Combinational Logic I

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 x <= ar xor xr;

 process (all)
 begin
 if x = ’1’ then
 y <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 y <= br and cr;
 end if;
 end process;

8

Architecture - Combinational Logic I

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 x <= ar xor xr;

 process (all)
 begin
 if x = ’1’ then
 y <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 y <= br and cr;
 end if;
 end process;

From Circuits to Code and Back
Circuit → VHDL

Architecture - Combinational Logic I

For the logic that decides whether to forward the ”bitwise-AND” or the sum of the signals br and cr to the signal y we use a
separate process. As you already know, multiplexers can be expressed using if-else statements. Hence, we test the signal
x and either assign the result of the ”bitwise-AND” or the addition to y. Of course this is not the only possibility how we
can describe this sub-circuit in VHDL. One alternative would be to use a concurrent signal assignment with an appropriate
when/else expression. However, operations comprising multiple circuit elements quickly become quite confusing using such
assignments, and we therefore usually recommend the use of a process in such cases. Please note that, we would get the
exact same circuit, if we would put the concurrent signal assignment for x into the process for y.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Architecture - Combinational Logic II

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 process (all)
 variable m : integer;
 begin
 if drr = ’1’ then
 m := 2;
 else
 m := 4;
 end if;

 z <= std_ulogic_vector(
 unsigned(yr) + m
);
 end process;
 end architecture;

9

Architecture - Combinational Logic II

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 process (all)
 variable m : integer;
 begin
 if drr = ’1’ then
 m := 2;
 else
 m := 4;
 end if;

 z <= std_ulogic_vector(
 unsigned(yr) + m
);
 end process;
 end architecture;

From Circuits to Code and Back
Circuit → VHDL

Architecture - Combinational Logic II

The last thing we need to do is to implement the logic that produces the output signal z. For that we use a separate process,
although this is not strictly required. It would be semantically equivalent to simply add this code to the other combinational
process that produces the y signal. However, it is often preferable to restrict processes to related parts of a circuit in order to
give your code more structure and to improve its readability and maintainability.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Architecture - Combinational Logic II

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 process (all)
 variable m : integer;
 begin
 if drr = ’1’ then
 m := 2;
 else
 m := 4;
 end if;

 z <= std_ulogic_vector(
 unsigned(yr) + m
);
 end process;
 end architecture;

9

Architecture - Combinational Logic II

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 process (all)
 variable m : integer;
 begin
 if drr = ’1’ then
 m := 2;
 else
 m := 4;
 end if;

 z <= std_ulogic_vector(
 unsigned(yr) + m
);
 end process;
 end architecture;

From Circuits to Code and Back
Circuit → VHDL

Architecture - Combinational Logic II

We start with the declaration of the intermediate m as a variable in the process. Since the output of the second multiplexer is
only required within this process, it makes sense to restrict its scope in order to reduce needless cluttering of the architecture’s
name space. We select the integer data type for m. However, std_ulogic_vector, or unsigned would also be valid
options.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Architecture - Combinational Logic II

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 process (all)
 variable m : integer;
 begin
 if drr = ’1’ then
 m := 2;
 else
 m := 4;
 end if;

 z <= std_ulogic_vector(
 unsigned(yr) + m
);
 end process;
 end architecture;

9

Architecture - Combinational Logic II

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 process (all)
 variable m : integer;
 begin
 if drr = ’1’ then
 m := 2;
 else
 m := 4;
 end if;

 z <= std_ulogic_vector(
 unsigned(yr) + m
);
 end process;
 end architecture;

From Circuits to Code and Back
Circuit → VHDL

Architecture - Combinational Logic II

Next we implement the multiplexer that selects between the constants two and four based on the value of drr and writes to
the variable m.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Architecture - Combinational Logic II

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 process (all)
 variable m : integer;
 begin
 if drr = ’1’ then
 m := 2;
 else
 m := 4;
 end if;

 z <= std_ulogic_vector(
 unsigned(yr) + m
);
 end process;
 end architecture;

