HWMod
WS25

[T Hardware Modeling [VU] (191.011)
- WS25 —

Behavioral Modeling

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:04 (f8a58e9)

Introduction

HWMod

WS25 . .
m Can model all combinational hardware

m Hardly scales...

Introduction

m Concurrent assignments and structural modeling

Behavior Structure Geometry
Inputs : Keyboard -Mammy-c k=

System Level Output: Display m il ullin:
Functio

Algorithmic
Level

while input
read English text
translate to German
output German Text

7757
o

Ho-cunl e

wp | Psi2
[ocer | RS232

Register Transfer

if A="1" then
B+l

] \
Ccomer 7

Level (RTL) ;=8
end if
D=NOTE E—N C
Logic Level C= (D OR B) AND A ¢ A Fond E
———
- W_pd L j 144 *5 pE—
Circuit Level at ~Rar +°c *lae ‘E E -]

Introduction

HWMod m Concurrent assignments and structural modeling
WS25 . .

m Can model all combinational hardware

m Hardly scales...how?

Introduction

Behavior Structure Geometry
Inputs : Keyboard -Mammy cru =
System Level Output: Display m il ullin:
Function: ...
X . while input
Algorithmic read English text 1 2
translate to German 2
Level output German Toxt

ifA="1" then
i B:= o
Register Transfer o P?l AN a
B:=fa ﬂ <

Level (RTL)
end if [comer_J7
D=NOTE E—{3 <
Logic Level C= (D OR B) AND A ¢ for °
A

o gL L@ a0 4 4
Circuit Level at ~Rar +°c *lae ‘E E -]

HWMod
WS25

Introduction

Introduction

m Concurrent assignments and structural modeling
m Can model all combinational hardware
m Hardly scales...how?

= Behavioral Modeling

Behavior Structure Geometry
Inputs : Keyboard -Mammy cru =
System Level Output: Display m il ullin: Iy T
Function: .. outl{ 2"
X . while input
Algorithmic read English text ™ up | PS2 |
translate to German PSI2 1
Level output German Text 10-ctrl | R5232
. if A="1" then
Register Transfer e
Level (RTL) Ay i
Behavioral
‘Modeling
Logic Level C= (DORB)AND A

Circuit Level

du _pdl L d
gt “Rar *°c *lae

Behavioral Modeling

HWMod
WS25

oo m Revolves around processes
m Must be synthesizable

Behavioral Modeling

HWMod
WS25

oo m Revolves around processes

m Must be synthesizable
m “single-use entity and architecture”

Behavioral Modeling

HWMod
WS25

oo m Revolves around processes

m Must be synthesizable

m “single-use entity and architecture”

m Control flow statements and variables
m Sequential description

Behavioral Modeling

HWMod
WS25

oo m Revolves around processes
m Must be synthesizable
m “single-use entity and architecture”
m Control flow statements and variables
m Sequential description

m Complements struct. modeling and concurrent assignments

Behavioral Modeling

HWMod
WS25

oo m Revolves around processes

m Must be synthesizable

m “single-use entity and architecture”

m Control flow statements and variables
m Sequential description

m Complements struct. modeling and concurrent assignments
m Ubiquitous in synchronous designs

Example: Multiplexer

HWMod 4 entity mux_41 is
WS25 5 port (
6 c : in std_ulogic_vector(l downto 0);
7 i : in std_ulogic_vector (3 downto 0);
8 o : out std_ulogic c(0)
9)i
Example
¢ 10 end entity; c(l)
i(0)
i(1) .
i(2)
1i(3)

HWMod
WS25

Example

Example: Multiplexer

O © N O U A

12
13
14
15
16
17
18

entity mux_41 is

port (
c : in
i : in

o : out std_ulogic

)i
end entity;

architecture csa

begin
o <= i(0) when
i(1) when
i(2) when
i(3) when

end architecture;

of mux_41 1is

not c(l) and
not c(1l) and
c(l) and
c(l) and

std_ulogic_vector (1l downto
std_ulogic_vector (3 downto

0);
0);

else
else
else

Q

~

Q

w NP O = O
—_— — — —

S T e

o~ o~ o~ —~

Example: Multiplexer

HWMod 4 entity mux_41 is
WS25 5 port (

6 c : in std_ulogic_vector(l downto 0);
7 i : in std_ulogic_vector (3 downto 0);
8 o : out std_ulogic c(0)
9)i

Senpe 10 end entity; c (1)

i(0)

12 architecture beh of mux_41 is i (1)
13 begin l (e}
14 process begin i(2)
15 case ¢ is 1(3)
16 when 0’ & 0" => o <= 1(0);
17 when 70’ & 1" => o <= 1i(1);
18 when "1’ & 0" => o <= 1(2);
19 when 717 & 1" => o <= 1(3);
20 when others => null;
21 end case;
22 wait;
23 end process;

24 end architecture; 3

Example: Multiplexer

HWMod 4 entity mux_41 is
WS25 5 port (

6 c : in std_ulogic_vector(l downto 0);
7 i : in std_ulogic_vector (3 downto 0);
8 o : out std_ulogic c(0)
9)i

Senpe 10 end entity; c (1)

i(0)

12 architecture beh of mux_41 is i (1)
13 begin l (e}
14 process begin i(2)
15 case ¢ is 1(3)
16 when 0’ & "0’ => o <= 1(0);
17 when 0’ & 1" => o <= 1i(1);
18 when "1’ & 0’ => o <= 1(2);
19 when 1’ & 1" => o <= 1(3);
20 when others => null;
21 end case;
22 wait;
23 end process;

