
HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Remarks

Hardware Modeling [VU] (191.011)
– WS24 –

Behavioral Modeling

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Modified: 2025-03-20, 14:05 (830283c)

Hardware Modeling [VU] (191.011)
– WS24 –

Behavioral Modeling

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2024/25

Behavioral Modeling

In this lecture we will discuss synthesizable processes, which can be used to describe hardware using sequential statements.

HWMod
WS24

Beh. Mod.
Introduction

About

Example

Sensitivity

Process Simulation

Variables

Remarks

Introduction

Concurrent assignments and structural modeling
Can model all combinational hardware
Hardly scales...

how?

⇒ Behavioral Modeling

Memory CPU IO

Control

System Level

Algorithmic
Level

if A=`1` then
 B:= B+1
else
 B:= B
end if

Register Transfer
Level (RTL)

RAM Register

A
LU

Counter

Logic Level

Circuit Level
dU
dt

 I
 C

dI
dt

d2I
dt2

R + L+=

Behavior Structure Geometry

D = NOT E

C = (D OR B) AND A

>1 &
E

B
C

A

while input
 Read
„Schilling“
 Calulate Euro
 Display „Euro“

Inputs : Keyboard
Output: Display
Funktion:

IN

OUT

Trans-
lator

INV

OR

AND

µP IO-Ctrl
8 PS/2

Interface

Memory
16

RS232
Interface

IO-Ctrl

PS/2µP

RS232

R
E
G

A
L
U

C
o
u
n
te

r

✓

1

Introduction

Concurrent assignments and structural modeling
Can model all combinational hardware
Hardly scales...

how?

⇒ Behavioral Modeling

Memory CPU IO

Control

System Level

Algorithmic
Level

if A=`1` then
 B:= B+1
else
 B:= B
end if

Register Transfer
Level (RTL)

RAM Register

A
LU

Counter

Logic Level

Circuit Level
dU
dt

 I
 C

dI
dt

d2I
dt2

R + L+=

Behavior Structure Geometry

D = NOT E

C = (D OR B) AND A

>1 &
E

B
C

A

while input
 Read
„Schilling“
 Calulate Euro
 Display „Euro“

Inputs : Keyboard
Output: Display
Funktion:

IN

OUT

Trans-
lator

INV

OR

AND

µP IO-Ctrl
8 PS/2

Interface

Memory
16

RS232
Interface

IO-Ctrl

PS/2µP

RS232

R
E
G

A
L
U

C
o
u
n
te

r

✓

Behavioral Modeling
Introduction

Introduction

In previous lectures we have discussed how hardware can be described by using concurrent signal assignments and struc-
tural modeling. This combination already allows us to describe arbitrary combinational hardware. However, it hardly scales.
Think about arithmetic logic units in CPUs which are used to perform computations. Although it is only combination, it can
become quite complex and while we *could* describe it with the means we discussed so far, it would not be a very pleasant
experience. The reason being that we are not really describing our hardware programmatically on the register-transfer-level
as we would ideally do. Obviously, we need a method for modeling circuits with a complex behavior.

HWMod
WS24

Beh. Mod.
Introduction

About

Example

Sensitivity

Process Simulation

Variables

Remarks

Introduction

Concurrent assignments and structural modeling
Can model all combinational hardware
Hardly scales...how?

⇒ Behavioral Modeling

Memory CPU IO

Control

System Level

Algorithmic
Level

if A=`1` then
 B:= B+1
else
 B:= B
end if

Register Transfer
Level (RTL)

RAM Register

A
LU

Counter

Logic Level

Circuit Level
dU
dt

 I
 C

dI
dt

d2I
dt2

R + L+=

Behavior Structure Geometry

D = NOT E

C = (D OR B) AND A

>1 &
E

B
C

A

while input
 Read
„Schilling“
 Calulate Euro
 Display „Euro“

Inputs : Keyboard
Output: Display
Funktion:

IN

OUT

Trans-
lator

INV

OR

AND

µP IO-Ctrl
8 PS/2

Interface

Memory
16

RS232
Interface

IO-Ctrl

PS/2µP

RS232

R
E
G

A
L
U

C
o
u
n
te

r

✓
?

1

Introduction

Concurrent assignments and structural modeling
Can model all combinational hardware
Hardly scales...how?

⇒ Behavioral Modeling

Memory CPU IO

Control

System Level

Algorithmic
Level

if A=`1` then
 B:= B+1
else
 B:= B
end if

Register Transfer
Level (RTL)

RAM Register

A
LU

Counter

Logic Level

Circuit Level
dU
dt

 I
 C

dI
dt

d2I
dt2

R + L+=

Behavior Structure Geometry

D = NOT E

C = (D OR B) AND A

>1 &
E

B
C

A

while input
 Read
„Schilling“
 Calulate Euro
 Display „Euro“

Inputs : Keyboard
Output: Display
Funktion:

IN

OUT

Trans-
lator

INV

OR

AND

µP IO-Ctrl
8 PS/2

Interface

Memory
16

RS232
Interface

IO-Ctrl

PS/2µP

RS232

R
E
G

A
L
U

C
o
u
n
te

r

✓
?

Behavioral Modeling
Introduction

Introduction

It would be nice if we could make use of the control flow statements we introduced in the lecture about VHDL basics Further-
more, it is desirable that we can encapsulate parts of a complex design in distinct structures, without the need to create a new
entity and architecture and to instantiate it. Additionally, as we as humans try to break complex behavior down in sequences
of simpler behavior, we would desire a means to describe our circuits sequentially.

HWMod
WS24

Beh. Mod.
Introduction

About

Example

Sensitivity

Process Simulation

Variables

Remarks

Introduction

Concurrent assignments and structural modeling
Can model all combinational hardware
Hardly scales...how?

⇒ Behavioral Modeling

Memory CPU IO

Control

System Level

Algorithmic
Level

if A=`1` then
 B:= B+1
else
 B:= B
end if

Register Transfer
Level (RTL)

RAM Register

A
LU

Counter

Logic Level

Circuit Level
dU
dt

 I
 C

dI
dt

d2I
dt2

R + L+=

Behavior Structure Geometry

D = NOT E

C = (D OR B) AND A

>1 &
E

B
C

A

while input
 Read
„Schilling“
 Calulate Euro
 Display „Euro“

Inputs : Keyboard
Output: Display
Funktion:

IN

OUT

Trans-
lator

INV

OR

AND

µP IO-Ctrl
8 PS/2

Interface

Memory
16

RS232
Interface

IO-Ctrl

PS/2µP

RS232

R
E
G

A
L
U

C
o
u
n
te

rBehavioral
Modeling

1

Introduction

Concurrent assignments and structural modeling
Can model all combinational hardware
Hardly scales...how?

⇒ Behavioral Modeling

Memory CPU IO

Control

System Level

Algorithmic
Level

if A=`1` then
 B:= B+1
else
 B:= B
end if

Register Transfer
Level (RTL)

RAM Register

A
LU

Counter

Logic Level

Circuit Level
dU
dt

 I
 C

dI
dt

d2I
dt2

R + L+=

Behavior Structure Geometry

D = NOT E

C = (D OR B) AND A

>1 &
E

B
C

A

while input
 Read
„Schilling“
 Calulate Euro
 Display „Euro“

Inputs : Keyboard
Output: Display
Funktion:

IN

OUT

Trans-
lator

INV

OR

AND

µP IO-Ctrl
8 PS/2

Interface

Memory
16

RS232
Interface

IO-Ctrl

PS/2µP

RS232

R
E
G

A
L
U

C
o
u
n
te

rBehavioral
Modeling

Behavioral Modeling
Introduction

Introduction

This is where behavioral modeling comes in.

