
HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Hardware Modeling [VU] (191.011)
– WS24 –

Block Statements

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-08, 00:15 (b25118c)

Hardware Modeling [VU] (191.011)
– WS24 –

Block Statements

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Block Statements

In this lecture, we will explore block statements, a useful feature in VHDL that enhances code structure and organization.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Introduction 200

Concurrent statement (like processes, instantiations, concurrent signal
assignments, etc.)

Blocks group concurrent statements
Restrict scope of objects (e.g., signals) within an architecture
Can be viewed as “inline module” or “module light” (combined module
declaration and instantiation)
Can be loosely compared to inner (nested) classes in e.g., Java

1

Introduction 200

Concurrent statement (like processes, instantiations, concurrent signal
assignments, etc.)

Blocks group concurrent statements
Restrict scope of objects (e.g., signals) within an architecture
Can be viewed as “inline module” or “module light” (combined module
declaration and instantiation)
Can be loosely compared to inner (nested) classes in e.g., Java

Block Statements
Introduction

Introduction

Block statements – often simply referred to as blocks – are concurrent statements. As a quick reminder, concurrent state-
ments in VHDL are statements that can be used in the statement part of architectures. So far we have encountered pro-
cesses, instances and concurrent signal assignments that fall into this category.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Introduction 200

Concurrent statement (like processes, instantiations, concurrent signal
assignments, etc.)
Blocks group concurrent statements

Restrict scope of objects (e.g., signals) within an architecture
Can be viewed as “inline module” or “module light” (combined module
declaration and instantiation)
Can be loosely compared to inner (nested) classes in e.g., Java

1

Introduction 200

Concurrent statement (like processes, instantiations, concurrent signal
assignments, etc.)
Blocks group concurrent statements

Restrict scope of objects (e.g., signals) within an architecture
Can be viewed as “inline module” or “module light” (combined module
declaration and instantiation)
Can be loosely compared to inner (nested) classes in e.g., Java

Block Statements
Introduction

Introduction

Block statements essentially allow the grouping of a set of concurrent statements. Hence, they can be used to organize
sections of code, making it more readable and easier to manage, especially in complex designs.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Introduction 200

Concurrent statement (like processes, instantiations, concurrent signal
assignments, etc.)
Blocks group concurrent statements
Restrict scope of objects (e.g., signals) within an architecture

Can be viewed as “inline module” or “module light” (combined module
declaration and instantiation)
Can be loosely compared to inner (nested) classes in e.g., Java

1

Introduction 200

Concurrent statement (like processes, instantiations, concurrent signal
assignments, etc.)
Blocks group concurrent statements
Restrict scope of objects (e.g., signals) within an architecture

Can be viewed as “inline module” or “module light” (combined module
declaration and instantiation)
Can be loosely compared to inner (nested) classes in e.g., Java

Block Statements
Introduction

Introduction

They further allow to restrict the scope of certain VHDL objects, like signals, constants, types or subprograms to certain parts
of an architecture. This can help, with reducing the likelihood of naming conflicts, and improves modularity. Confining an
object’s scope to a particular block, can reduce the potential for errors and simplify debugging and testing, especially in large
and complex VHDL designs.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Introduction 200

Concurrent statement (like processes, instantiations, concurrent signal
assignments, etc.)
Blocks group concurrent statements
Restrict scope of objects (e.g., signals) within an architecture
Can be viewed as “inline module” or “module light” (combined module
declaration and instantiation)

Can be loosely compared to inner (nested) classes in e.g., Java

1

Introduction 200

Concurrent statement (like processes, instantiations, concurrent signal
assignments, etc.)
Blocks group concurrent statements
Restrict scope of objects (e.g., signals) within an architecture
Can be viewed as “inline module” or “module light” (combined module
declaration and instantiation)

Can be loosely compared to inner (nested) classes in e.g., Java

Block Statements
Introduction

Introduction

You can think of blocks as ”inline modules”, as they combine certain aspects of entities, architectures and module instantia-
tions in a single VHDL language construct. As such, you can for example use them to implement specialized sub-modules
that you don’t want to put into a separate fully-fledged module, because they are not intended to be used anywhere else in
your design. This will become more clear when we look at some code examples.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Introduction 200