24 end architecture; 3

Example: Multiplexer

HWMod 4 entity mux_41 is
WS25 5 port (

6 c : in std_ulogic_vector(l downto 0);
7 i : in std_ulogic_vector (3 downto 0);
8 o : out std_ulogic c(0)
9)i

Senpe 10 end entity; c (1)

i(0)

12 architecture beh of mux_41 is i (1)
13 begin l (e}
14 process begin i(2)
15 case ¢ is 1(3)
16 when 0’ & 0" => o <= 1(0);
17 when 70’ & 1" => o <= 1i(1);
18 when "1’ & 0" => o <= 1(2);
19 when 717 & 1" => o <= 1(3);
20 when others => null;
21 end case;
22 wait;
23 end process;

24 end architecture; 3

Example: Multiplexer

HWMod 4 entity mux_41 is
WS25 5 port (

6 c : in std_ulogic_vector(l downto 0);
7 i : in std_ulogic_vector (3 downto 0);
8 o : out std_ulogic c(0)
9)i

Senpe 10 end entity; c (1)

i(0)

12 architecture beh of mux_41 is i (1)
13 begin l (e}
14 process begin i(2)
15 case ¢ is 1(3)
16 when 0’ & 0" => o <= 1(0);
17 when 70’ & 1" => o <= 1i(1);
18 when "1’ & 0" => o <= 1(2);
19 when 717 & 1" => o <= 1(3);
20 when other => null;
21 end case;
22 wait; = “Termination” of circuit?!
23 end process;

24 end architecture; 3

wait on Statement

HWMod
WS25

m “Termination” of circuit not sensible
m Stays active as long as powered

wait on

wait on Statement

HWMod
WS25

m “Termination” of circuit not sensible
m Stays active as long as powered
m Instead: Model circuit as “sequential routine” for input changes

wait on

wait on Statement

HWMod
WS25

m “Termination” of circuit not sensible
m Stays active as long as powered
m Instead: Model circuit as “sequential routine” for input changes
= walt on sensitivity_list

wait on

wait on Statement

HWMod
WS25

m “Termination” of circuit not sensible
m Stays active as long as powered
m Instead: Model circuit as “sequential routine” for input changes
= walt on sensitivity_list
m Last element in synthesizable process (like wait)

wait on

wait on Statement

HWMod
WS25

m “Termination” of circuit not sensible
m Stays active as long as powered
m Instead: Model circuit as “sequential routine” for input changes
= walt on sensitivity_list
m Last element in synthesizable process (like wait)
m Process suspended when reaching wait on statement

wait on

wait on Statement

HWMod
WS25

m “Termination” of circuit not sensible
m Stays active as long as powered
m Instead: Model circuit as “sequential routine” for input changes
= walt on sensitivity_list
m Last element in synthesizable process (like wait)
m Process suspended when reaching wait on statement
m Starts from top when signal in list changes

wait on

wait on Statement

HWMod
WS25

m “Termination” of circuit not sensible
m Stays active as long as powered
m Instead: Model circuit as “sequential routine” for input changes
= walt on sensitivity_list
m Last element in synthesizable process (like wait)
m Process suspended when reaching wait on statement
m Starts from top when signal in list changes

wait on

1 process begin

2 case c is

3 when false & false => o <= 1i(0);
4 [...]

5 end case;

6 wait on ¢, ij;

7 end process;

wait on Statement

HWMod
WS25

m “Termination” of circuit not sensible
m Stays active as long as powered
m Instead: Model circuit as “sequential routine” for input changes
= walt on sensitivity_list
m Last element in synthesizable process (like wait)
m Process suspended when reaching wait on statement
m Starts from top when signal in list changes

wait on

process Egigig__ﬂ_ﬂ.ﬂ.ﬂ-—-“Processinputs’

1
2 case c 1is '

3 when false & false => o <= 1(0);
4 [...]

5 end case;

6 wait on c, i;<—— Sensitivity List

7 end process;

wait on Statement

HWMod
WS25

m “Termination” of circuit not sensible
m Stays active as long as powered
m Instead: Model circuit as “sequential routine” for input changes
= walt on sensitivity_list
m Last element in synthesizable process (like wait)
m Process suspended when reaching wait on statement
m Starts from top when signal in list changes

wait on

process Egigig__ﬂ_ﬂ.ﬂ.ﬂ-—-“Processinputs’

1
2 case c 1is '

3 when false & false => o <= 1(0);
4 [...]

5 end case;

6 wait on c, i;<—— Sensitivity List

7 end process;

Example: Half-adder

Wzs. Completeness of sensitivity list matters!

wait on

Example: Half-adder

HWMod
ws25 Completeness of sensitivity list matters!