HWMod
WS24

Beh. Mod.
Introduction

About

Example

Sensitivity

Process Simulation

Variables

Remarks

Behavioral Modeling

Revolves around processes
Must be synthesizable

“single-use entity and architecture”
Control flow statements and variables
Sequential description

Complements struct. modeling and concurrent assignments
Ubiquitous in synchronous designs

2

Behavioral Modeling

Revolves around processes
Must be synthesizable

“single-use entity and architecture”
Control flow statements and variables
Sequential description

Complements struct. modeling and concurrent assignments
Ubiquitous in synchronous designs

Behavioral Modeling
Introduction

Behavioral Modeling

In a nutshell, behavioral modeling allows us to use synthesizable processes to describe our hardware.

HWMod
WS24

Beh. Mod.
Introduction

About

Example

Sensitivity

Process Simulation

Variables

Remarks

Behavioral Modeling

Revolves around processes
Must be synthesizable
“single-use entity and architecture”

Control flow statements and variables
Sequential description

Complements struct. modeling and concurrent assignments
Ubiquitous in synchronous designs

2

Behavioral Modeling

Revolves around processes
Must be synthesizable
“single-use entity and architecture”

Control flow statements and variables
Sequential description

Complements struct. modeling and concurrent assignments
Ubiquitous in synchronous designs

Behavioral Modeling
Introduction

Behavioral Modeling

Up to some extent, we can picture such synthesizable processes to be an inline entity and architecture. That is, we can split
our model into functionally loosely connected submodules in a much more concise manner than by creating distinct entities
and instantiating them.

HWMod
WS24

Beh. Mod.
Introduction

About

Example

Sensitivity

Process Simulation

Variables

Remarks

Behavioral Modeling

Revolves around processes
Must be synthesizable
“single-use entity and architecture”
Control flow statements and variables
Sequential description

Complements struct. modeling and concurrent assignments
Ubiquitous in synchronous designs

2

Behavioral Modeling

Revolves around processes
Must be synthesizable
“single-use entity and architecture”
Control flow statements and variables
Sequential description

Complements struct. modeling and concurrent assignments
Ubiquitous in synchronous designs

Behavioral Modeling
Introduction

Behavioral Modeling

We can also use control flow statements inside processes, thus giving us access to if, case and even loop statements.
Furthermore, we can use variables and describe our circuits in a somewhat sequential manner. We will discuss both in detail
during this lecture.

HWMod
WS24

Beh. Mod.
Introduction

About

Example

Sensitivity

Process Simulation

Variables

Remarks

Behavioral Modeling

Revolves around processes
Must be synthesizable
“single-use entity and architecture”
Control flow statements and variables
Sequential description

Complements struct. modeling and concurrent assignments

Ubiquitous in synchronous designs

2

Behavioral Modeling

Revolves around processes
Must be synthesizable
“single-use entity and architecture”
Control flow statements and variables
Sequential description

Complements struct. modeling and concurrent assignments

Ubiquitous in synchronous designs

Behavioral Modeling
Introduction

Behavioral Modeling

However, it must be stressed that behavioral modeling is not an alternative to structural modeling and concurrent assignments
but rather a powerful complement. Typically, you would use all three methods throughout a design.

HWMod
WS24

Beh. Mod.
Introduction

About

Example

Sensitivity

Process Simulation

Variables

Remarks

Behavioral Modeling

Revolves around processes
Must be synthesizable
“single-use entity and architecture”
Control flow statements and variables
Sequential description

Complements struct. modeling and concurrent assignments
Ubiquitous in synchronous designs

2

Behavioral Modeling

Revolves around processes
Must be synthesizable
“single-use entity and architecture”
Control flow statements and variables
Sequential description

Complements struct. modeling and concurrent assignments
Ubiquitous in synchronous designs

Behavioral Modeling
Introduction

Behavioral Modeling

Furthermore, as we will see in chapter 3, behavioral modeling is ubiquitous in synchronous designs as it allows for very
concise and maintainable description of such circuits. We will now look at a first example of how a behavioral model of a
circuit looks like and then elaborate on its details.

HWMod
WS24

Beh. Mod.
Introduction

About

Example

Sensitivity

Process Simulation

Variables

Remarks

Example: Multiplexer

 entity mux41 is
 port (
 c : in boolean_vector(1 downto 0);
 i : in boolean_vector(3 downto 0);
 o : out boolean
);
 end entity;

 architecture csa of mux_41 is
 begin
 o <= i(0) when not c(1) and not c(0) else
 i(1) when not c(1) and c(0) else
 i(2) when c(1) and not c(0) else
 i(3) when c(1) and c(0);
 end architecture;

o

i(0)
i(1)
i(2)
i(3)

c(1)

c(0)

3

Example: Multiplexer

 entity mux41 is
 port (
 c : in boolean_vector(1 downto 0);
 i : in boolean_vector(3 downto 0);
 o : out boolean
);
 end entity;

 architecture csa of mux_41 is
 begin
 o <= i(0) when not c(1) and not c(0) else
 i(1) when not c(1) and c(0) else
 i(2) when c(1) and not c(0) else
 i(3) when c(1) and c(0);
 end architecture;

o

i(0)
i(1)
i(2)
i(3)

c(1)

c(0)

Behavioral Modeling
Introduction

Example: Multiplexer

Recall the implementation of a simple 4:1 multiplexer that you saw in the lecture about entities and architectures. The
slide shows the respective implementation based on concurrent signal assignments. Let us now apply our already gathered
knowledge and rewrite this implementation as a process. In a first attempt we could make use of the case statement to
describe the select logic of the multiplexer in a more comprehensible manner.

HWMod
WS24

Beh. Mod.
Introduction

About

Example

Sensitivity

Process Simulation

Variables

Remarks

Example: Multiplexer

 entity mux41 is
 port (
 c : in boolean_vector(1 downto 0);
 i : in boolean_vector(3 downto 0);
 o : out boolean
);
 end entity;

 architecture beh of mux_41 is
 begin
 process begin
 case c is
 when false & false => o <= i(0);
 when false & true => o <= i(1);
 when true & false => o <= i(2);
 when true & true => o <= i(3);
 end case;

 wait;
 end process;
 end architecture;

o

i(0)
i(1)
i(2)
i(3)

c(1)

c(0)

3

Example: Multiplexer

 entity mux41 is
 port (
 c : in boolean_vector(1 downto 0);
 i : in boolean_vector(3 downto 0);
 o : out boolean
);
 end entity;

 architecture beh of mux_41 is
 begin
 process begin
 case c is
 when false & false => o <= i(0);
 when false & true => o <= i(1);
 when true & false => o <= i(2);
 when true & true => o <= i(3);
 end case;

 wait;
 end process;
 end architecture;

o

i(0)
i(1)
i(2)
i(3)

c(1)

c(0)

Behavioral Modeling
Introduction

Example: Multiplexer

This is shown on the slide. We use a case statement to determine the output based on the control signal c and complete the
process with a wait statement. So far so good, right?