9

Architecture - Combinational Logic II

D Q

RST

D Q

RST

D Q

RST

D Q

RST

a

b

c

d

+

∧

1

0
D Q

RST

D Q

RST

D Q

RST

+ z

+4 +2

4

4

4 4

ar

br

cr

dr

xr

yr

drr

x

y

m

 process (all)
 variable m : integer;
 begin
 if drr = ’1’ then
 m := 2;
 else
 m := 4;
 end if;

 z <= std_ulogic_vector(
 unsigned(yr) + m
);
 end process;
 end architecture;

From Circuits to Code and Back
Circuit → VHDL

Architecture - Combinational Logic II

Finally, we produce the output z by adding yr to m. This completes our architecture and thus also our VHDL design.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’0’ then
 ar <= ’0’; dr <= ’0’;
 xr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;
 yr <= y;
 drr <= dr;
 end if;
 end process;

 x <= ar xor xr;

 process (all)
 begin
 if x = ’1’ then
 y <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 y <= br and cr;
 end if;
 end process;

10

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’0’ then
 ar <= ’0’; dr <= ’0’;
 xr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;
 yr <= y;
 drr <= dr;
 end if;
 end process;

 x <= ar xor xr;

 process (all)
 begin
 if x = ’1’ then
 y <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 y <= br and cr;
 end if;
 end process;

From Circuits to Code and Back
Circuit → VHDL

Restructured Architecture

Before we continue with the next example, we want to show you that there usually exist multiple different VHDL descriptions
of the exact same circuit. Therefore, let us quickly discuss some example modifications to our previous VHDL code that do
not change the resulting circuit. The reason why we discuss that, is to really show you the different ways to describe the
exact same circuit.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’0’ then
 ar <= ’0’; dr <= ’0’;
 xr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;
 yr <= y;
 drr <= dr;
 end if;
 end process;

 x <= ar xor xr;

 process (all)
 begin
 if x = ’1’ then
 y <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 y <= br and cr;
 end if;
 end process;

10

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’0’ then
 ar <= ’0’; dr <= ’0’;
 xr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;
 yr <= y;
 drr <= dr;
 end if;
 end process;

 x <= ar xor xr;

 process (all)
 begin
 if x = ’1’ then
 y <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 y <= br and cr;
 end if;
 end process;

From Circuits to Code and Back
Circuit → VHDL

Restructured Architecture

One thing we could do is merge the concurrent signal assignment and the process that produces the y signal into the
synchronous process. This change would reduce the overall length of our architecture. However, it arguably also makes
the VHDL code less structured, as we no longer have dedicated processes for synchronous and combinational parts of the
circuit.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’0’ then
 ar <= ’0’; dr <= ’0’;
 xr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;
 yr <= y;
 drr <= dr;
 end if;
 end process;

 x <= ar xor xr;

 process (all)
 begin
 if x = ’1’ then
 y <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 y <= br and cr;
 end if;
 end process;

10

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’0’ then
 ar <= ’0’; dr <= ’0’;
 xr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;
 yr <= y;
 drr <= dr;
 end if;
 end process;

 x <= ar xor xr;

 process (all)
 begin
 if x = ’1’ then
 y <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 y <= br and cr;
 end if;
 end process;

From Circuits to Code and Back
Circuit → VHDL

Restructured Architecture

Let’s start with the process. The goal is to take the shown sequence of code and replace the assignment in the synchronous
process with it. However, care must be taken because the combinational process writes to the signal y, while the synchronous
process writes to yr. To get semantically equivalent code, we therefore need to replace all occurrences of y by yr in the part
we take from the combinational process.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’1’ then
 ar <= ’0’; xr <= ’0’;
 dr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;

 if x = ’1’ then
 yr <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 yr <= br and cr;
 end if;

 drr <= dr;
 end if;
 end process;

 x <= ar xor xr;