1 entity ha is
2 port (a I::>444,s
3 a, b : in boolean;

wait on C
4 s, ¢ : out boolean b
5);
6 end entity;

Example: Half-adder

HWMod
ws25 Completeness of sensitivity list matters!

entity ha is

port (a I::>————S

1
2
3 a, b : in boolean;
wait on C
4 s, ¢ : out boolean b
5);
6 end entity;

architecture archl of ha is
begin

process begin

s <= a xor b;

c <= a and b;

wait on a, b;

end process;
end architecture;

® N U A W N =

Example: Half-adder

HWMod
ws25 Completeness of sensitivity list matters!

entity ha is

port (a I::>————S

1
2
3 a, b : in boolean;
wait on C
4 s, ¢ : out boolean b
5);
6 end entity;

architecture archl of ha is
begin

process begin

s <= a xor b;

c <= a and b;

wait on a, b;

end process;
end architecture;

® N U A W N =

Example: Half-adder

HWMod
ws25 Completeness of sensitivity list matters!

entity ha is

port (a [::>————S

1
2
3 a, b : in boolean;
reten 4 s, c : out boolean b c
5);
6 end entity;

architecture archl of ha is

begin .
. a
process begin +b
wait on a, b;
s <= a xor b; s a
c <= a and b; = sl

wait on a, b;
end process;
end architecture;

® N U A W N =

Example: Half-adder

HWMod
ws25 Completeness of sensitivity list matters!

entity ha is

port (a [::>————S

1
2
3 a, b : in boolean;
reten 4 s, c : out boolean b c
5);
6 end entity;

architecture arch2 of ha is

begin .
. a
process begin +b
wait on a, b;
s <= a xor Db; s a
c <= a and b; = sl

wait on a;
end process;
end architecture;

® N U A W N =

Example: Half-adder

HWMod
ws25 Completeness of sensitivity list matters!

entity ha is

1
2
3 a, b : in boolean;
naen 4 s, ¢ : out boolean b c
5);
6 end entity;

architecture arch2 of ha is

1

2 begin 5

3 process begin 4 b

4 s <= a xor b; it
5 c <= a and b; ;ima—
6 wait on a; ¥

7 end process; =

8 end architecture;

Example: Half-adder

HWMod
ws25 Completeness of sensitivity list matters!

entity ha is

1
2
3 a, b : in boolean;
naen 4 s, ¢ : out boolean b c
5);
6 end entity;

architecture arch2 of ha is

1

2 begin 5

3 process begin 4 b

4 s <= a xor b; it
5 c <= a and b; ;ima—
6 wait on a; ¥

7 end process; =

8 end architecture;

Sensitivity List

HWMod
WS25

Sensitivity List

Sensitivity List

HWMod
WS25

m Use sensitivity list in process declaration
m Implicit wait on = semantically equivalent

Sensitivity List

Sensitivity List

HWMod
WS25

m Use sensitivity list in process declaration
m Implicit wait on = semantically equivalent

1 process (a, b)
2 begin

3 [...]

4 end process;

Sensitivity List

Sensitivity List

HWMod
WS25

m Use sensitivity list in process declaration
m Implicit wait on = semantically equivalent

process
process (a, b) begin

1
1
2
2 begin
4
5

Sensitivity List

wait on a, b;
end process;
end process;

Sensitivity List

HWMod
WS25

m Use sensitivity list in process declaration
m Implicit wait on = semantically equivalent

process
b
process (a, b) begin

1
1
2
2 begin
4
5

Sensitivity List

wait on a, b;
end process;
end process;

m No wait statements in process (sim. only)

Sensitivity List

HWMod
WS25

m Use sensitivity list in process declaration
m Implicit wait on = semantically equivalent

process
process (a, b) begin

1
1
2 begin 2
3 e.) < ¢ L
T 4 wait on a, b;
4 end process;
5 end process;

Sensitivity List

m No wait statements in process (sim. only)

m Explicit sensitivity list for combinational logic can be

Sensitivity List

HWMod
WS25

m Use sensitivity list in process declaration
m Implicit wait on = semantically equivalent

process
process (a, b) begin

1
1
2 begin 2
3 e.) < ¢ L
T 4 wait on a, b;
4 end process;
5 end process;

Sensitivity List

m No wait statements in process (sim. only)

m Explicit sensitivity list for combinational logic can be
H error-prone

Sensitivity List

HWMod
WS25

m Use sensitivity list in process declaration
m Implicit wait on = semantically equivalent

process
process (a, b) begin

1
1
2 begin 2
3 e.) < ¢ L
T 4 wait on a, b;
4 end process;
5 end process;

Sensitivity List

m No wait statements in process (sim. only)

m Explicit sensitivity list for combinational logic can be
H error-prone
m hard to maintain

Sensitivity List

HWMod
WS25

m Use sensitivity list in process declaration
m Implicit wait on = semantically equivalent

process
process (a, b) begin

1
1
2 begin 2
3 e.) < ¢ L
T 4 wait on a, b;
4 end process;
5 end process;

Sensitivity List

m No wait statements in process (sim. only)

m Explicit sensitivity list for combinational logic can be
H error-prone
m hard to maintain

= all keyword for sensitivity lists

Sensitivity Lists Using all

HWMod
WS25

m Sensitivity list is constructed at compile-time

m Consider all statements inside the process
m Apply rules to determine sensitive signals

all keyword

Sensitivity Lists Using all

HWMod
WS25

m Sensitivity list is constructed at compile-time

m Consider all statements inside the process
m Apply rules to determine sensitive signals

all keyword

1 process (all) 1 process (c, 1)
2 begin 2 begin

3 [...] 3 [...]

4 end process; 4 end process;

Sensitivity Lists Using all

HWMod
WS25

m Sensitivity list is constructed at compile-time
m Consider all statements inside the process
m Apply rules to determine sensitive signals

all keyword

1 process (all) 1 process (c, 1)
2 begin 2 begin

3 [...] 3 [...]

4 end process; 4 end process;

m Caveat: Some circuits should not change for any input change

Sensitivity Lists Using all

HWMod
WS25

m Sensitivity list is constructed at compile-time

m Consider all statements inside the process
m Apply rules to determine sensitive signals

all keyword

1 process (all) 1 process (c, 1)
2 begin 2 begin

3 [...] 3 [...]