HWMod
WS24

Beh. Mod.
Introduction

About

Example

Sensitivity

Process Simulation

Variables

Remarks

Example: Multiplexer

 entity mux41 is
 port (
 c : in boolean_vector(1 downto 0);
 i : in boolean_vector(3 downto 0);
 o : out boolean
);
 end entity;

 architecture beh of mux_41 is
 begin
 process begin
 case c is
 when false & false => o <= i(0);
 when false & true => o <= i(1);
 when true & false => o <= i(2);
 when true & true => o <= i(3);
 end case;

 wait;
 end process;
 end architecture;

o

i(0)
i(1)
i(2)
i(3)

c(1)

c(0)

3

Example: Multiplexer

 entity mux41 is
 port (
 c : in boolean_vector(1 downto 0);
 i : in boolean_vector(3 downto 0);
 o : out boolean
);
 end entity;

 architecture beh of mux_41 is
 begin
 process begin
 case c is
 when false & false => o <= i(0);
 when false & true => o <= i(1);
 when true & false => o <= i(2);
 when true & true => o <= i(3);
 end case;

 wait;
 end process;
 end architecture;

o

i(0)
i(1)
i(2)
i(3)

c(1)

c(0)

Behavioral Modeling
Introduction

Example: Multiplexer

When we initially introduced processes, we did not really motivate the wait statement that we always put at the end of their
bodies. We just stated that it is required for the process to terminate.

HWMod
WS24

Beh. Mod.
Introduction

About

Example

Sensitivity

Process Simulation

Variables

Remarks

Example: Multiplexer

 entity mux41 is
 port (
 c : in boolean_vector(1 downto 0);
 i : in boolean_vector(3 downto 0);
 o : out boolean
);
 end entity;

 architecture beh of mux_41 is
 begin
 process begin
 case c is
 when false & false => o <= i(0);
 when false & true => o <= i(1);
 when true & false => o <= i(2);
 when true & true => o <= i(3);
 end case;

 wait;
 end process;
 end architecture;

o

i(0)
i(1)
i(2)
i(3)

c(1)

c(0)

⇒ “Termination” of circuit?!

3

Example: Multiplexer

 entity mux41 is
 port (
 c : in boolean_vector(1 downto 0);
 i : in boolean_vector(3 downto 0);
 o : out boolean
);
 end entity;

 architecture beh of mux_41 is
 begin
 process begin
 case c is
 when false & false => o <= i(0);
 when false & true => o <= i(1);
 when true & false => o <= i(2);
 when true & true => o <= i(3);
 end case;

 wait;
 end process;
 end architecture;

o

i(0)
i(1)
i(2)
i(3)

c(1)

c(0)

⇒ “Termination” of circuit?!

Behavioral Modeling
Introduction

Example: Multiplexer

However, while this might be sensible for a sequential piece of code executed during simulation, it hardly makes sense for
describing a circuit. After all, exactly what hardware behavior is this supposed to model?

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered

Instead: Model circuit as “sequential routine” for input changes
⇒ wait on sensitivity_list

Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

4

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered

Instead: Model circuit as “sequential routine” for input changes
⇒ wait on sensitivity_list

Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

Behavioral Modeling
Sensitivity

wait on Statement

While termination is something a program might do, a circuit will always be active unless its power is cut. This is why a
process with the simple wait statement we used so far is not synthesizable nd should therefore not be used to describe
hardware.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list

Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

4

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list

Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

Behavioral Modeling
Sensitivity

wait on Statement

If we think about our multiplexer, it simply maps its inputs i and c to its output o. Hence, whenever an input changes the
circuit’s output might change as well. In behavioral modeling we capture this as a sequential routine that is applied whenever
an input changes. However, note that this is just an abstraction for describing a concurrent circuit! In reality there is neither a
routine nor a sequential execution of our model.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list

Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

4

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list

Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

Behavioral Modeling
Sensitivity

wait on Statement

The way we can capture this sensitivity o certain signals is using the wait on instead of the wait statement. This statement
contains a, so-called, sensitivity list f signals to which the respective process is sensitive. Note that we refer to a process
being sensitive to a signal when it reads it somewhere inside its body.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list
Last element in synthesizable process (like wait)

Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

4

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list
Last element in synthesizable process (like wait)

Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

Behavioral Modeling
Sensitivity

wait on Statement

In our code we simply replace the single wait statement we had at the end processes before by a fitting wait on state-
ment.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list
Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement

Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

4

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list
Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement

Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

Behavioral Modeling
Sensitivity

wait on Statement

Thinking about a circuit, we can picture this statement to a check whether all inputs, and thus also the outputs, of the
described circuit are stable. Only when an input changes, the output might change, which is modeled by the statements
inside the process above the wait statement. In a simulation, this is achieved by letting the wait on statement suspend the
process.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list
Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

4

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list
Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

Behavioral Modeling
Sensitivity

wait on Statement

The process is only woken up again when a signal on the sensitivity list changes. Once this happens, the process is executed
again from top to bottom. We can thus sort of think about a process as the mentioned routine for reacting to input changes.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list
Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

4

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list
Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

Behavioral Modeling
Sensitivity

wait on Statement

Let us have a look at the multiplexer process from the previous slide, with this change in-place. The process only drives the
signal o, depending on the signals i and c. We can think of these two signals as being the inputs of the process. Therefore,
our process is sensitive to changes of these two signals.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list
Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

“Process inputs”

Sensitivity List

4

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list
Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

“Process inputs”

Sensitivity List

Behavioral Modeling
Sensitivity

wait on Statement

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list
Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

“Process inputs”

Sensitivity List

4

wait on Statement 202

“Termination” of circuit not sensible
Stays active as long as powered
Instead: Model circuit as “sequential routine” for input changes

⇒ wait on sensitivity_list
Last element in synthesizable process (like wait)
Process suspended when reaching wait on statement
Starts from top when signal in list changes

 process begin
 case c is
 when false & false => o <= i(0);
 [...]
 end case;
 wait on c, i;
 end process;

“Process inputs”

Sensitivity List

Behavioral Modeling
Sensitivity

wait on Statement

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

a

b

s

c

5

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

a

b

s

c

Behavioral Modeling
Sensitivity

Example: Half-adder

With the sensitivity list describing to which signals the circuit modelled by a process is sensitive to, its completeness is of
course paramount. We will now demonstrate this at the hand of an example.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

a

b

s

c

5

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

a

b

s

c

Behavioral Modeling
Sensitivity

Example: Half-adder

Consider the half-adder shown on the slide, featuring two inputs a and b, and two outputs s and c. The respective entity
does therefore contain exactly these four ports. The circuit itself is quite simple with each output being generated from the
two inputs via a single gate.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

 architecture arch1 of ha is
 begin
 process begin
 s <= a xor b;
 c <= a and b;
 wait on a, b;
 end process;
 end architecture;

a

b

s

c

5

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

 architecture arch1 of ha is
 begin
 process begin
 s <= a xor b;
 c <= a and b;
 wait on a, b;
 end process;
 end architecture;

a

b

s

c

Behavioral Modeling
Sensitivity

Example: Half-adder

We can write a behavioral model of the half-adder as shown on the slide, consisting of a single process that drives the two
outputs.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

 architecture arch1 of ha is
 begin
 process begin
 s <= a xor b;
 c <= a and b;
 wait on a, b;
 end process;
 end architecture;

a

b

s

c

5

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

 architecture arch1 of ha is
 begin
 process begin
 s <= a xor b;
 c <= a and b;
 wait on a, b;
 end process;
 end architecture;