Concurrent statement (like processes, instantiations, concurrent signal
assignments, etc.)
Blocks group concurrent statements
Restrict scope of objects (e.g., signals) within an architecture
Can be viewed as “inline module” or “module light” (combined module
declaration and instantiation)
Can be loosely compared to inner (nested) classes in e.g., Java

1

Introduction 200

Concurrent statement (like processes, instantiations, concurrent signal
assignments, etc.)
Blocks group concurrent statements
Restrict scope of objects (e.g., signals) within an architecture
Can be viewed as “inline module” or “module light” (combined module
declaration and instantiation)
Can be loosely compared to inner (nested) classes in e.g., Java

Block Statements
Introduction

Introduction

To again draw a quick comparison to the world of common software programming languages, you can think of a block as
an inner class. Just as an inner class in software programming languages like Java or C# provides a way to encapsulate
variables or methods, and restrict their visibility to a specific section of code, a VHDL block serves a similar purpose in
hardware design. It allows for certain declarations (such as signals, constants, and types) to be limited in scope, visible only
within the block itself.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Statement - Syntax

Block syntax
BLOCK_LABEL : block [(guard_condition)] [is]
block_header
block_declarative_part

begin
block_statement_part

end block;

Label is not optional!
Optional guard condition (not covered in this course) 617

Optional block header: explicit block interface specification
Declarative/statement part

can contain the same objects as in the respective parts of architectures →
blocks can be nested
can access objects from outer scope

2

Block Statement - Syntax

Block syntax
BLOCK_LABEL : block [(guard_condition)] [is]
block_header
block_declarative_part

begin
block_statement_part

end block;

Label is not optional!
Optional guard condition (not covered in this course) 617

Optional block header: explicit block interface specification
Declarative/statement part

can contain the same objects as in the respective parts of architectures →
blocks can be nested
can access objects from outer scope

Block Statements
Syntax

Block Statement - Syntax

Before we look at some example code, let us first introduce the formal syntax specification of block statements. Blocks are
introduced with a label followed by a colon and the keyword ”block”.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Statement - Syntax

Block syntax
BLOCK_LABEL : block [(guard_condition)] [is]
block_header
block_declarative_part

begin
block_statement_part

end block;

Label is not optional!

Optional guard condition (not covered in this course) 617

Optional block header: explicit block interface specification
Declarative/statement part

can contain the same objects as in the respective parts of architectures →
blocks can be nested
can access objects from outer scope

2

Block Statement - Syntax

Block syntax
BLOCK_LABEL : block [(guard_condition)] [is]
block_header
block_declarative_part

begin
block_statement_part

end block;

Label is not optional!

Optional guard condition (not covered in this course) 617

Optional block header: explicit block interface specification
Declarative/statement part

can contain the same objects as in the respective parts of architectures →
blocks can be nested
can access objects from outer scope

Block Statements
Syntax

Block Statement - Syntax

Note that in contrast, to – for example – processes, the identifier representing the block label is not optional!

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Statement - Syntax

Block syntax
BLOCK_LABEL : block [(guard_condition)] [is]
block_header
block_declarative_part

begin
block_statement_part

end block;

Label is not optional!
Optional guard condition (not covered in this course) 617

Optional block header: explicit block interface specification
Declarative/statement part

can contain the same objects as in the respective parts of architectures →
blocks can be nested
can access objects from outer scope

2

Block Statement - Syntax

Block syntax
BLOCK_LABEL : block [(guard_condition)] [is]
block_header
block_declarative_part

begin
block_statement_part

end block;

Label is not optional!
Optional guard condition (not covered in this course) 617

Optional block header: explicit block interface specification
Declarative/statement part

can contain the same objects as in the respective parts of architectures →
blocks can be nested
can access objects from outer scope