4 end process; 4 end process;

m Caveat: Some circuits should not change for any input change

m Synchronous logic only sensitive to clock and reset
m More on that in chapter Il

Sensitivity Lists Using all

HWMod
WS25
m Sensitivity list is constructed at compile-time

m Consider all statements inside the process
m Apply rules to determine sensitive signals

all keyword

1 process (all) 1 process (c, 1)

2 begin 2 begin

3 [...] 3 [...]

4 end process; 4 end process;

m Caveat: Some circuits should not change for any input change

m Synchronous logic only sensitive to clock and reset
m More on that in chapter Il

m Rule of thumb: Use a11 for comb. processes

Process Simulation

HWMod . . . e
WS25 m Process is a sequential description

m Hardware is highly concurrent

Process Simulation

HWMod . . . e
WS25 m Process is a sequential description

m Hardware is highly concurrent
m What does the simulator do?

Process Simulation

HWMod . . . e
WS25 m Process is a sequential description
m Hardware is highly concurrent
m What does the simulator do?
= Process simulation logic B
fetch 1%
sétcement

execute
registered
statements

wait for

yes
next event

register
statement

fetch next
statement

Example: Process Simulation

HWMod
WS25

Example 1 architecture beh of abc is
2 signal a, b, c¢ : boolean;
3 begin

4 process

5 begin

6 b <= a;

7 c <= b;

8 wait on a, b;

9 end process;

10 end architecture;

Example: Process Simulation

HWMod
WS25

Example 1 architecture beh of abc is
2 signal a, b, c¢ : boolean;
3 begin

4 process

5 begin

6 b <= a;

7 c <= b;

8 wait on a, b;

9 end process;

10 end architecture;

Example: Process Simulation

HWMod
WS25
fetch 1%
statement
Example 1 architecture beh of abc is
) . . wait for execute yes
2 signal a, b, c : boolean; ot evant registered yes
3 begin statements
4 process . no
5 begin "
6 b <= a;
7 c <= b;
8 wait on a, b;
9 n r . yes
end p ?cess’ fetch next register
10 end architecture; statement J statement

HWMod
WS25

Example

Example: Process Simulation

architecture beh of abc is

signal a, b, c

begin
process
begin
b <= a;
c <= b;

wait on a, b;
end process;
end architecture;

boolean;

fetch 1%
statement

wait for
next event

fetch next

statement

a: false
b: false
Cc: false

execute
registered
statements

yes
. register

statement

Example: Process Simulation

HWMod
WSs25 Input a changes
fetch 1 |
statement
Example i architecture beh of abc is . execute
2 S}gnal a, b, ¢ : boolean; TGN :ﬁ'::;:?s
3 begin
4 process
5 begin
6 b <= a;
7 c <= b;
8 wait on a, b; yes
9 end process; fetch next register
10 end architecture; statement J statement

a: false — true
b: false
c: false

Example: Process Simulation

HWMod .
WS25 Fetch first statement of the process body
fetch 1%
statement
Example i architecture beh of abc is . execute
2 signal a, b, ¢ : boolean; registered
) g r ! e statements
3 begin
4 process
5 begin
6 b <= a;
7 c <= b;
8 wait on a, b; yes
9 end process; fetch next ‘ register
10 end architecture; statement statement
a: true
b: false
Cc: false

Example: Process Simulation

HWMod .
WS25 Neither wait nor end process
fetch 15 |
statement
Example 1 architecture beh of abc is - W yes
2 signal a, b, ¢ : boolean; nextﬂ ’ registered is wait? yes
3 begin J statements
4 process no
5 begin
6 b <= a;
7 c <= b;
8 wait on a, b;
9 end process; register
10 end architecture; statement statement

a: true
b: false
c: false

Example: Process Simulation

HWMod . .
WS25 Register statement for future execution
fetch 1%
statement
Example i architecture beh of abc is a execute
wait for .
2 signal a, b, c : boolean; registered
) g r ! e statements
3 begin
4 process
5 begin
6 b <= a;
7 c <= b;
8 wait on a, b; yes
9 end process; fetch next ‘ register
10 end architecture; statement statement
a: true Registered: b <= true;
b: false
Cc: false

Example: Process Simulation

HWMod . .
WS25 Register statement for future execution
fetch 1%
statement
Example i architecture beh of abc is a execute
wait for .
2 signal a, b, c : boolean; registered
) g r ! e statements
3 begin
4 process
5 begin
6 b <= a;
7 c <= b;
8 wait on a, b; yes
9 end process; fetch next ‘ register
10 end architecture; statement statement
a: true Registered: b <= true;
b: false
Cc: false

Example: Process Simulation

HWMod
Ws25 Fetch the next statement
fetch 1%
statement
Example i architecture beh of abc is a execute
wait for .
2 signal a, b, c : boolean; registered
) g r ! e statements
3 begin
4 process
5 begin
6 b <= a;
7 c <= b;
8 wait on a, b; yes
9 end process; fetch next ‘ register
10 end architecture; statement statement
a: true Registered: b <= true;
b: false
Cc: false

HWMod
WS25

Example

Example: Process Simulation

Continue until wait nor end process encountered

architecture beh of abc is

signal a, b, c

begin
process
begin
b <= a;
c <= b;

wait on a, b;
end process;
end architecture;

boolean;

fetch 1%
statement

i execute
m yes
n;?';f,';t ’ registered is wait? yes
J J statements

no

fetch next
statement

register
statement

a: true Registered: b <= true;
b: false
Cc: false

Example: Process Simulation

HWMod

Ws25 Continue until wait nor end process encountered
fetch 1%
statement
Example 1 architecture beh of abc is . execute