11

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’1’ then
 ar <= ’0’; xr <= ’0’;
 dr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;

 if x = ’1’ then
 yr <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 yr <= br and cr;
 end if;

 drr <= dr;
 end if;
 end process;

 x <= ar xor xr;

From Circuits to Code and Back
Circuit → VHDL

Restructured Architecture

This slide shows the result of this modification.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’1’ then
 ar <= ’0’; xr <= ’0’;
 dr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;

 if x = ’1’ then
 yr <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 yr <= br and cr;
 end if;

 drr <= dr;
 end if;
 end process;

 x <= ar xor xr;

11

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’1’ then
 ar <= ’0’; xr <= ’0’;
 dr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;

 if x = ’1’ then
 yr <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 yr <= br and cr;
 end if;

 drr <= dr;
 end if;
 end process;

 x <= ar xor xr;

From Circuits to Code and Back
Circuit → VHDL

Restructured Architecture

Notice that the synchronous process only writes to the signal yr and that the signal y is no longer needed at all. We can
therefore remove its declaration altogether.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’1’ then
 ar <= ’0’; xr <= ’0’;
 dr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;

 if x = ’1’ then
 yr <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 yr <= br and cr;
 end if;

 drr <= dr;
 end if;
 end process;

 x <= ar xor xr;

11

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’1’ then
 ar <= ’0’; xr <= ’0’;
 dr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= x;

 if x = ’1’ then
 yr <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);
 else
 yr <= br and cr;
 end if;

 drr <= dr;
 end if;
 end process;

 x <= ar xor xr;

From Circuits to Code and Back
Circuit → VHDL

Restructured Architecture

Finally, we can also remove the signal x from our design, by directly calculating the XOR function in the synchronous process
as well.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’1’ then
 ar <= ’0’; xr <= ’0’;
 dr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= ar xor xr;
 if (ar xor xr) = ’1’ then
 yr <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);

 else
 yr <= br and cr;
 end if;

 drr <= dr;
 end if;
 end process;

 process (all)
 variable m : integer;
 begin
 if drr = ’1’ then
 m := 2;
 else
 m := 4;
 end if;
 z <= std_ulogic_vector(
 unsigned(yr) + m);
 end process;

12

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’1’ then
 ar <= ’0’; xr <= ’0’;
 dr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= ar xor xr;
 if (ar xor xr) = ’1’ then
 yr <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);

 else
 yr <= br and cr;
 end if;

 drr <= dr;
 end if;
 end process;

 process (all)
 variable m : integer;
 begin
 if drr = ’1’ then
 m := 2;
 else
 m := 4;
 end if;
 z <= std_ulogic_vector(
 unsigned(yr) + m);
 end process;

From Circuits to Code and Back
Circuit → VHDL

Restructured Architecture

Here, we see the complete final resulting statement part of our architecture.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

Circuit

Entity

Architecture

Restructured
Architecture

VHDL → Circuit

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’1’ then
 ar <= ’0’; xr <= ’0’;
 dr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= ar xor xr;
 if (ar xor xr) = ’1’ then
 yr <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);

 else
 yr <= br and cr;
 end if;

 drr <= dr;
 end if;
 end process;

 process (all)
 variable m : integer;
 begin
 if drr = ’1’ then
 m := 2;
 else
 m := 4;
 end if;
 z <= std_ulogic_vector(
 unsigned(yr) + m);
 end process;

12

Restructured Architecture

 process (clk, res_n)
 begin
 if res_n = ’1’ then
 ar <= ’0’; xr <= ’0’;
 dr <= ’0’; drr <= ’0’;
 br <= (others => ’0’);
 cr <= (others => ’0’);
 yr <= (others => ’0’);
 elsif rising_edge(clk) then

 ar <= a;
 br <= b;
 cr <= c;
 dr <= d;
 xr <= ar xor xr;
 if (ar xor xr) = ’1’ then
 yr <= std_ulogic_vector(
 unsigned(br) +
 unsigned(cr)
);

 else
 yr <= br and cr;
 end if;

 drr <= dr;
 end if;
 end process;

 process (all)
 variable m : integer;
 begin
 if drr = ’1’ then
 m := 2;
 else
 m := 4;
 end if;
 z <= std_ulogic_vector(
 unsigned(yr) + m);
 end process;