Block Statements
Syntax

Block Statement - Syntax

After the block keyword the optional guard condition follows. This is a language feature, we will neither cover nor use in this
course. However, we still wanted to mention it for the sake of completeness. In case you want to learn about it, we linked the
VHDL language reference.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Statement - Syntax

Block syntax
BLOCK_LABEL : block [(guard_condition)] [is]
block_header
block_declarative_part

begin
block_statement_part

end block;

Label is not optional!
Optional guard condition (not covered in this course) 617

Optional block header: explicit block interface specification

Declarative/statement part
can contain the same objects as in the respective parts of architectures →
blocks can be nested
can access objects from outer scope

2

Block Statement - Syntax

Block syntax
BLOCK_LABEL : block [(guard_condition)] [is]
block_header
block_declarative_part

begin
block_statement_part

end block;

Label is not optional!
Optional guard condition (not covered in this course) 617

Optional block header: explicit block interface specification

Declarative/statement part
can contain the same objects as in the respective parts of architectures →
blocks can be nested
can access objects from outer scope

Block Statements
Syntax

Block Statement - Syntax

The optional block header allows to specify an explicit interface to the block, and looks very similar to an entity declaration
and an instantiation. An upcoming slide will be dedicated to this feature and explain it in detail.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Statement - Syntax

Block syntax
BLOCK_LABEL : block [(guard_condition)] [is]
block_header
block_declarative_part

begin
block_statement_part

end block;

Label is not optional!
Optional guard condition (not covered in this course) 617

Optional block header: explicit block interface specification
Declarative/statement part

can contain the same objects as in the respective parts of architectures →
blocks can be nested
can access objects from outer scope

2

Block Statement - Syntax

Block syntax
BLOCK_LABEL : block [(guard_condition)] [is]
block_header
block_declarative_part

begin
block_statement_part

end block;

Label is not optional!
Optional guard condition (not covered in this course) 617

Optional block header: explicit block interface specification
Declarative/statement part

can contain the same objects as in the respective parts of architectures →
blocks can be nested
can access objects from outer scope

Block Statements
Syntax

Block Statement - Syntax

Finally, we have the block declarative part followed by the keyword ”begin” and the statement part. These parts look exactly
like the respective parts in architectures and can, thus, contain the same elements. This also means that a block can contain
other sub-blocks in its statement part. Note that the scope of objects declared in a block’s declarative part is restricted to
the block itself. This means that they cannot be accessed from outside the block – for example from another process in the
architecture that contains the block. However, the block – meaning both its declarative and statement part – can access all
objects from the architecture that contains it. In nested block structures, the objects of all containing constructs – for example
other blocks – can be accessed up until the architecture as outer-most level.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Statement - Example

 architecture arch of demo is

 signal a, b, cin : std_ulogic;
 signal cout, sum : std_ulogic;
 begin
 full_adder : block
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b;
 y <= a and b;

 sum <= cin xor x;
 z <= cin and x;
 cout <= y or z;
 end block;

 -- do something with a, b, etc.
 some_logic: process(all)
 [...]
 end architecture;

Note

The process some logic cannot
access the signals x, y and z.

3

Block Statement - Example

 architecture arch of demo is

 signal a, b, cin : std_ulogic;
 signal cout, sum : std_ulogic;
 begin
 full_adder : block
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b;
 y <= a and b;

 sum <= cin xor x;
 z <= cin and x;
 cout <= y or z;
 end block;

 -- do something with a, b, etc.
 some_logic: process(all)
 [...]
 end architecture;

Note

The process some logic cannot
access the signals x, y and z.

Block Statements
Example

Block Statement - Example

Alright, now let’s look at some code! Let’s say we have some module, simply called ”demo” that internally needs a single
full adder. We could, of course, create a separate entity/architecture pair for the full adder and add it as an instance to our
module. However, here we want to demonstrate how to employ a block to achieve the desired result.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Statement - Example

 architecture arch of demo is
 signal a, b, cin : std_ulogic;
 signal cout, sum : std_ulogic;
 begin

 full_adder : block
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b;
 y <= a and b;

 sum <= cin xor x;
 z <= cin and x;
 cout <= y or z;
 end block;

 -- do something with a, b, etc.
 some_logic: process(all)
 [...]
 end architecture;

Note

The process some logic cannot
access the signals x, y and z.