2 s%gnal a, b, ¢ : boolean; TGN :ﬁ'::;:?s

3 begin

4 process

5 begin

6 b <= a;

7 c <= b;

8 wait on a, b; yes

9 end process; fetch next ‘ register

10 end architecture; statement statement

a: true Registered: b <= true;
b: false c <= false;
Cc: false

Example: Process Simulation

HWMod

Ws25 Continue until wait nor end process encountered
fetch 1%
statement
Example 1 architecture beh of abc is . execute

2 s%gnal a, b, ¢ : boolean; TGN :ﬁ'::;:?s

3 begin

4 process

5 begin

6 b <= a;

7 c <= b;

8 wait on a, b; yes

9 end process; fetch next ‘ register

10 end architecture; statement statement

a: true Registered: b <= true;
b: false c <= false;
Cc: false

Example: Process Simulation

HWMod
WSs25 wait statement encountered
fetch 1%
statement
Example 1 architecture beh of abc is _ execute
2 signal a, b, ¢ : boolean; waitifor registered is wait? yes
. ! ! ! e statements
3 begin
4 process o no
5 begin
6 b <= a;
7 c <= b;
8 wait on a, b; yes
9 end process; fetch next register no
10 end architecture; statement statement
a: true Registered: b <= true;
b: false c <= false;
Cc: false

Example: Process Simulation

HWMod
WS25 Now execute all registered statements (in zero simulation time)
fetch 1%
statement
Example 1 architecture beh of abc is . execute
2 si l1a, b, c¢c : b 1 . registered
lqna ! ! corean; fextevent statements
3 begin
4 process
5 begin
6 b <= a;
7 c <= b;
8 wait on a, b; yes
9 end process; fetch next ‘ register
10 end architecture; statement statement

a: true Registered: b <= true;
b: false — true c <= false;
Cc: false

Example: Process Simulation

HWMod
WS25 Now execute all registered statements (in zero simulation time)
fetch 1%
statement
Example 1 architecture beh of abc is . execute
2 si l1a, b, c¢c : b 1 . registered
lqna ! ! corean; fextevent statements
3 begin
4 process
5 begin
6 b <= a;
7 c <= b;
8 wait on a, b; yes
9 end process; fetch next ‘ register
10 end architecture; statement statement

a: true Registered: ¢ <= false;
b: true
C: false — false

HWMod
WS25

Example

Example: Process Simulation

Change of b triggered wait on a,b

fetch 1%
statement

1 architecture beh of abc is
2 signal a, b, c boolean;
3 begin

4 process

5 begin

6 b <= a;

7 c <= b;

8 wait on a, b;

9 end process;

10 end architecture;

a: true
b: true

c: false

wait for
next event

fetch next
statement

wait trig-
gered?

execute
registered
statements

register

Registered:

statement

Example: Process Simulation

HWMod
Ws25 Fetch next statement
fetch 1%
statement
Example 1 architecture beh of abc is . execute | yeg
wait for N f . e
2 signal a, b, c : boolean; TGN ’ registered is wait? o
) statements
3 begin J J LJ
4 process no
5 begin
6 b <= a;
7 c <= b;
8 wait on a, b; yes
9 end process; fetch next ‘ register
10 end architecture; statement statement
a: true Registered:
b: true
Cc: false

Example: Process Simulation

HWMod
WS25 End of process = Repeat
fetch 1%
statement
Example i architecture beh of abc is a execute
wait for .
2 signal a, b, c : boolean; registered
) g r ! e statements
3 begin
4 process
5 begin
6 b <= a;
7 c <= b;
8 wait on a, b; yes
9 end process; fetch next ‘ register
10 end architecture; statement statement
a: true Reqgistered:
b: true
Cc: false

Observations: Process Simulation

HWMod
WS25

Observation |

Statements are not executed immediately, but rather gathered until a wait is
encountered. Then they are all executed without consuming simulation time.
This mimics a concurrent execution.

Observations: Process Simulation

HWMod
WS25

Observation |

Statements are not executed immediately, but rather gathered until a wait is
encountered. Then they are all executed without consuming simulation time.
This mimics a concurrent execution.

Observation Il

Without b in the sensitivity list in the example, ¢ would end remaining false
until the next change of a = proper sensitivity list paramount.

Observations: Process Simulation

HWMod
WS25

Observation |

Statements are not executed immediately, but rather gathered until a wait is
encountered. Then they are all executed without consuming simulation time.
This mimics a concurrent execution.

Observation Il

Without b in the sensitivity list in the example, ¢ would end remaining false
until the next change of a = proper sensitivity list paramount.

Observation Il

A process without (implicit) wait statement loops endlessly.