a

b

s

c

Behavioral Modeling
Sensitivity

Example: Half-adder

Since the behavior modeled by this process is sensitive to both a and b, the process ends with a wait on statement
sensitive to these two signals.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

 architecture arch1 of ha is
 begin
 process begin
 s <= a xor b;
 c <= a and b;
 wait on a, b;
 end process;
 end architecture;

a

b

s

c

5

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

 architecture arch1 of ha is
 begin
 process begin
 s <= a xor b;
 c <= a and b;
 wait on a, b;
 end process;
 end architecture;

a

b

s

c

Behavioral Modeling
Sensitivity

Example: Half-adder

Consider the result of simulating this implementation, where we called the outputs c1 and s1 for later comparison. We can
observe a sequence of inputs and the respective sequence of outputs generated by our circuit. For the simple half adder,
with only four possible combinations of inputs, we can immediately observe that our implementation is correct.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

 architecture arch2 of ha is
 begin
 process begin
 s <= a xor b;
 c <= a and b;
 wait on a;
 end process;
 end architecture;

a

b

s

c

5

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

 architecture arch2 of ha is
 begin
 process begin
 s <= a xor b;
 c <= a and b;
 wait on a;
 end process;
 end architecture;

a

b

s

c

Behavioral Modeling
Sensitivity

Example: Half-adder

However, what if we forgot a signal, in the example on the slide b, when writing the sensitivity list?

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

 architecture arch2 of ha is
 begin
 process begin
 s <= a xor b;
 c <= a and b;
 wait on a;
 end process;
 end architecture;

a

b

s

c

5

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

 architecture arch2 of ha is
 begin
 process begin
 s <= a xor b;
 c <= a and b;
 wait on a;
 end process;
 end architecture;

a

b

s

c

Behavioral Modeling
Sensitivity

Example: Half-adder

If we simulate this modified implementation using the same input sequence as before, and look at the output traces c2 and
s2, we can observe that this implementation is not correct when simulated! Of course, this deviation from the desired
circuit has its origin in the fact that our model is not sensitive to changes of the input b, although its output might change due
a change of b only.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

 architecture arch2 of ha is
 begin
 process begin
 s <= a xor b;
 c <= a and b;
 wait on a;
 end process;
 end architecture;

a

b

s

c

5

Example: Half-adder

Completeness of sensitivity list matters!

 entity ha is
 port (
 a, b : in boolean;
 s, c : out boolean
);
 end entity;

 architecture arch2 of ha is
 begin
 process begin
 s <= a xor b;
 c <= a and b;
 wait on a;
 end process;
 end architecture;

a

b

s

c

Behavioral Modeling
Sensitivity

Example: Half-adder

In conclusion, always keep in mind to what signals your processes should be sensitive to and write your sensitivity accord-
ingly.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be

error-prone
hard to maintain

⇒ all keyword for sensitivity lists

6

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be

error-prone
hard to maintain

⇒ all keyword for sensitivity lists

Behavioral Modeling
Sensitivity

Sensitivity List

On the previous slides we have seen how we can replace the wait statement at the end of a process by a wait on

statement. And while this can model the behavior we actually want, there exists an equivalent alternative to the wait on

that is usually preferred. We will now look at this alternative.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be

error-prone
hard to maintain

⇒ all keyword for sensitivity lists

6

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be

error-prone
hard to maintain

⇒ all keyword for sensitivity lists

Behavioral Modeling
Sensitivity

Sensitivity List

Instead of writing an explicit wait on statement with a sensitivity list as the last element of a process, we can also define
the sensitivity list as part of the process declaration itself.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be

error-prone
hard to maintain

⇒ all keyword for sensitivity lists

6

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be

error-prone
hard to maintain

⇒ all keyword for sensitivity lists

Behavioral Modeling
Sensitivity

Sensitivity List

The code snippet shown on the slide demonstrates this for the half-adder implementation you just saw.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

⇔

No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be

error-prone
hard to maintain

⇒ all keyword for sensitivity lists

6

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

⇔

No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be

error-prone
hard to maintain

⇒ all keyword for sensitivity lists

Behavioral Modeling
Sensitivity

Sensitivity List

This implicitly expresses the respective wait on statement implicitly, resulting in sensitivity lists in process declarations and
dedicated wait on statements being equivalent to each other.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

⇔
No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be

error-prone
hard to maintain

⇒ all keyword for sensitivity lists

6

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

⇔
No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be

error-prone
hard to maintain

⇒ all keyword for sensitivity lists

Behavioral Modeling
Sensitivity

Sensitivity List

However, we want to point out that there is a consequence of using a sensitivity list in a process declaration and the explicit
wait on. In particular, the standard states that processes with a sensitivity list must not contain any explicit wait state-
ments.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

⇔
No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be

error-prone
hard to maintain

⇒ all keyword for sensitivity lists

6

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

⇔
No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be

error-prone
hard to maintain

⇒ all keyword for sensitivity lists

Behavioral Modeling
Sensitivity

Sensitivity List

However, before that let us briefly discuss some properties of sensitivity lists.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

⇔
No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be
error-prone

hard to maintain
⇒ all keyword for sensitivity lists

6

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

⇔
No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be
error-prone

hard to maintain
⇒ all keyword for sensitivity lists

Behavioral Modeling
Sensitivity

Sensitivity List

Think about a circuit with many inputs that is so complex that you have o split it into many multiple processes in order to keep
your code readable and maintainable. Obviously, creating sensitivity lists for all of them can be quite error-prone, especially
if there are many sensitivities.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

⇔
No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be
error-prone
hard to maintain

⇒ all keyword for sensitivity lists

6

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

⇔
No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be
error-prone
hard to maintain

⇒ all keyword for sensitivity lists

Behavioral Modeling
Sensitivity

Sensitivity List

Furthermore, the maintainability of sensitivity lists is also not particularly good. Whenever you rename a signal, you have to
rename it in all sensitivity lists as well.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

⇔
No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be
error-prone
hard to maintain

⇒ all keyword for sensitivity lists

6

Sensitivity List 202

Use sensitivity list in process declaration
Implicit wait on ⇒ semantically equivalent

 process (a, b)
 begin
 [...]
 end process;

 process
 begin
 [...]
 wait on a, b;
 end process;

⇔
No wait statements in process (sim. only)

Explicit sensitivity list for combinational logic can be
error-prone
hard to maintain

⇒ all keyword for sensitivity lists

Behavioral Modeling
Sensitivity

Sensitivity List

As a remedy the VHDL-2008 standard introduced the all keyword for sensitivity lists. We will discuss it on the next slide.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Sensitivity Lists Using all 202

Sensitivity list is constructed at compile-time
Consider all statements inside the process
Apply rules to determine sensitive signals

Caveat: Some circuits should not change for any input change

Synchronous logic only sensitive to clock and reset
More on that in chapter II

Rule of thumb: Use all for comb. processes

7

Sensitivity Lists Using all 202

Sensitivity list is constructed at compile-time
Consider all statements inside the process
Apply rules to determine sensitive signals

Caveat: Some circuits should not change for any input change

Synchronous logic only sensitive to clock and reset
More on that in chapter II

Rule of thumb: Use all for comb. processes

Behavioral Modeling
Sensitivity

Sensitivity Lists Using all

By using the all keyword, the tools determine all signal sensitivities automatically. This is done by recursively considering
all statements in a process and applying the rules defined in the standard to determine the sensitivities of all statements. The
resulting sensitivity list is then the union of all these sensitivities.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Sensitivity Lists Using all 202