3

Block Statement - Example

 architecture arch of demo is
 signal a, b, cin : std_ulogic;
 signal cout, sum : std_ulogic;
 begin

 full_adder : block
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b;
 y <= a and b;

 sum <= cin xor x;
 z <= cin and x;
 cout <= y or z;
 end block;

 -- do something with a, b, etc.
 some_logic: process(all)
 [...]
 end architecture;

Note

The process some logic cannot
access the signals x, y and z.

Block Statements
Example

Block Statement - Example

First, we declare some signals that represent the inputs and outputs of the full adder sub-circuit. Since, we have already
used this example circuit several times throughout this course, you should be familiar with them.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Statement - Example

 architecture arch of demo is
 signal a, b, cin : std_ulogic;
 signal cout, sum : std_ulogic;
 begin
 full_adder : block

 signal x, y, z : std_ulogic;
 begin
 x <= a xor b;
 y <= a and b;

 sum <= cin xor x;
 z <= cin and x;
 cout <= y or z;
 end block;

 -- do something with a, b, etc.
 some_logic: process(all)
 [...]
 end architecture;

Note

The process some logic cannot
access the signals x, y and z.

3

Block Statement - Example

 architecture arch of demo is
 signal a, b, cin : std_ulogic;
 signal cout, sum : std_ulogic;
 begin
 full_adder : block

 signal x, y, z : std_ulogic;
 begin
 x <= a xor b;
 y <= a and b;

 sum <= cin xor x;
 z <= cin and x;
 cout <= y or z;
 end block;

 -- do something with a, b, etc.
 some_logic: process(all)
 [...]
 end architecture;

Note

The process some logic cannot
access the signals x, y and z.

Block Statements
Example

Block Statement - Example

In the statement part of the architecture, we can then create a block that implements the full adder.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Statement - Example

 architecture arch of demo is
 signal a, b, cin : std_ulogic;
 signal cout, sum : std_ulogic;
 begin
 full_adder : block
 signal x, y, z : std_ulogic;

 begin
 x <= a xor b;
 y <= a and b;

 sum <= cin xor x;
 z <= cin and x;
 cout <= y or z;
 end block;

 -- do something with a, b, etc.
 some_logic: process(all)
 [...]
 end architecture;

Note

The process some logic cannot
access the signals x, y and z.

3

Block Statement - Example

 architecture arch of demo is
 signal a, b, cin : std_ulogic;
 signal cout, sum : std_ulogic;
 begin
 full_adder : block
 signal x, y, z : std_ulogic;

 begin
 x <= a xor b;
 y <= a and b;

 sum <= cin xor x;
 z <= cin and x;
 cout <= y or z;
 end block;

 -- do something with a, b, etc.
 some_logic: process(all)
 [...]
 end architecture;

Note

The process some logic cannot
access the signals x, y and z.

Block Statements
Example

Block Statement - Example

For that purpose we first declare the signals ”x”, ”y” and ”z” that we are going to need to implement the circuit.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Statement - Example

 architecture arch of demo is
 signal a, b, cin : std_ulogic;
 signal cout, sum : std_ulogic;
 begin
 full_adder : block
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b;
 y <= a and b;

 sum <= cin xor x;
 z <= cin and x;
 cout <= y or z;
 end block;

 -- do something with a, b, etc.
 some_logic: process(all)
 [...]
 end architecture;

Note

The process some logic cannot
access the signals x, y and z.

3

Block Statement - Example

 architecture arch of demo is
 signal a, b, cin : std_ulogic;
 signal cout, sum : std_ulogic;
 begin
 full_adder : block
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b;
 y <= a and b;

 sum <= cin xor x;
 z <= cin and x;
 cout <= y or z;
 end block;

 -- do something with a, b, etc.
 some_logic: process(all)
 [...]
 end architecture;

Note

The process some logic cannot
access the signals x, y and z.