Variables

HWMod
i m Signal assignments executed at wait

Variables

HWMod
i m Signal assignments executed at wait

= Variables

HWMod
WS25

Variables

Variables

m Signal assignments executed at wait
= Variables
m In process declarative part
variable x : integer := 10;

Variables

HWMod

i m Signal assignments executed at wait
= Variables
m In process declarative part
variable x : integer := 10;

faraoles m Assignments (: =) have immediate effect

Variables

HWMod

i m Signal assignments executed at wait
= Variables
m In process declarative part
variable x : integer := 10;
faraoles m Assignments (: =) have immediate effect

m Not in sensitivity list

Variables

HWMod

i m Signal assignments executed at wait
= Variables
m In process declarative part
variable x : integer := 10;
faraoles m Assignments (: =) have immediate effect

m Not in sensitivity list
m Name and reuse intermediate expressions

Variables

HWMod
i m Signal assignments executed at wait
= Variables
m In process declarative part
variable x : integer := 10;

Variables

m Assignments (: =) have immediate effect
m Not in sensitivity list
m Name and reuse intermediate expressions

m Example
1 entity wide_and is 1 process (all) is
2 port(2 variable result : std_ulogic :
3 i : in std_ulogic_vector; 3 begin
4 o : out std_ulogic 4 for x in i’range loop
5)5 5 result := result and 1i(x);
6 end loop;
7 o <= result;
8 end process;

Variables

HWMod
i m Signal assignments executed at wait
= Variables
m In process declarative part
variable x : integer := 10;

Variables

m Assignments (: =) have immediate effect
m Not in sensitivity list
m Name and reuse intermediate expressions

m Example
1 entity wide_and is 1 process (all) is
2 port(2 variable result : std_ulogic :
3 i : in std_ulogic_vector; 3 begin
4 o : out std_ulogic 4 for x in i’range loop
5)5 5 result := result and 1i(x);
6 end loop;
7 o <= result;
8 end process;

Example: Variables vs Signals

HWMod
WS25

Example: Variables vs Signals

architecture sig of app is

1
HWMod : .
WS25 2 signal w, x, y, z : std_ulogic;
3 begin
4 process (all) begin
5 x <= aj;
6 y <= b;
7 z <= x and y;
8 y <= c;
Example
9 w <= x and y;
0 end process;
1

end architecture;

Example: Variables vs Signals

architecture sig of app is

1
HWMod : .
WS25 2 signal w, x, y, z : std_ulogic;
3 begin
4 process (all) begin
5 x <= aj;
6 y <= b;
7 z <= x and y;
8 y <= c;
Example
9 w <= x and y;
0 end process;
1

end architecture;

Initial Values: A=B=C=W=X=Y=z='1’, C='1’—'0’

Example: Variables vs Signals

architecture sig of app is

1
HWMod : .
WS25 2 signal w, x, y, z : std_ulogic;
3 begin
4 process (all) begin
5 x <= aj;
6 y <= b;
7 z <= x and y;
8 y <= ¢;
Example
9 w <= x and y;
0 end process;
1

end architecture;

Initial Values: A=B=C=W=X=Y=z='1’, C='1’—'0’

Example: Variables vs Signals

architecture sig of app is

1
HWMod : .
WS25 2 signal w, x, y, z : std_ulogic;
3 begin
4 process (all) begin
5 x <= a;
6 y <= b;
7 z <= x and y;
8 y <= c;
Example
9 w <= x and y;
0 end process;
1

end architecture;

Initial Values: A=B=C=W=X=Y=z='1’, C='1’—'0’

Iteration # signal values at end
1 x='1'
2

Example: Variables vs Signals

architecture sig of app is

1
HWMod : .
WS25 2 signal w, x, y, z : std_ulogic;
3 begin
4 process (all) begin
5 x <= aj;
6 y <= b;
7 z <= x and y;
8 y <= c;
Example
9 w <= x and y;
0 end process;
1

end architecture;

Initial Values: A=B=C=W=X=Y=z='1’, C='1’—'0’

Iteration # signal values at end
1 x='1' , y=l 1’
2

Example: Variables vs Signals

architecture sig of a is
HWMod M PP

1
WS25 2 signal w, x, y, z : std_ulogic;
3 begin
4 process (all) begin
5 x <= aj;
6 y <= b;
7 z <= x and y;
8 y <= c;
Example
9 w <= x and y;
0 end process;
1

end architecture;

Initial Values: A=B=C=W=X=Y=z='1’, C='1’—'0’
Iteration # signal values at end
1 x='1' , y=l 1’
z='1"'
2

Example: Variables vs Signals

architecture sig of a is
HWMod M PP

1
WS25 2 signal w, x, y, z : std_ulogic;
3 begin
4 process (all) begin
5 x <= aj;
6 y <= b;
7 z <= x and y;
8 y <= ¢;
Example
9 w <= x and y;
0 end process;
1

end architecture;

Initial Values: A=B=C=W=X=Y=z='1’, C='1’—'0’
Iteration # signal values at end
1 x='1' , y=l 0’
z='1"'
2

Example: Variables vs Signals

architecture sig of a is
HWMod M PP

1
WS25 2 signal w, x, y, z : std_ulogic;
3 begin
4 process (all) begin
5 x <= aj;
6 y <= b;
7 z <= x and y;
8 y <= c;
Example
9 w <= x and y;
0 end process;
1

end architecture;

Initial Values: A=B=C=W=X=Y=z='1’, C='1’—'0’
Iteration # signal values at end
1 x='1' , y=l 0’
z='1"' , w='"1"'
2

Example: Variables vs Signals

architecture sig of a is
HWMod M PP

1
WS25 2 signal w, x, y, z : std_ulogic;
3 begin
4 process (all) begin
5 x <= aj;
6 y <= b;
7 z <= x and y;
8 y <= c;
Example
9 w <= x and y;
0 end process;
1

end architecture;

Initial Values: A=B=C=W=X=Y=z='1’, C='1’—'0’
Iteration # signal values at end
1 X=’l’, y=lol
Z:’lr, w='"1"'
9 w:IOI, x='1"'

y=ror, z='0"

