HWMod
WS25

[T Hardware Modeling [VU] (191.011)
- WS25 —

Behavioral Modeling

Florian Huemer & Sebastian Wiedemann & Dylan Baumann

WS 2025/26

Modified: 2025-12-16, 16:07 (f8a58e9)

HWMod
WS25

Introduction

Introduction

m Concurrent assignments and structural modeling
m Can model all combinational hardware
m Hardly scales...how?

= Behavioral Modeling

Behavior Structure Geometry
Inputs : Keyboard Memoryk= ceu f=)
System Level Output: Display -l*l‘l Iy
Function: ..
. . while input
Algorithmic read English text ™ uP | P2 |
translate to German PSI2 1
Level output German Text 10-ctrl | R5232
Register Transfer > R A G
Level (/1) B 2 | o "
ehaviora
Modeling I
Logic Level N Eond o
i ——
- U _pd L d1 j *§ *§ *5 PE—
Circuit Level at ~Rar +°c *lae ‘E E -]

Behavioral Modeling

HWMod
WS25

oo m Revolves around processes

m Must be synthesizable

m “single-use entity and architecture”

m Control flow statements and variables
m Sequential description

m Complements struct. modeling and concurrent assignments
m Ubiquitous in synchronous designs

Example: Multiplexer

HWMod 4 entity mux_41 is
WS25 5 port (

6 c : in std_ulogic_vector(l downto 0);
7 i : in std_ulogic_vector (3 downto 0);
8 o : out std_ulogic c(0)
9)i

S 10 end entity; c(l)
12 architecture csa of mux_41 is % (O)
13 begin i(1) o
14 o <= 1(0) when not c(l) and not c(0) else i (2)
15 i(1l) when not c(l) and c(0) else i(3)
16 i(2) when c(l) and not c(0) else
17 i(3) when c(l) and c(0);

18 end architecture;

12 architecture beh of mux_41 is

13 begin

14 process begin

15 case c 1is

16 when 70’ & 0" => o <= 1(0);

= e s IO e AT " oAy

wait on Statement

HWMod
WS25

m “Termination” of circuit not sensible
m Stays active as long as powered
m Instead: Model circuit as “sequential routine” for input changes
= walt on sensitivity_list
m Last element in synthesizable process (like wait)
m Process suspended when reaching wait on statement
m Starts from top when signal in list changes

wait on

process Egigig__ﬂ_ﬂ.ﬂ.ﬂ-—-“Processinputs’

1
2 case c 1is '

3 when false & false => o <= 1(0);
4 [...]

5 end case;

6 wait on c, i;<—— Sensitivity List

7 end process;

Example: Half-adder

HWMod

ws25 Completeness of sensitivity list matters!

wait on

0N OO AW N =

architecture archl of ha is
begin
process begin
s <= a xor b;
c <= a and b;
wait on a, b;
end process;
end architecture;

architecture arch2 of ha is

Sensitivity List

HWMod
WS25

m Use sensitivity list in process declaration
m Implicit wait on = semantically equivalent

Sensitivity List

<~

m No wait statements in process (sim. only)

m Explicit sensitivity list for combinational logic can be
H error-prone
m hard to maintain

= all keyword for sensitivity lists

Sensitivity Lists Using all

HWMod
WS25
m Sensitivity list is constructed at compile-time

m Consider all statements inside the process
m Apply rules to determine sensitive signals

all keyword

1 process (all) 1 process (c, 1)

2 begin 2 begin

3 [...] 3 [...]

4 end process; 4 end process;

m Caveat: Some circuits should not change for any input change

m Synchronous logic only sensitive to clock and reset
m More on that in chapter Il

m Rule of thumb: Use a11 for comb. processes

Process Simulation

HWMod . . . e
WS25 m Process is a sequential description
m Hardware is highly concurrent
m What does the simulator do?
= Process simulation logic B
fetch 1%
sétcement

execute
registered
statements

wait for

yes
next event

register
statement

fetch next
statement

Example: Process Simulation

HiwMod Input a changes Fetch first statement of the process body Neither
wait nor end process Register statement for future execution Fetch the
next statement Continue until wait nor end process encountered wait
statement encountered Now execute all registered statements (in zero

simulation time) Change of b triggered wait on a, b Fetch next statement

End of process = Repeat
fetch 1%
statement
wait for CEED

registered is wait?
next event
. statements
begin

architecture beh of abc is
signal a, b, c¢ : boolean;

1

2

3

4 process
5 begin
6

7

8

9

b <= a;
c <= b;
wait on a, b;

and Droceaas fateh navi ronictar 9

Observations: Process Simulation

HWMod
WS25

Observation |

Statements are not executed immediately, but rather gathered until a wait is
encountered. Then they are all executed without consuming simulation time.
This mimics a concurrent execution.

Observation Il

Without b in the sensitivity list in the example, ¢ would end remaining false
until the next change of a = proper sensitivity list paramount.

Observation Il

A process without (implicit) wait statement loops endlessly.

Variables

HWMod
i m Signal assignments executed at wait
= Variables
m In process declarative part
variable x : integer := 10;

Variables

m Assignments (: =) have immediate effect
m Not in sensitivity list
m Name and reuse intermediate expressions

m Example
1 entity wide_and is 1 process (all) is
2 port(2 variable result : std_ulogic :
3 i : in std_ulogic_vector; 3 begin
4 o : out std_ulogic 4 for x in i’range loop
5)5 5 result := result and 1i(x);
6 end loop;
7 o <= result;
8 end process;

Example: Variables vs Signals

HWMod
WS25

Examplo EBE}X.
(O

Initial Values: A=B=C=W=X=Y=z='1’, C='1’—'0’

signal values at end

x='1", y=lll, y=ror
z="1", w="0"

Iteration # signal values at end lteration #
X=’l’, y=IlI, y=IOI
1 z='1"' , w='1"’ 1
9 w='0"’ , x='1"’ 9
y=l 0’ , z='Q"’

Variables vs Signals (Cont'd)

e = Use of variable and signal not equivalent!
e Signals Variables
w
W AD w
. D> w I
Z A

;._DZ o

Remarks

HWMod
WS25
B process declaration (simplified)
1 [label] : process designator [(sensitivity_list)] [is]
2 [declarative_part]
Remarks 3 begin

4 [statement part] —— process body
5 end process;

m Every concurrent signal has an equivalent process
m Examples: MUX41, halfadder, wide AND-gate
m The other direction is not true (e.g., sync. logic)
m Arbitrary many processes possible
m Executed concurrently
m Order of actual execution undefined = do not rely on it

HWMod
WS25

Lecture Complete!

Modified: 2025-12-16, 16:07 (f8a58e9)

	Behavioral Modeling
	Introduction
	Sensitivity
	Process Simulation
	Variables
	Remarks