Block Statements
Example

Block Statement - Example

In the statement part of the block we then add the five familiar concurrent signal assignments that describe the functionality
of the full adder.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Statement - Example

 architecture arch of demo is
 signal a, b, cin : std_ulogic;
 signal cout, sum : std_ulogic;
 begin
 full_adder : block
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b;
 y <= a and b;

 sum <= cin xor x;
 z <= cin and x;
 cout <= y or z;
 end block;

 -- do something with a, b, etc.
 some_logic: process(all)
 [...]
 end architecture;

Note

The process some logic cannot
access the signals x, y and z.

3

Block Statement - Example

 architecture arch of demo is
 signal a, b, cin : std_ulogic;
 signal cout, sum : std_ulogic;
 begin
 full_adder : block
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b;
 y <= a and b;

 sum <= cin xor x;
 z <= cin and x;
 cout <= y or z;
 end block;

 -- do something with a, b, etc.
 some_logic: process(all)
 [...]
 end architecture;

Note

The process some logic cannot
access the signals x, y and z.

Block Statements
Example

Block Statement - Example

Finally, we add a process called ”some-logic” that can then do something with the inputs and outputs of the full adder.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Statement - Example

 architecture arch of demo is
 signal a, b, cin : std_ulogic;
 signal cout, sum : std_ulogic;
 begin
 full_adder : block
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b;
 y <= a and b;

 sum <= cin xor x;
 z <= cin and x;
 cout <= y or z;
 end block;

 -- do something with a, b, etc.
 some_logic: process(all)
 [...]
 end architecture;

Note

The process some logic cannot
access the signals x, y and z.

3

Block Statement - Example

 architecture arch of demo is
 signal a, b, cin : std_ulogic;
 signal cout, sum : std_ulogic;
 begin
 full_adder : block
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b;
 y <= a and b;

 sum <= cin xor x;
 z <= cin and x;
 cout <= y or z;
 end block;

 -- do something with a, b, etc.
 some_logic: process(all)
 [...]
 end architecture;

Note

The process some logic cannot
access the signals x, y and z.

Block Statements
Example

Block Statement - Example

Note that, because of the scoping rules this process cannot access the signals ”x”, ”y” and ”z”, declared in the full adder
block. However, the block itself can and does access the signals declared on the architecture level.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Header

Defines an explicit interface to a block

Block header syntax
block_header ::=
[generic ([...]);
[generic map ([...]);]]
[port ([...]);
[port map ([...]);]]

Everything is optional
Port/generic map clause only valid if a port/generic clause is present
If port/generic map clauses are omitted the respective port/generic clause
must have default values

Block header does not prevent the block from accessing objects from the
outer scope

4

Block Header

Defines an explicit interface to a block

Block header syntax
block_header ::=
[generic ([...]);
[generic map ([...]);]]
[port ([...]);
[port map ([...]);]]

Everything is optional
Port/generic map clause only valid if a port/generic clause is present
If port/generic map clauses are omitted the respective port/generic clause
must have default values

Block header does not prevent the block from accessing objects from the
outer scope

Block Statements
Block Header

Block Header

As promised on the syntax-slide, we still need to cover the block header construct. As already mentioned before, the block
header allows to define an explicit interface for the block statement. Instead of simply accessing the relevant signals in the
outer scope of the block, we can use the block header to explicitly wire a block into an architecture like we would do with a
regular instance.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Header

Defines an explicit interface to a block
Block header syntax
block_header ::=
[generic ([...]);
[generic map ([...]);]]
[port ([...]);
[port map ([...]);]]

Everything is optional
Port/generic map clause only valid if a port/generic clause is present
If port/generic map clauses are omitted the respective port/generic clause
must have default values

Block header does not prevent the block from accessing objects from the
outer scope

4

Block Header

Defines an explicit interface to a block
Block header syntax
block_header ::=
[generic ([...]);
[generic map ([...]);]]
[port ([...]);
[port map ([...]);]]