Example: Variables vs Signals

architecture sig of app is

1
HWMod : .
WS25 2 signal w, x, y, z std_ulogic;
3 begin
4 process (all) begin
5 x <= aj;
6 y <= b;
7 z <= x and y;
8 y <= c;
Example
9 w <= x and y;
0 end process;
1

end architecture;

Initial Values: A=B=C=W=X=Y

=r1’, C="1"—="'0"'

Iteration # signal values at end
1 x=' 11, y=l 0’
z=" 17’ w='1"’
9 w=' O', x='1"’
y=l O’, z='Q"’

architecture var of app is

1

2 signal w, z std_ulogic;
3 begin

4 process (all) is

5 variable x, y : std_ulogic;
6 begin

7 X = aj;

8 y = b;

9 z <= x and y;

10 y = C;

11 w <= x and y;

12 end process;

13 end architecture;

Example: Variables vs Signals

architecture sig of app is

1
HWMod : .
WS25 2 signal w, x, y, z std_ulogic;
3 begin
4 process (all) begin
5 x <= aj;
6 y <= b;
7 z <= x and y;
8 y <= c;
Example
9 w <= x and y;
0 end process;
1

end architecture;

Initial Values: A=B=C=W=X=Y

=r1’, C="1"—="'0"'

Iteration # signal values at end
1 x=' 11, y=l 0’
z=" 17’ w='1"’
9 w=' O', x='1"’
y=l O’, z='Q"’

architecture var of app is

1

2 signal w, z std_ulogic;
3 begin

4 process (all) is

5 variable x, y : std_ulogic;
6 begin

7 X = aj;

8 y = b;

9 z <= x and y;

10 y = C;

11 w <= x and y;

12 end process;

13 end architecture;

Example: Variables vs Signals

HWMod
WS25

Example

Initial Values: A=B=C=W=X=Y

architecture sig of app is
signal w, x, y, z std_ulogic;

begin
process (all) begin
x <= aj;
y <= b;
z <= x and y;
y <= ¢;
w <= x and y;

end process;
end architecture;

=r1’, C="1"—="'0"'

Iteration # signal values at end
1 x=' 11, y=l 0’
z=" 17’ w='1"’
9 w=' O', x='1"’
y=l O’, z='Q"’

architecture var of app is

1

2 signal w, z std_ulogic;
3 begin

4 process (all) is

5 variable x, y std_ulogic;
6 begin

7 X = aj;

8 y = b;

9 z <= x and y;

10 y = C;

11 w <= x and y;

12 end process;

13 end architecture;

Iteration # signal values at end

1

Example: Variables vs Signals

HWMod
WS25

Example

Initial Values: A=B=C=W=X=Y

architecture sig of app is
signal w, x, y, z std_ulogic;

begin
process (all) begin
x <= aj;
y <= b;
z <= x and y;
y <= ¢;
w <= x and y;

end process;
end architecture;

=r1’, C="1"—="'0"'

Iteration # signal values at end
1 x=' 11, y=l 0’
z=" 17’ w='1"’
9 w=' O', x='1"’
y=l O’, z='Q"’

architecture var of app is

1

2 signal w, z std_ulogic;
3 begin

4 process (all) is

5 variable x, y std_ulogic;
6 begin

7 X = aj;

8 y := b;

9 z <= x and y;

10 y = C;

11 w <= x and y;

12 end process;

13 end architecture;

Iteration # signal values at end
1 x='1"' , y=l 1’
2

Example: Variables vs Signals

HWMod
WS25

Example

Initial Values: A=B=C=W=X=Y

architecture sig of app is
signal w, x, y, z std_ulogic;

begin
process (all) begin
x <= aj;
y <= b;
z <= x and y;
y <= ¢;
w <= x and y;

end process;
end architecture;

=r1’, C="1"—="'0"'

Iteration # signal values at end
1 x=' 11, y=l 0’
z=" 17’ w='1"’
9 w=' O', x='1"’
y=l O’, z='Q"’

architecture var of app is

1

2 signal w, z std_ulogic;
3 begin

4 process (all) is

5 variable x, y std_ulogic;
6 begin

7 X = aj;

8 y = b;

9 z <= x and y;

10 y = C;

11 w <= x and y;

12 end process;

13 end architecture;

Iteration # signal values at end
x='1"' , y=l 1’
1 z="1"’
2

Example: Variables vs Signals

HWMod
WS25

Example

Initial Values: A=B=C=W=X=Y

architecture sig of app is
signal w, x, y, z std_ulogic;

begin
process (all) begin
x <= aj;
y <= b;
z <= x and y;
y <= ¢;
w <= x and y;

end process;
end architecture;

=r1’, C="1"—="'0"'

Iteration # signal values at end
1 x=' 11, y=l 0’
z=" 17’ w='1"’
9 w=' O', x='1"’
y=l O’, z='Q"’

architecture var of app is

1

2 signal w, z std_ulogic;
3 begin

4 process (all) is

5 variable x, y std_ulogic;
6 begin

7 X = aj;

8 y = b;

9 z <= x and y;

10 y := C;

11 w <= x and y;

12 end process;

13 end architecture;

Iteration # signal values at end
x='1"' , y=l 0’
1 z="1"’
2

Example: Variables vs Signals

HWMod
WS25

Example

Initial Values: A=B=C=W=X=Y

architecture sig of app is
signal w, x, y, z std_ulogic;

begin
process (all) begin
x <= aj;
y <= b;
z <= x and y;
y <= ¢;
w <= x and y;

end process;
end architecture;