From Circuits to Code and Back
Circuit → VHDL

Restructured Architecture

Please note that it is NOT possible to also move the last remaining combinational process generating z into the synchronous
process as well. This is because the output z is not directly provided by a register, but generated combinationally out of the
signals yr and drr.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: VHDL Code → Circuit

ent
ity

e is

por
t (

clk
: in

std
_ul

ogi
c;

res
_n

: in
std

_ul
ogi

c;

...

);

end
ent

ity
;

arc
hit

ect
ure

a of
e is

beg
in

...

D Q

13

Example 2: VHDL Code → Circuit

ent
ity

e is

por
t (

clk
: in

std
_ul

ogi
c;

res
_n

: in
std

_ul
ogi

c;

...

);

end
ent

ity
;

arc
hit

ect
ure

a of
e is

beg
in

...

D Q

From Circuits to Code and Back
VHDL → Circuit

Example 2: VHDL Code → Circuit

Let us now move to the second example, where we take a VHDL design and derive a circuit diagram from it.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Entity

 entity code2circuit is
 generic (
 N, M : positive
);
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(N-1 downto 0);

 c : in std_ulogic_vector(M-1 downto 0);
 d : in std_ulogic_vector(M-1 downto 0);
 x : out std_ulogic;
 y : out std_ulogic_vector(M-1 downto 0)
);
 end entity;

14

Example 2: Entity

 entity code2circuit is
 generic (
 N, M : positive
);
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(N-1 downto 0);

 c : in std_ulogic_vector(M-1 downto 0);
 d : in std_ulogic_vector(M-1 downto 0);
 x : out std_ulogic;
 y : out std_ulogic_vector(M-1 downto 0)
);
 end entity;

From Circuits to Code and Back
VHDL → Circuit

Example 2: Entity

This slide shows the entity declaration of our example circuit. As with the previous example the design does not serve any
particular purpose, other than being an example.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Entity

 entity code2circuit is
 generic (
 N, M : positive
);
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(N-1 downto 0);

 c : in std_ulogic_vector(M-1 downto 0);
 d : in std_ulogic_vector(M-1 downto 0);
 x : out std_ulogic;
 y : out std_ulogic_vector(M-1 downto 0)
);
 end entity;

14

Example 2: Entity

 entity code2circuit is
 generic (
 N, M : positive
);
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(N-1 downto 0);

 c : in std_ulogic_vector(M-1 downto 0);
 d : in std_ulogic_vector(M-1 downto 0);
 x : out std_ulogic;
 y : out std_ulogic_vector(M-1 downto 0)
);
 end entity;

From Circuits to Code and Back
VHDL → Circuit

Example 2: Entity

The entity has two generics M and N that define the widths of the inputs b, c and d as well as of the output y.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Entity

 entity code2circuit is
 generic (
 N, M : positive
);
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(N-1 downto 0);

 c : in std_ulogic_vector(M-1 downto 0);
 d : in std_ulogic_vector(M-1 downto 0);
 x : out std_ulogic;
 y : out std_ulogic_vector(M-1 downto 0)
);
 end entity;

14

Example 2: Entity

 entity code2circuit is
 generic (
 N, M : positive
);
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(N-1 downto 0);

 c : in std_ulogic_vector(M-1 downto 0);
 d : in std_ulogic_vector(M-1 downto 0);
 x : out std_ulogic;
 y : out std_ulogic_vector(M-1 downto 0)
);
 end entity;