Everything is optional
Port/generic map clause only valid if a port/generic clause is present
If port/generic map clauses are omitted the respective port/generic clause
must have default values

Block header does not prevent the block from accessing objects from the
outer scope

Block Statements
Block Header

Block Header

The syntax for the block header looks like a combination of an entity declaration and an instantiation. First a ”generic” clause
lists the generic parameters of the block. The syntax is exactly the same as for entities. Hence, we don’t need to go into any
further detail here. The generic clause can then be immediately followed up with a ”generic-map” clause that assigns values
to the declared generics. For the ”generic-map” clause the same syntax as for instantiation is used. Likewise a ”port” clause
defines the physical interface signals, which can then be mapped to signals of the outer scope by a ”port-map” clause.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Header

Defines an explicit interface to a block
Block header syntax
block_header ::=
[generic ([...]);
[generic map ([...]);]]
[port ([...]);
[port map ([...]);]]

Everything is optional
Port/generic map clause only valid if a port/generic clause is present
If port/generic map clauses are omitted the respective port/generic clause
must have default values

Block header does not prevent the block from accessing objects from the
outer scope

4

Block Header

Defines an explicit interface to a block
Block header syntax
block_header ::=
[generic ([...]);
[generic map ([...]);]]
[port ([...]);
[port map ([...]);]]

Everything is optional
Port/generic map clause only valid if a port/generic clause is present
If port/generic map clauses are omitted the respective port/generic clause
must have default values

Block header does not prevent the block from accessing objects from the
outer scope

Block Statements
Block Header

Block Header

Notice that all of these four clauses are optional. However, obviously a generic or port map clause can only be specified if
a respective port or generic clause is present. Furthermore, if the generic or port map clause is omitted, it must be ensured
that the respective port or generic clause has default values. Otherwise, a compilation error will be raised.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Header

Defines an explicit interface to a block
Block header syntax
block_header ::=
[generic ([...]);
[generic map ([...]);]]
[port ([...]);
[port map ([...]);]]

Everything is optional
Port/generic map clause only valid if a port/generic clause is present
If port/generic map clauses are omitted the respective port/generic clause
must have default values

Block header does not prevent the block from accessing objects from the
outer scope

4

Block Header

Defines an explicit interface to a block
Block header syntax
block_header ::=
[generic ([...]);
[generic map ([...]);]]
[port ([...]);
[port map ([...]);]]

Everything is optional
Port/generic map clause only valid if a port/generic clause is present
If port/generic map clauses are omitted the respective port/generic clause
must have default values

Block header does not prevent the block from accessing objects from the
outer scope

Block Statements
Block Header

Block Header

Finally, please also note, that specifying a block header does not prevent the block from accessing objects from the outer
scope in any way.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Header - Example

 architecture arch2 of demo is

 signal i1, i2, i3, o1, o2 : std_ulogic;
 begin
 full_adder : block
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 port map (

 a => i1, b => i2, cin => i3,
 cout => o1, sum => o2
);
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b; y <= a and b;
 z <= cin and x;
 cout <= y or z; sum <= cin xor x;
 end block;
 [...]
 end architecture;

Note

Block is now self-contained. We
no longer need to directly access
signals from the architecture.

Note

Trivial to move the block into a
separate module (entity /
architecture).

5

Block Header - Example

 architecture arch2 of demo is

 signal i1, i2, i3, o1, o2 : std_ulogic;
 begin
 full_adder : block
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 port map (

 a => i1, b => i2, cin => i3,
 cout => o1, sum => o2
);
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b; y <= a and b;
 z <= cin and x;
 cout <= y or z; sum <= cin xor x;
 end block;
 [...]
 end architecture;

Note

Block is now self-contained. We
no longer need to directly access
signals from the architecture.

Note

Trivial to move the block into a
separate module (entity /
architecture).