Sensitivity list is constructed at compile-time
Consider all statements inside the process
Apply rules to determine sensitive signals

 process (all)
 begin
 [...]
 end process;

 process (c, i)
 begin
 [...]
 end process;

⇔

Caveat: Some circuits should not change for any input change

Synchronous logic only sensitive to clock and reset
More on that in chapter II

Rule of thumb: Use all for comb. processes

7

Sensitivity Lists Using all 202

Sensitivity list is constructed at compile-time
Consider all statements inside the process
Apply rules to determine sensitive signals

 process (all)
 begin
 [...]
 end process;

 process (c, i)
 begin
 [...]
 end process;

⇔

Caveat: Some circuits should not change for any input change

Synchronous logic only sensitive to clock and reset
More on that in chapter II

Rule of thumb: Use all for comb. processes

Behavioral Modeling
Sensitivity

Sensitivity Lists Using all

On the slide you are shown how using this keyword would lookk like for the half-adder circuit and that this is equivalent to the
sensitivity list we saw on the previous slide. However, if the tools are able to automatically determine all sensitivities, why
shouldn’t we always use this?

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Sensitivity Lists Using all 202

Sensitivity list is constructed at compile-time
Consider all statements inside the process
Apply rules to determine sensitive signals

 process (all)
 begin
 [...]
 end process;

 process (c, i)
 begin
 [...]
 end process;

⇔
Caveat: Some circuits should not change for any input change

Synchronous logic only sensitive to clock and reset
More on that in chapter II

Rule of thumb: Use all for comb. processes

7

Sensitivity Lists Using all 202

Sensitivity list is constructed at compile-time
Consider all statements inside the process
Apply rules to determine sensitive signals

 process (all)
 begin
 [...]
 end process;

 process (c, i)
 begin
 [...]
 end process;

⇔
Caveat: Some circuits should not change for any input change

Synchronous logic only sensitive to clock and reset
More on that in chapter II

Rule of thumb: Use all for comb. processes

Behavioral Modeling
Sensitivity

Sensitivity Lists Using all

Well, there is a caveat with using the all keyword, as not all ircuits should react to any nput change.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Sensitivity Lists Using all 202

Sensitivity list is constructed at compile-time
Consider all statements inside the process
Apply rules to determine sensitive signals

 process (all)
 begin
 [...]
 end process;

 process (c, i)
 begin
 [...]
 end process;

⇔
Caveat: Some circuits should not change for any input change

Synchronous logic only sensitive to clock and reset
More on that in chapter II

Rule of thumb: Use all for comb. processes

7

Sensitivity Lists Using all 202

Sensitivity list is constructed at compile-time
Consider all statements inside the process
Apply rules to determine sensitive signals

 process (all)
 begin
 [...]
 end process;

 process (c, i)
 begin
 [...]
 end process;

⇔
Caveat: Some circuits should not change for any input change

Synchronous logic only sensitive to clock and reset
More on that in chapter II

Rule of thumb: Use all for comb. processes

Behavioral Modeling
Sensitivity

Sensitivity Lists Using all

For example, synchronous circuits are only supposed to change when their clock or reset input changes. Changes of other
inputs should never lead to a changed output on their own. We will elaborate further on this in the next chapter where we are
concerned with synchronous logic.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

wait on

Sensitivity List

all keyword

Process Simulation

Variables

Remarks

Sensitivity Lists Using all 202

Sensitivity list is constructed at compile-time
Consider all statements inside the process
Apply rules to determine sensitive signals

 process (all)
 begin
 [...]
 end process;

 process (c, i)
 begin
 [...]
 end process;

⇔
Caveat: Some circuits should not change for any input change

Synchronous logic only sensitive to clock and reset
More on that in chapter II

Rule of thumb: Use all for comb. processes

7

Sensitivity Lists Using all 202

Sensitivity list is constructed at compile-time
Consider all statements inside the process
Apply rules to determine sensitive signals

 process (all)
 begin
 [...]
 end process;

 process (c, i)
 begin
 [...]
 end process;

⇔
Caveat: Some circuits should not change for any input change

Synchronous logic only sensitive to clock and reset
More on that in chapter II

Rule of thumb: Use all for comb. processes

Behavioral Modeling
Sensitivity

Sensitivity Lists Using all

For now you can simply remember the rule of thumb that you can use the all keyword whenever you write a process that
exclusively describes combinational logic.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Process Simulation

Process is a sequential description
Hardware is highly concurrent

What does the simulator do?

⇒ Process simulation logic
fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

8

Process Simulation

Process is a sequential description
Hardware is highly concurrent

What does the simulator do?

⇒ Process simulation logic
fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

Behavioral Modeling
Process Simulation

Process Simulation

If you recall the very first lecture, you might ask yourself what we mean when we state that behavioral modeling allows
sequential description of circuits. After all, the hardware we model is still highly concurrent.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Process Simulation

Process is a sequential description
Hardware is highly concurrent
What does the simulator do?

⇒ Process simulation logic
fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

8

Process Simulation

Process is a sequential description
Hardware is highly concurrent
What does the simulator do?

⇒ Process simulation logic
fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

Behavioral Modeling
Process Simulation

Process Simulation

The thing is that while processes do actually look a lot like sequential programs, the tools do not interpret them this way.
Understanding what the tools actually do, given a process, is key when describing the behavior of hardware. We will now
address how processes are simulated such that they mimic the behavior to concurrent hardware, leaving the treatment of
synthesis for a future lecture.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Process Simulation

Process is a sequential description
Hardware is highly concurrent
What does the simulator do?

⇒ Process simulation logic
fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

8

Process Simulation

Process is a sequential description
Hardware is highly concurrent
What does the simulator do?

⇒ Process simulation logic
fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

Behavioral Modeling
Process Simulation

Process Simulation

The flowchart on the slide captures the essential process simulation logic used by a simulator. Green boxes express an
action taken by the simulator, blue diamonds mark decisions. At such decision nodes the out-going edges are annotated
with the respective decision outcome. Since this process simulation logic is quite intricate, we will break it down using an
example during the next few slides.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

false
false
false

false → true
false
false

true
false
false

true
false → true
false

true
true
false → false

true
true
false

b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

false
false
false

false → true
false
false

true
false
false

true
false → true
false

true
true
false → false

true
true
false

b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

Let us consider the example architecture shown on the slide. It comprises three signals a, b and c and a process that drives
b and c.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

false
false
false

false → true
false
false

true
false
false

true
false → true
false

true
true
false → false

true
true
false

b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

false
false
false

false → true
false
false

true
false
false

true
false → true
false

true
true
false → false

true
true
false

b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

If you apply what you heard before, you can immediately observe that the process is sensitive to a and b.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

false
false
false

false → true
false
false

true
false
false

true
false → true
false

true
true
false → false

true
true
false

b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

false
false
false

false → true
false
false

true
false
false

true
false → true
false

true
true
false → false

true
true
false

b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

We will now go through the simulation of the architecture’s process step-by-step, using the process simulation logic shown in
the flow-chart.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

We assume that all signals are initially false and that the process is executed for the first time. Note that we will keep track
of the current values of all signals in the highlighted area below the flow chart.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