From Circuits to Code and Back
VHDL → Circuit

Example 2: Entity

It also has a clock and reset input, indicating that it contains some sequential circuit elements.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Entity

 entity code2circuit is
 generic (
 N, M : positive
);
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(N-1 downto 0);

 c : in std_ulogic_vector(M-1 downto 0);
 d : in std_ulogic_vector(M-1 downto 0);
 x : out std_ulogic;
 y : out std_ulogic_vector(M-1 downto 0)
);
 end entity;

14

Example 2: Entity

 entity code2circuit is
 generic (
 N, M : positive
);
 port (
 clk : in std_ulogic;
 res_n : in std_ulogic;
 a : in std_ulogic;
 b : in std_ulogic_vector(N-1 downto 0);

 c : in std_ulogic_vector(M-1 downto 0);
 d : in std_ulogic_vector(M-1 downto 0);
 x : out std_ulogic;
 y : out std_ulogic_vector(M-1 downto 0)
);
 end entity;

From Circuits to Code and Back
VHDL → Circuit

Example 2: Entity

Finally, the entity has an input a and an output x, both being single-bit signals.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Architecture

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

15

Example 2: Architecture

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

From Circuits to Code and Back
VHDL → Circuit

Example 2: Architecture

Let us now look at a given architecture for this entity. We can see that it consists of two processes.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Architecture

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

15

Example 2: Architecture

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

From Circuits to Code and Back
VHDL → Circuit

Example 2: Architecture

The process on the left describes sequential circuit elements, as indicated by the usual code pattern for D flip-flops.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Architecture

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

15

Example 2: Architecture

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

From Circuits to Code and Back
VHDL → Circuit

Example 2: Architecture

The other one only contains combinational logic, as is also suggested by the by now familiar all keyword in its sensitivity
list. You should be familiar with all VHDL features used in this design.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Architecture

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

15

Example 2: Architecture

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

From Circuits to Code and Back
VHDL → Circuit

Example 2: Architecture

The only really noteworthy thing is the declaration of the r2 signal. Here the subtype attribute is used on the input c to
extract its fully-constrained type information. This is a neat way to declare a signal, variable or constant with the same type
as an already declared object and saves us from re-specifying the whole type information. Unfortunately this construct is
not supported by all synthesis tools, but works fine in simulation. We still wanted to include it, such that you have seen this
feature once.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Architecture

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

15

Example 2: Architecture

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

From Circuits to Code and Back
VHDL → Circuit

Example 2: Architecture

Pause the video at this point and think about how the circuit can look like. You can also make a quick paper sketch.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

16

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Registers

Recall that when going from a circuit diagram to VHDL code, we started by implementing the sequential circuit elements.
This is also our starting point for deriving a circuit from VHDL code.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

16

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Registers

Hence, we first identify all processes that describe sequential circuit elements. As already mentioned, in our example there
is only one such process.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

16

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Registers

Looking at this process we first identify all the signals the process writes to, as these signals represent the outputs of flip-
flops. We add registers with these signals as their outputs to our circuit diagram. If you perform such a conversion on a piece
of paper, be sure to leave enough space between the elements, such that you can add in the combinational logic in the next
step.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

16

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Registers

The reset code shows that the reset is active-low and that everything must be initialized to zero. As with the other example
we don’t draw the clock nor the reset signal, as not to clutter the figure with to many connections. With the flip-flops in
place, we can now connect their inputs to the appropriate sources.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

16

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Registers

Let’s start with r1. The respective assignment in the synchronous process specifies that this signal gets assigned the value
of r0.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

16

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Registers

Hence, we simply add an appropriate connection to our circuit diagram.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

16

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Registers

The signal x is handled in the exact same way.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

16

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Registers

For r0 the situation is slightly different, as here the right-hand side of the assignment contains an XOR-operation of two
signals. However, the respective part of the circuit is still quite straight-forward to implement.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

16

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Registers

We simply add an XOR gate with the appropriate input signals to the input of the flip-flop that drives r0.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