Block Statements
Block Header

Block Header - Example

To exemplify how block headers can be used in practice, let’s rework the previous example to use a block header instead of
simply accessing the signals in the architecture that contains the full adder block.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Header - Example

 architecture arch2 of demo is
 signal i1, i2, i3, o1, o2 : std_ulogic;
 begin

 full_adder : block
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 port map (

 a => i1, b => i2, cin => i3,
 cout => o1, sum => o2
);
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b; y <= a and b;
 z <= cin and x;
 cout <= y or z; sum <= cin xor x;
 end block;
 [...]
 end architecture;

Note

Block is now self-contained. We
no longer need to directly access
signals from the architecture.

Note

Trivial to move the block into a
separate module (entity /
architecture).

5

Block Header - Example

 architecture arch2 of demo is
 signal i1, i2, i3, o1, o2 : std_ulogic;
 begin

 full_adder : block
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 port map (

 a => i1, b => i2, cin => i3,
 cout => o1, sum => o2
);
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b; y <= a and b;
 z <= cin and x;
 cout <= y or z; sum <= cin xor x;
 end block;
 [...]
 end architecture;

Note

Block is now self-contained. We
no longer need to directly access
signals from the architecture.

Note

Trivial to move the block into a
separate module (entity /
architecture).

Block Statements
Block Header

Block Header - Example

Hence, we again declare an architecture with some local signals, that we are then connecting to our full adder block.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Header - Example

 architecture arch2 of demo is
 signal i1, i2, i3, o1, o2 : std_ulogic;
 begin
 full_adder : block
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);

 port map (
 a => i1, b => i2, cin => i3,
 cout => o1, sum => o2
);
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b; y <= a and b;
 z <= cin and x;
 cout <= y or z; sum <= cin xor x;
 end block;
 [...]
 end architecture;

Note

Block is now self-contained. We
no longer need to directly access
signals from the architecture.

Note

Trivial to move the block into a
separate module (entity /
architecture).

5

Block Header - Example

 architecture arch2 of demo is
 signal i1, i2, i3, o1, o2 : std_ulogic;
 begin
 full_adder : block
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);

 port map (
 a => i1, b => i2, cin => i3,
 cout => o1, sum => o2
);
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b; y <= a and b;
 z <= cin and x;
 cout <= y or z; sum <= cin xor x;
 end block;
 [...]
 end architecture;

Note

Block is now self-contained. We
no longer need to directly access
signals from the architecture.

Note

Trivial to move the block into a
separate module (entity /
architecture).

Block Statements
Block Header

Block Header - Example

Then we can continue to declare the block and use a port clause to define its interface.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Header - Example

 architecture arch2 of demo is
 signal i1, i2, i3, o1, o2 : std_ulogic;
 begin
 full_adder : block
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 port map (

 a => i1, b => i2, cin => i3,
 cout => o1, sum => o2
);

 signal x, y, z : std_ulogic;
 begin
 x <= a xor b; y <= a and b;
 z <= cin and x;
 cout <= y or z; sum <= cin xor x;
 end block;
 [...]
 end architecture;

Note

Block is now self-contained. We
no longer need to directly access
signals from the architecture.

Note

Trivial to move the block into a
separate module (entity /
architecture).

5

Block Header - Example

 architecture arch2 of demo is
 signal i1, i2, i3, o1, o2 : std_ulogic;
 begin
 full_adder : block
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 port map (

 a => i1, b => i2, cin => i3,
 cout => o1, sum => o2
);

 signal x, y, z : std_ulogic;
 begin
 x <= a xor b; y <= a and b;
 z <= cin and x;
 cout <= y or z; sum <= cin xor x;
 end block;
 [...]
 end architecture;

Note

Block is now self-contained. We
no longer need to directly access
signals from the architecture.

Note

Trivial to move the block into a
separate module (entity /
architecture).

Block Statements
Block Header

Block Header - Example

The ”port-map” clause is then used to connect these interface signals to the local signals declared in the architecture.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Header - Example

 architecture arch2 of demo is
 signal i1, i2, i3, o1, o2 : std_ulogic;
 begin
 full_adder : block
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 port map (

 a => i1, b => i2, cin => i3,
 cout => o1, sum => o2
);
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b; y <= a and b;
 z <= cin and x;
 cout <= y or z; sum <= cin xor x;
 end block;
 [...]
 end architecture;

Note

Block is now self-contained. We
no longer need to directly access
signals from the architecture.