Input a changes

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

Input a changes

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

Our example starts with an assumed transition of signal a from false to true. The simulator knows that the process is
sensitive to a and thus that it is to be executed.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

Fetch first statement of the process body

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

Fetch first statement of the process body

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

In a first step, the simulator will fetch the first statement of the process body. In our case that’s the assignment of a to b. Note
that we highlight the current statement, as well as the current part of the flowchart we consider.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

Neither wait nor end process

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

Neither wait nor end process

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

Next, based on the fetched statement the simulator has to decide how to proceed. Since the statement is a signal assignment,
and thus neither a wait statement nor the end of the process, it will continue to the register statement tate.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

Register statement for future execution

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

Register statement for future execution

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

In this state, the simulator will store the fetched statement for future xecution. It must be stressed that the assignment does
not take place immediately. As we will see later, this is required to mimic the concurrent execution of a process.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

Register statement for future execution

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

Register statement for future execution

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

Note that we will track all registered statements below the flowchart.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

Fetch the next statement

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

Fetch the next statement

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

After its registration, the simulator is for now done with this statement and thus continues by fetching the next one. This is the
assignment of b to c.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

Continue until wait nor end process encountered

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

Continue until wait nor end process encountered

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

This brings us back to where we started with the first statement where the simulator will again check if the fetched statement
is either a wait statement or the end of the process.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

Continue until wait nor end process encountered

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

Continue until wait nor end process encountered

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

However, since the statement in line 7 is neither, the simulator once again continues by registering the statement without
actually performing the assignment. Note how the value of b is still false because the previous assignment to b was not yet
executed.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

Continue until wait nor end process encountered

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

Continue until wait nor end process encountered

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

The simulator then continues by fetching the next statement, which is wait on.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

wait statement encountered

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

wait statement encountered

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

With this statement being a wait statement, the simulation of the process transitions to the state where the registered
statements are executed.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

Now execute all registered statements (in zero simulation time)

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

Now execute all registered statements (in zero simulation time)

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

First, the registered assignment of a to b is executed. Since a was true during the registration, b will become true as
well.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

Now execute all registered statements (in zero simulation time)

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

Now execute all registered statements (in zero simulation time)

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

Then, the second registered statement will be executed. This is the assignment of b to c. However, as b was false when
this assignment got registered, c keeps its value of false.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

Change of b triggered wait on a,b

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

Change of b triggered wait on a,b

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

Next, the simulator checks if the execution of the registered assignments has triggered the currently fetched wait statement.
In this case it is thus checked whether b is on the sensitivity list.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

Fetch next statement

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

Fetch next statement

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

Since this is the case, the next statement is fetched and the process is simulated again with the changed values.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Example: Process Simulation

End of process ⇒ Repeat

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

9

Example: Process Simulation

End of process ⇒ Repeat

 architecture beh of abc is
 signal a, b, c : boolean;
 begin
 process
 begin
 b <= a;
 c <= b;
 wait on a, b;
 end process;

 end architecture;

fetch 1st

statement

is wait?

is end of
process?

execute
registered
statements

register
statement

wait trig-
gered?

wait for
next event

fetch next
statement

no

yes
yes

no

yes
no

fetch 1st

statement

is wait?

no

is end of
process?

no

is wait?

no

is end of
process?

yes

register
statement

fetch next
statement

is wait?
yesexecute

registered
statements

wait trig-
gered?

yes

a:
b:
c:

false

false

false

false → true

false

false

true

false

false

true

false → true

false

true

true

false → false

true

true

false

Registered: b <= true;

c <= false;

c <= false;

Behavioral Modeling
Process Simulation

Example: Process Simulation

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Observations: Process Simulation

Observation I

Statements are not executed immediately, but rather gathered until a wait is
encountered. Then they are all executed without consuming simulation time.
This mimics a concurrent execution.

Observation II

Without b in the sensitivity list in the example, c would end remaining false
until the next change of a ⇒ proper sensitivity list paramount.

Observation III

A process without (implicit) wait statement loops endlessly.

10

Observations: Process Simulation

Observation I

Statements are not executed immediately, but rather gathered until a wait is
encountered. Then they are all executed without consuming simulation time.
This mimics a concurrent execution.

Observation II

Without b in the sensitivity list in the example, c would end remaining false
until the next change of a ⇒ proper sensitivity list paramount.

Observation III

A process without (implicit) wait statement loops endlessly.

Behavioral Modeling
Process Simulation

Observations: Process Simulation

Let us take a moment to express some observations we were able make during the example process simulation we just
saw.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Observations: Process Simulation

Observation I

Statements are not executed immediately, but rather gathered until a wait is
encountered. Then they are all executed without consuming simulation time.
This mimics a concurrent execution.

Observation II

Without b in the sensitivity list in the example, c would end remaining false
until the next change of a ⇒ proper sensitivity list paramount.

Observation III

A process without (implicit) wait statement loops endlessly.

10

Observations: Process Simulation

Observation I

Statements are not executed immediately, but rather gathered until a wait is
encountered. Then they are all executed without consuming simulation time.
This mimics a concurrent execution.

Observation II

Without b in the sensitivity list in the example, c would end remaining false
until the next change of a ⇒ proper sensitivity list paramount.

Observation III

A process without (implicit) wait statement loops endlessly.

Behavioral Modeling
Process Simulation

Observations: Process Simulation

The first thing we could notice was that statements are not executed immediately but rather registered or future execution.
Only when some wait statement is encountered, the registered statements get executed. Admittedly, this seems quite strange.
So why is that? Well, the thing is that a process must ultimately be capable to describe a concurrent circuit. Such a circuit
does not operate sequentially as suggested by the process. However, the primary problem of a sequential description are
actually side effects. Not executing signal assignments mitigates such side effects, as the states of all signals throughout the
process execution will only change at the simulation time and thus seemingly concurrent to another. Next, as motivated
before, a proper sensitivity list is paramount. We could observe that during this example. If b was not on the sensitivity list the
process would have become suspended after encountering the wait on statement for the first time, leading to a behavior
that will most likely strongly deviate from the one the designer had in mind.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Example

Observations

Variables

Remarks

Observations: Process Simulation

Observation I

Statements are not executed immediately, but rather gathered until a wait is
encountered. Then they are all executed without consuming simulation time.
This mimics a concurrent execution.

Observation II

Without b in the sensitivity list in the example, c would end remaining false
until the next change of a ⇒ proper sensitivity list paramount.

Observation III

A process without (implicit) wait statement loops endlessly.

10

Observations: Process Simulation

Observation I

Statements are not executed immediately, but rather gathered until a wait is
encountered. Then they are all executed without consuming simulation time.
This mimics a concurrent execution.

Observation II

Without b in the sensitivity list in the example, c would end remaining false
until the next change of a ⇒ proper sensitivity list paramount.

Observation III

A process without (implicit) wait statement loops endlessly.