=r1’, C="1"—="'0"'

Iteration # signal values at end
1 X=’l’, y=lol
Z:’lr, w='1"’
9 w:IOI, x='1"’
y=IOI, z='Q"’

architecture var of app is

1

2 signal w, z std_ulogic;
3 begin

4 process (all) is

5 variable x, y std_ulogic;
6 begin

7 X = aj;

8 y = b;

9 z <= x and y;

10 y = C;

11 w <= x and y;

12 end process;

13 end architecture;

Iteration # signal values at end
1 X=Ill, y=lol
Z:IlI, W:IOV
2

Example: Variables vs Signals

HWMod
WS25

Example

architecture sig of app is
signal w, x, y, z std_ulogic;

begin
process (all) begin
x <= aj;
y <= b;
z <= x and y;
y <= ¢;
w <= x and y;

end process;
end architecture;

Initial Values: A=B=C=W=X=Y=z='1’, C='1’—'0’
Iteration # signal values at end
1 x='1' , y=l 0’
Z:’lr, w='"1"'
9 w:IOI, x='1"'
y=l 0’ , z='Q"’

architecture var of app is

1

2 signal w, z std_ulogic;
3 begin

4 process (all) is

5 variable x, y std_ulogic;
6 begin

7 X = aj;

8 y = b;

9 z <= x and y;

10 y = C;

11 w <= x and y;

12 end process;

13 end architecture;

Iteration # signal values at end
1 x='1"' , y=l 0’
Z:IlI, W:IOV
2 -

Example: Variables vs Signals

architecture sig of app is architecture var of app is

HWMod

1 1
WS25 2 signal w, x, y, z : std_ulogic; 2 signal w, z : std_ulogic;
3 begin 3 begin
4 process (all) begin 4 process
5 x <= aj; 5 varg std_ulogic;
6 y <= b; 6
7 z <= x and y;
Example 8 y <= ¢
9 w <= x and vy; = x and y;
10 end process; 1= C;
11 end architecturd w <= x and y;
12 end process;
13 end architecture;
Initial Values: A=B=C=W=X=Y=z='1’, C='1’—'0’
Iteration # signal values at end lteration # signal values at end
1 X=lll, y=lol 1 X=’l,, y=,0,
Z:’lr, w='1"’ Z:IlI, w='0"’
9 W::O', x="1" 9)
y= 0’ , z="0"'

Variables vs Signals (Cont'd)

e = Use of variable and signal not equivalent!
e Signals Variables
W w
p A >—
A W W
c[> c D—.:.Z L
Y4

il —REE oo

Variables vs Signals (Cont'd)

e = Use of variable and signal not equivalent!
e Signals Variables
w
W AD w
. D> w I
Z A

;._DZ o

Remarks

HWMod
WS25

Remarks

HWMod
WS25
B process declaration (simplified)
1 [label] : process designator [(sensitivity_list)] [is]
2 [declarative_part]
Remarks 3 begin

4 [statement part] —— process body
5 end process;

Remarks

HWMod
WS25
B process declaration (simplified)
1 [label] : process designator [(sensitivity_list)] [is]
2 [declarative_part]
Remarks 3 begin

4 [statement part] —— process body
5 end process;

m Every concurrent signal has an equivalent process

Remarks

HWMod
WS25
B process declaration (simplified)
1 [label] : process designator [(sensitivity_list)] [is]
2 [declarative_part]
Remarks 3 begin

4 [statement part] —— process body
5 end process;

m Every concurrent signal has an equivalent process
m Examples: MUX41, halfadder, wide AND-gate

Remarks

HWMod
WS25
B process declaration (simplified)
1 [label] : process designator [(sensitivity_list)] [is]
2 [declarative_part]
Remarks 3 begin

4 [statement part] —— process body
5 end process;

m Every concurrent signal has an equivalent process

m Examples: MUX41, halfadder, wide AND-gate
m The other direction is not true (e.g., sync. logic)

Remarks

HWMod
WS25
B process declaration (simplified)
1 [label] : process designator [(sensitivity_list)] [is]
2 [declarative_part]
Remarks 3 begin

4 [statement part] —— process body
5 end process;

m Every concurrent signal has an equivalent process

m Examples: MUX41, halfadder, wide AND-gate
m The other direction is not true (e.g., sync. logic)

m Arbitrary many processes possible

Remarks

HWMod
WS25
B process declaration (simplified)
1 [label] : process designator [(sensitivity_list)] [is]
2 [declarative_part]
Remarks 3 begin

4 [statement part] —— process body
5 end process;

m Every concurrent signal has an equivalent process

m Examples: MUX41, halfadder, wide AND-gate
m The other direction is not true (e.g., sync. logic)

m Arbitrary many processes possible
m Executed concurrently

Remarks

HWMod
WS25
B process declaration (simplified)
1 [label] : process designator [(sensitivity_list)] [is]
2 [declarative_part]
Remarks 3 begin

4 [statement part] —— process body
5 end process;

m Every concurrent signal has an equivalent process
m Examples: MUX41, halfadder, wide AND-gate
m The other direction is not true (e.g., sync. logic)
m Arbitrary many processes possible
m Executed concurrently
m Order of actual execution undefined = do not rely on it

HWMod
WS25

Lecture Complete!

Modified: 2025-12-16, 16:04 (f8a58e9)

	Behavioral Modeling
	Introduction
	Sensitivity
	Process Simulation
	Variables
	Remarks