Note

Trivial to move the block into a
separate module (entity /
architecture).

5

Block Header - Example

 architecture arch2 of demo is
 signal i1, i2, i3, o1, o2 : std_ulogic;
 begin
 full_adder : block
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 port map (

 a => i1, b => i2, cin => i3,
 cout => o1, sum => o2
);
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b; y <= a and b;
 z <= cin and x;
 cout <= y or z; sum <= cin xor x;
 end block;
 [...]
 end architecture;

Note

Block is now self-contained. We
no longer need to directly access
signals from the architecture.

Note

Trivial to move the block into a
separate module (entity /
architecture).

Block Statements
Block Header

Block Header - Example

Finally, we declare our block local signals and add our familiar concurrent signal assignments.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Header - Example

 architecture arch2 of demo is
 signal i1, i2, i3, o1, o2 : std_ulogic;
 begin
 full_adder : block
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 port map (

 a => i1, b => i2, cin => i3,
 cout => o1, sum => o2
);
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b; y <= a and b;
 z <= cin and x;
 cout <= y or z; sum <= cin xor x;
 end block;
 [...]
 end architecture;

Note

Block is now self-contained. We
no longer need to directly access
signals from the architecture.

Note

Trivial to move the block into a
separate module (entity /
architecture).

5

Block Header - Example

 architecture arch2 of demo is
 signal i1, i2, i3, o1, o2 : std_ulogic;
 begin
 full_adder : block
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 port map (

 a => i1, b => i2, cin => i3,
 cout => o1, sum => o2
);
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b; y <= a and b;
 z <= cin and x;
 cout <= y or z; sum <= cin xor x;
 end block;
 [...]
 end architecture;

Note

Block is now self-contained. We
no longer need to directly access
signals from the architecture.

Note

Trivial to move the block into a
separate module (entity /
architecture).

Block Statements
Block Header

Block Header - Example

There are two things we can observe about this example: First the interface to the block is now completely clear from
its definition. It is clear which signals are accessed in which way, and we no longer need to interfere with signals in the
architecture’s scope. This makes the block more self-contained, and it would make it, for example, much easier to move it
into another architecture.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Block Header - Example

 architecture arch2 of demo is
 signal i1, i2, i3, o1, o2 : std_ulogic;
 begin
 full_adder : block
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 port map (

 a => i1, b => i2, cin => i3,
 cout => o1, sum => o2
);
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b; y <= a and b;
 z <= cin and x;
 cout <= y or z; sum <= cin xor x;
 end block;
 [...]
 end architecture;

Note

Block is now self-contained. We
no longer need to directly access
signals from the architecture.

Note

Trivial to move the block into a
separate module (entity /
architecture).

5

Block Header - Example

 architecture arch2 of demo is
 signal i1, i2, i3, o1, o2 : std_ulogic;
 begin
 full_adder : block
 port (
 a, b, cin : in std_ulogic;
 sum, cout : out std_ulogic
);
 port map (

 a => i1, b => i2, cin => i3,
 cout => o1, sum => o2
);
 signal x, y, z : std_ulogic;
 begin
 x <= a xor b; y <= a and b;
 z <= cin and x;
 cout <= y or z; sum <= cin xor x;
 end block;
 [...]
 end architecture;

Note

Block is now self-contained. We
no longer need to directly access
signals from the architecture.

Note

Trivial to move the block into a
separate module (entity /
architecture).

Block Statements
Block Header

Block Header - Example

Moreover, should we at some point decide to move the block into its own entity, the code change would be trivial.

HWMod
WS24

Blocks
Introduction

Syntax

Example

Block Header

Lecture Complete!

Modified: 2025-03-08, 00:15 (b25118c)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

	Block Statements
	Introduction
	Syntax
	Example
	Block Header