Behavioral Modeling
Process Simulation

Observations: Process Simulation

Finally, looking at the flowchart and knowing what every node inside it means clearly tells us that a process without a wait
statement will loop endlessly. Keep that in mind, as wait statements are something beginners tend to forget.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Variables

Signal assignments executed at wait

⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect
Not in sensitivity list
Name and reuse intermediate expressions

Example
 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

11

Variables

Signal assignments executed at wait

⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect
Not in sensitivity list
Name and reuse intermediate expressions

Example
 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

Behavioral Modeling
Variables

Variables

During the previous few slides we could observe that signal assignments only take an effect at wait statements. However,
sometimes we would like an assignment to behave like the ones we are familiar with from typical software programming.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Variables

Signal assignments executed at wait
⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect
Not in sensitivity list
Name and reuse intermediate expressions

Example
 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

11

Variables

Signal assignments executed at wait
⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect
Not in sensitivity list
Name and reuse intermediate expressions

Example
 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

Behavioral Modeling
Variables

Variables

This is why VHDL also comes with variables in addition to signals.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Variables

Signal assignments executed at wait
⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect
Not in sensitivity list
Name and reuse intermediate expressions

Example
 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

11

Variables

Signal assignments executed at wait
⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect
Not in sensitivity list
Name and reuse intermediate expressions

Example
 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

Behavioral Modeling
Variables

Variables

Such variables can be declared in the declarative parts of processes and some other VHDL constructs, but not within
architectures. As shown by the example on the slide, syntactically a variable declaration is, except for the variable keyword,
equivalent to a signal declaration.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Variables

Signal assignments executed at wait
⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect

Not in sensitivity list
Name and reuse intermediate expressions

Example
 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

11

Variables

Signal assignments executed at wait
⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect

Not in sensitivity list
Name and reuse intermediate expressions

Example
 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

Behavioral Modeling
Variables

Variables

As alread foreshadowed, the key difference between variables and signals is that assignments to variables happen immedi-
ately

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Variables

Signal assignments executed at wait
⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect
Not in sensitivity list

Name and reuse intermediate expressions
Example

 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

11

Variables

Signal assignments executed at wait
⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect
Not in sensitivity list

Name and reuse intermediate expressions
Example

 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

Behavioral Modeling
Variables

Variables

Furthermore, variables can never be on the sensitivity list of a process. If we recall that the elements of the sensitivity list
do to some extent correspond to the inputs of the sub-circuit described by the process, this makes sense as variables are
declared within a process and thus cannot act as inputs to the respective circuit.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Variables

Signal assignments executed at wait
⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect
Not in sensitivity list
Name and reuse intermediate expressions

Example
 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

11

Variables

Signal assignments executed at wait
⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect
Not in sensitivity list
Name and reuse intermediate expressions

Example
 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

Behavioral Modeling
Variables

Variables

In general, variables allows referring to intermediate expressions and results throughout a process body, thus allowing to
reuse such values. Variables can thus lead to concise and maintainable code.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Variables

Signal assignments executed at wait
⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect
Not in sensitivity list
Name and reuse intermediate expressions

Example
 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

11

Variables

Signal assignments executed at wait
⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect
Not in sensitivity list
Name and reuse intermediate expressions

Example
 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

Behavioral Modeling
Variables

Variables

This is illustrated by the example of a wide AND gate which determines the bitwise AND of the elements of a vector.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Variables

Signal assignments executed at wait
⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect
Not in sensitivity list
Name and reuse intermediate expressions

Example
 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

11

Variables

Signal assignments executed at wait
⇒ Variables

In process declarative part
variable x : integer := 10;

Assignments (:=) have immediate effect
Not in sensitivity list
Name and reuse intermediate expressions

Example
 entity wide_and is
 port(
 i : in std_ulogic_vector;
 o : out std_ulogic
);

 process (all) is
 variable result : std_ulogic := ’1’;
 begin
 for x in i’range loop
 result := result and i(x);
 end loop;
 o <= result;
 end process;

Behavioral Modeling
Variables

Variables

In the example we declare a variable result holds the intermediate results of a loop that ANDs all elements of the given
input vector.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1

2

Iteration # signal values at end

1

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1

2

Iteration # signal values at end

1

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

Let us now consider an example to highlight the difference between variables and signals in processes. While the example
is a bit constructed, it is very illustrative.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1

2

Iteration # signal values at end

1

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1

2

Iteration # signal values at end

1

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

Consider the process that combines the entity inputs q, b and c to drive two internal signals w and z. Note that we have
ommitted the entity declaration here as it is not vital to the example. The signals x and y will be used to store intermediate
values.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1

2

Iteration # signal values at end

1

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1

2

Iteration # signal values at end

1

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

Initially, all signals are assumed to be high, with c transitioning to low. The process is assumed to have been suspended
before.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1

2

Iteration # signal values at end

1

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1

2

Iteration # signal values at end

1

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

As the process uses the all keyword in its sensitivity list, and reads c, the transition of this signal will lead to its execution.
You can now simply apply what you learned about the semantics of signal assignments in processes to determine the values
of the architecture’s four signals after the process execution.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’

2

Iteration # signal values at end

1

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’

2

Iteration # signal values at end

1

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

First, a will be assigned to x, which will thus be set to ’1’. However, note that we do not explicitly keep track of registered
statements, but rather let later assignments override previous ones. This will become clear shortly.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’1’

2

Iteration # signal values at end

1

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’1’

2

Iteration # signal values at end

1

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

Next, b and thus ’1’ is assigned to y.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’1’
z=’1’

2

Iteration # signal values at end

1

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’1’
z=’1’

2

Iteration # signal values at end

1

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

Then, z is set to the logical AND of x and y.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’

2

Iteration # signal values at end

1

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’

2

Iteration # signal values at end

1

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

Now something interesting happens. c is assigned to y, overriding the previous assignment to y.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2

Iteration # signal values at end

1

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2

Iteration # signal values at end

1

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

Finally, w is assigned the logical AND of x and y. Note that since the assignments have not yet taken place as there was no
wait statement, w will become ’1’. Now, since the process is sensitive to y, which changed its value, the process will trigger
again.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

The values of the signals after this second iteration are shown on the slide. In case you have doubts about some values,
you can simply determine them step-by-step as we did in the first iteration. Since none of the signals to which the process is
sensitive to changed in this second iteration, the process will again be suspended.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

Let us now move our attention to a slightly modified version of this process.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

Instead of signals for the intermediate values x and y, corresponding variables are declared and used within the process.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

As before, let us now consider the effects the statements inside the process body have on the signals step-by-step.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1
x=’1’, y=’1’

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1
x=’1’, y=’1’

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

First, the two variables x and y are assigned a respectively b. Since variable assignments take place immediately, both
variables will from now on hold the value ’1’.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1
x=’1’, y=’1’
z=’1’

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1
x=’1’, y=’1’
z=’1’

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

As before, z is now assigned the value ’1’ as both operands of the AND are high.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

Now the variable y is aassigned the value of c. Since this assignment takes place immediately, and since c is ’0’, y will from
now on be low. This is in contrast to before we y was ’1’ during the whole process execution since the signal assignments
were only registered but did not take place until the final implicit wait on statement.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’0’

2

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’0’

2

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

As a result, the value of w ends up being ’0’ rather than ’1’ as was the case before.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’0’

2 -

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’0’

2 -

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

Finally, since no signal to which the process is sensitive to changed, the process will be suspended after the first iteration.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’0’

2 -

Not the same circuit!

12

Example: Variables vs Signals

 architecture sig of app is
 signal w, x, y, z : std_ulogic;
 begin
 process (all) begin
 x <= a;
 y <= b;
 z <= x and y;
 y <= c;
 w <= x and y;

 end process;
 end architecture;

 architecture var of app is
 signal w, z : std_ulogic;
 begin
 process (all) is
 variable x, y : std_ulogic;
 begin
 x := a;
 y := b;
 z <= x and y;

 y := c;
 w <= x and y;
 end process;
 end architecture;

Initial Values: A=B=C=W=X=Y=Z=’1’, C=’1’→’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’1’

2
w=’0’, x=’1’
y=’0’, z=’0’

Iteration # signal values at end

1
x=’1’, y=’0’
z=’1’, w=’0’

2 -

Not the same circuit!

