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oo m Revolves around processes

m Must be synthesizable

m “single-use entity and architecture”

m Control flow statements and variables
m Sequential description

m Complements struct. modeling and concurrent assignments
m Ubiquitous in synchronous designs



Example: Multiplexer

HWMod 4 entity mux_41 is
WS25 5 port (
6 c : in std_ulogic_vector(l downto 0);
7 i : in std_ulogic_vector (3 downto 0);
8 o : out std_ulogic c(0)
9 )i
Example
¢ 10 end entity; c(l)
i(0)
i(1) .
i(2)
1i(3)



HWMod
WS25

Example

Example: Multiplexer

O © N O U A

12
13
14
15
16
17
18

entity mux_41 is

port (
c : in
i : in

o : out std_ulogic

)i
end entity;

architecture csa

begin
o <= i(0) when
i(1) when
i(2) when
i(3) when

end architecture;

of mux_41 1is

not c(l) and
not c(1l) and
c(l) and
c(l) and

std_ulogic_vector (1l downto
std_ulogic_vector (3 downto

0);
0);

else
else
else

Q

~

Q

w NP O = O
—_— — — —

S T e

o~ o~ o~ —~



Example: Multiplexer

HWMod 4 entity mux_41 is
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24 end architecture; 3
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m Use sensitivity list in process declaration
m Implicit wait on = semantically equivalent

process
process (a, b) begin

1
1
2 begin 2
3 e.) < ¢ L
T 4 wait on a, b;
4 end process;
5 end process;

Sensitivity List

m No wait statements in process (sim. only)

m Explicit sensitivity list for combinational logic can be
H error-prone
m hard to maintain

= all keyword for sensitivity lists
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m Sensitivity list is constructed at compile-time

m Consider all statements inside the process
m Apply rules to determine sensitive signals

all keyword

1 process (all) 1 process (c, 1)

2 begin 2 begin

3 [...] 3 [...]

4 end process; 4 end process;

m Caveat: Some circuits should not change for any input change

m Synchronous logic only sensitive to clock and reset
m More on that in chapter Il

m Rule of thumb: Use a11 for comb. processes
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architecture beh of abc is

signal a, b, c

begin
process
begin
b <= a;
c <= b;

wait on a, b;
end process;
end architecture;

boolean;

fetch 1%
statement

wait for
next event

fetch next

statement

a: false
b: false
Cc: false

execute
registered
statements

yes
. register

statement
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architecture beh of abc is

signal a, b, c

begin
process
begin
b <= a;
c <= b;

wait on a, b;
end process;
end architecture;

boolean;

fetch 1%
statement

i execute
m yes
n;?';f,';t ’ registered is wait? yes
J J statements

no

fetch next
statement

register
statement

a: true Registered: b <= true;
b: false
Cc: false
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Change of b triggered wait on a,b

fetch 1%
statement

1 architecture beh of abc is
2 signal a, b, c boolean;
3 begin

4 process

5 begin

6 b <= a;

7 c <= b;

8 wait on a, b;

9 end process;

10 end architecture;

a: true
b: true

c: false

wait for
next event

fetch next
statement

wait trig-
gered?

execute
registered
statements

register

Registered:

statement
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Observation |

Statements are not executed immediately, but rather gathered until a wait is
encountered. Then they are all executed without consuming simulation time.
This mimics a concurrent execution.

Observation Il

Without b in the sensitivity list in the example, ¢ would end remaining false
until the next change of a = proper sensitivity list paramount.

Observation Il

A process without (implicit) wait statement loops endlessly.
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B process declaration (simplified)
1 [label] : process designator [(sensitivity_list)] [is]
2 [declarative_part]
Remarks 3 begin

4 [statement part] —— process body
5 end process;

m Every concurrent signal has an equivalent process
m Examples: MUX41, halfadder, wide AND-gate
m The other direction is not true (e.g., sync. logic)
m Arbitrary many processes possible
m Executed concurrently
m Order of actual execution undefined = do not rely on it
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