16

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Registers

Finally, we have to deal with r2. However, this is essentially handled in the exact same way as the XOR gate.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

+
c

d

M
M

M

16

Example 2: Circuit - Registers

 architecture arch of code2circuit is
 signal r0, r1 : std_ulogic;
 signal r2 : c’subtype;
 begin
 process (clk, res_n)
 begin
 if res_n = ’0’ then
 r0 <= ’0’; r1 <= ’0’; x <= ’0’;
 r2 <= (others => ’0’);

 elsif rising_edge(clk) then
 r0 <= a xor r1;
 r1 <= r0;
 x <= r1;
 r2 <= std_ulogic_vector(
 signed(c) + signed(d)
);
 end if;
 end process;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

+
c

d

M
M

M

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Registers

We simply add an adder with the appropriate inputs to the register that drives r2. Notice that the adder produces an M-bit
wide signal.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Combinational Process

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

+
c

d

M
M

M

17

Example 2: Circuit - Combinational Process

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

+
c

d

M
M

M

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Combinational Process

Now let’s turn to the second process, which – as already mentioned – only contains combinational logic.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Combinational Process

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

+
c

d

M
M

M

17

Example 2: Circuit - Combinational Process

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

+
c

d

M
M

M

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Combinational Process

The process initially sets the temporary single-bit variable temp to zero. It then uses a for-loop to go over all elements of
the input b and calculates the disjunction with temp, which is then again assigned to the temp variable. Hence, if any of the
elements of b is one, temp is set to one as well and will stay at that value until the end of the loop.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Combinational Process

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

+
c

d

M
M

M

temp
b

N

17

Example 2: Circuit - Combinational Process

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

+
c

d

M
M

M

temp
b

N

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Combinational Process

Notice how this effectively describes an N-input OR gate with temp as its output signal.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Combinational Process

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

+
c

d

M
M

M

temp
b

N

17

Example 2: Circuit - Combinational Process

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

+
c

d

M
M

M

temp
b

N

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Combinational Process

The next part of the process contains an if-statement. First y is assigned the value of r2. If the if-condition is true this value
is then overridden by the constant three. Notice that it would be semantically equivalent to perform the r2 assignment in the
else-branch of the if statement. We already know that if-statements can be expressed using multiplexers. However, before
we can do that we have to generate a signal that we can feed into the control input of this multiplexer.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Combinational Process

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

+
c

d

M
M

M

temp
b

N

17

Example 2: Circuit - Combinational Process

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

+
c

d

M
M

M

temp
b

N

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Combinational Process

For that purpose we add an AND gate, that evaluates the conjunction used by the expression in the if-condition.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit

Example 2: Circuit - Combinational Process

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

+
c

d

M
M

M

temp
b

N

y

+3

0

1

17

Example 2: Circuit - Combinational Process

 process(all)
 variable temp : std_ulogic;
 begin
 temp := ’0’;
 for i in b’range loop
 temp := temp or b(i);
 end loop;

 y <= r2;

 if temp and r0 then
 y <= std_ulogic_vector(
 to_unsigned(3, y’length)
);
 end if;
 end process;

 end architecture;

D Q

RST

D Q

RST

D Q

RST

D Q

RST

r0 r1
x

r2

a

+
c

d

M
M

M

temp
b

N

y

+3

0

1

From Circuits to Code and Back
VHDL → Circuit

Example 2: Circuit - Combinational Process

Finally we can use the output signal of this ”AND” gate to control the multiplexer that produces the output y of our circuit.
And with that our circuit diagram is complete.

HWMod
WS24

C2C
Introduction

Circuit → VHDL

VHDL → Circuit

Entity

Architecture

Circuit Lecture Complete!

Modified: 2025-03-08, 00:18 (b25118c)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

	From Circuits to Code and Back
	Introduction
	Circuit VHDL
	VHDL Circuit