Behavioral Modeling
Variables

Example: Variables vs Signals

It should be evident by now that the two processes do not describe the same circuit.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Variables vs Signals (Cont’d)

⇒ Use of variable and signal not equivalent!

A
W

C
W

Z

Z

B

Signals

A
W

C
W

Z

B
Z

Variables

13

Variables vs Signals (Cont’d)

⇒ Use of variable and signal not equivalent!

A
W

C
W

Z

Z

B

Signals

A
W

C
W

Z

B
Z

Variables

Behavioral Modeling
Variables

Variables vs Signals (Cont’d)

To further illustrate that the two processes from the previous example do not model the same design, the two images on this
slide show the resulting circuits when running the two versions through a synthesis tool.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Example

Remarks

Variables vs Signals (Cont’d)

⇒ Use of variable and signal not equivalent!

A
W

C
W

Z

Z

B

Signals

A
W

C
W

Z

B
Z

Variables

13

Variables vs Signals (Cont’d)

⇒ Use of variable and signal not equivalent!

A
W

C
W

Z

Z

B

Signals

A
W

C
W

Z

B
Z

Variables

Behavioral Modeling
Variables

Variables vs Signals (Cont’d)

Note how the code using signals results in a circuit that does not use the input B.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Remarks

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process

Examples: MUX41, halfadder, wide AND-gate
The other direction is not true (e.g., sync. logic)

Arbitrary many processes possible

Executed concurrently
Order of actual execution undefined ⇒ do not rely on it

14

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process

Examples: MUX41, halfadder, wide AND-gate
The other direction is not true (e.g., sync. logic)

Arbitrary many processes possible

Executed concurrently
Order of actual execution undefined ⇒ do not rely on it

Behavioral Modeling
Remarks

Remarks

Finally, we would like to end this lecture with a few remarks about behavioral modeling.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Remarks

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process

Examples: MUX41, halfadder, wide AND-gate
The other direction is not true (e.g., sync. logic)

Arbitrary many processes possible

Executed concurrently
Order of actual execution undefined ⇒ do not rely on it

14

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process

Examples: MUX41, halfadder, wide AND-gate
The other direction is not true (e.g., sync. logic)

Arbitrary many processes possible

Executed concurrently
Order of actual execution undefined ⇒ do not rely on it

Behavioral Modeling
Remarks

Remarks

First, for the sake of completeness, now that we know all its elements it is about time to show you how a process is declared.
We did not do this so far as it is very similar to many declarations you saw already, and the sensitivity list would previously
have been confusing.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Remarks

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process

Examples: MUX41, halfadder, wide AND-gate
The other direction is not true (e.g., sync. logic)

Arbitrary many processes possible

Executed concurrently
Order of actual execution undefined ⇒ do not rely on it

14

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process

Examples: MUX41, halfadder, wide AND-gate
The other direction is not true (e.g., sync. logic)

Arbitrary many processes possible

Executed concurrently
Order of actual execution undefined ⇒ do not rely on it

Behavioral Modeling
Remarks

Remarks

Next, we want to stress that every concurrent signal assignment has an equivalent expression to be used inside a process.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Remarks

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process
Examples: MUX41, halfadder, wide AND-gate

The other direction is not true (e.g., sync. logic)
Arbitrary many processes possible

Executed concurrently
Order of actual execution undefined ⇒ do not rely on it

14

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process
Examples: MUX41, halfadder, wide AND-gate

The other direction is not true (e.g., sync. logic)
Arbitrary many processes possible

Executed concurrently
Order of actual execution undefined ⇒ do not rely on it

Behavioral Modeling
Remarks

Remarks

During this lecture we deliberately included some examples highlighting that, like the 4:1 multiplexer, or the half-adder which
you already knew from the entity-architecture lecture. Furthermore, we also showed you a behavioral model of a wide AND-
gate, which you previously encountered in the structural modeling lecture.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Remarks

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process
Examples: MUX41, halfadder, wide AND-gate
The other direction is not true (e.g., sync. logic)

Arbitrary many processes possible

Executed concurrently
Order of actual execution undefined ⇒ do not rely on it

14

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process
Examples: MUX41, halfadder, wide AND-gate
The other direction is not true (e.g., sync. logic)

Arbitrary many processes possible

Executed concurrently
Order of actual execution undefined ⇒ do not rely on it

Behavioral Modeling
Remarks

Remarks

However, note that the other direction is not true, meaning that there are circutis which can describe using behavioral mod-
eling but not using concurrent signal assignments. A particularly important class of such circuits is synchronous logic which
we will cover in-depth in future lectures.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Remarks

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process
Examples: MUX41, halfadder, wide AND-gate
The other direction is not true (e.g., sync. logic)

Arbitrary many processes possible

Executed concurrently
Order of actual execution undefined ⇒ do not rely on it

14

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process
Examples: MUX41, halfadder, wide AND-gate
The other direction is not true (e.g., sync. logic)

Arbitrary many processes possible

Executed concurrently
Order of actual execution undefined ⇒ do not rely on it

Behavioral Modeling
Remarks

Remarks

Finally, although we restricted ourselves to a single process for the purpose of keeping things short and educational, you can
in general use arbitrary many processes in an architecture.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Remarks

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process
Examples: MUX41, halfadder, wide AND-gate
The other direction is not true (e.g., sync. logic)

Arbitrary many processes possible
Executed concurrently

Order of actual execution undefined ⇒ do not rely on it

14

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process
Examples: MUX41, halfadder, wide AND-gate
The other direction is not true (e.g., sync. logic)

Arbitrary many processes possible
Executed concurrently

Order of actual execution undefined ⇒ do not rely on it

Behavioral Modeling
Remarks

Remarks

These processes are executed concurrently in the manner we saw during this lecture.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Remarks

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process
Examples: MUX41, halfadder, wide AND-gate
The other direction is not true (e.g., sync. logic)

Arbitrary many processes possible
Executed concurrently
Order of actual execution undefined ⇒ do not rely on it

14

Remarks 206

process declaration (simplified)
 [label] : process designator [(sensitivity_list)] [is]
 [declarative_part]
 begin
 [statement part] -- process body
 end process;

Every concurrent signal has an equivalent process
Examples: MUX41, halfadder, wide AND-gate
The other direction is not true (e.g., sync. logic)

Arbitrary many processes possible
Executed concurrently
Order of actual execution undefined ⇒ do not rely on it

Behavioral Modeling
Remarks

Remarks

However, be aware that the order in which processes are executed is not defined by the VHDL standard. Hence, you should
not rely on a particular order being used by a simulator.

HWMod
WS24

Beh. Mod.
Introduction

Sensitivity

Process Simulation

Variables

Remarks

Lecture Complete!

Modified: 2025-03-20, 14:05 (830283c)

Lecture Complete!

Thank you for listening! We recommend you to immediately take the self-check test in TUWEL, to see if you understood the
material presented in this lecture.

	Behavioral Modeling
	Introduction
	Sensitivity
	Process Simulation
	Variables
	Remarks

